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Abstract - It is established that a Q-homeomorphism with respect to p-
modulus in Rn, n > 2, is finitely Lipschitz if n− 1 < p < n and if the mean
integral value of Q(x) over infinitesimal balls B(x0, ε) is finite everywhere.
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1. Introduction

Recall that, given a family of paths Γ in Rn, a Borel function % : Rn → [0,∞]
is called admissible for Γ, abbr. % ∈ admΓ, if∫

γ

% ds ≥ 1 (1.1)

for all γ ∈ Γ. The p-modulus of Γ is the quantity

Mp(Γ) = inf
%∈admΓ

∫
Rn

%p(x) dm(x) . (1.2)

Here the notation m refers to the Lebesgue measure in Rn.

Let G and G′ be domains in Rn, n ≥ 2, and let Q : G → [0,∞]
be a measurable function. A homeomorphism f : G → G′ is called a
Q−homeomorphism with respect to the p-modulus if

Mp(fΓ) ≤
∫
G

Q(x) · %p(x) dm(x) (1.3)

for every family Γ of paths in G and every admissible function % for Γ.
This conception is a natural generalization of the geometric definition of

a quasiconformal mapping: if Q(x) ≤ K <∞ a.e., then f is quasiconformal
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under p = n, see 13.1 and 34.6 in [20], and local quasiisometric under n−1 <
p < n (see [5]).

The notion of Q–homeomorphism is closely related to the concept of
moduli with weights essentially due to Andreian Cazacu (see, e.g., [1] and
references therein).

This class of Q-homeomorphisms with respect to the n-modulus was first
considered in the papers [14]-[16], see also the monograph [17]. The main
goal of the theory of Q-homeomorphisms is to clear up various intercon-
nections between properties of the majorant Q(x) and the corresponding
properties of the mappings themselves. In particular, the problem of the
local and boundary behavior of Q-homeomorphisms has been studied in Rn

first in the case Q ∈ BMO (bounded mean oscillation) in the papers [14]-
[16] and then in the case of Q ∈ FMO (finite mean oscillation) and other
cases in the papers [10], [11].

Note that the estimate of the type (1.3) was first established in the
classical quasiconformal theory. Namely, it was obtained in [13], p. 221, for
quasiconformal mappings in the complex plane that

M(fΓ) ≤
∫
C

K(z) · ρ2(z) dxdy (1.4)

where
K(z) =

|fz|+ |fz|
|fz| − |fz|

(1.5)

is a (local) maximal dilatation of the mapping f at a point z. Next, it was
obtain in [2], Lemma 2.1, for quasiconformal mappings in space, n ≥ 2, that

M(fΓ) ≤
∫
D

KI(x, f) ρn(x) dm(x) (1.6)

where KI(x, f) stands for the inner dilatation of f at x, see (1.8) below.

Given a mapping f : G→ Rn with partial derivatives a.e., f ′(x) denotes
the Jacobian matrix of f at x ∈ G if it exists, J(x) = J(x, f) = det f ′(x)
the Jacobian of f at x, and |f ′(x)| the operator norm of f ′(x), i.e., |f ′(x)| =
max{|f ′(x)h| |h ∈ Rn, |h| = 1}. We also let l(f ′(x)) = min{|f ′(x)h| |h ∈
Rn, |h| = 1}. The outer dilatation of f at x is defined by

KO(x, f) =


|f ′(x)|n
|J(x,f)| , if J(x, f) 6= 0

1, if f ′(x) = 0
∞, otherwise,

(1.7)

the inner dilatation of f at x by

KI(x, f) =


|J(x,f)|
l(f ′(x))n , if J(x, f) 6= 0

1, if f ′(x) = 0
∞, otherwise

. (1.8)
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2. Preliminaries

Let E, F ⊂ Rn be arbitrary sets. Denote by ∆(E,F,G) a family of all
curves γ : [a, b] → Rn joining E and F in G, i.e., γ(a) ∈ E, γ(b) ∈ F and
γ(t) ∈ G for t ∈ (a, b).

Here a condenser is a pair E = (A,C) where A ⊂ Rn is open and
C is a non–empty compact set contained in A . E is a ringlike condenser if
B = A\C is a ring, i.e., ifB is a domain whose complement Rn\B has exactly
two components where Rn = Rn ∪ {∞} is the one point compactification of
Rn. E is a bounded condenser if A is bounded. A condenser E = (A,C) is
said to be in a domain G if A ⊂ G .

The following proposition is immediate.

Proposition 2.1. If f : G → Rn is open and E = (A,C) is a condenser
in G, then (fA, fC) is a condenser in fG .

In the above situation we denote fE = (fA, fC) .

Let E = (A, C) be a condenser. Then W0(E) = W0(A, C) denotes the
family of non–negative functions u : A→ R1 such that (1) u ∈ C0(A), (2)
u(x) ≥ 1 for x ∈ C, and (3) u is ACL . We set

cappE = capp (A, C) = inf
u∈W0(E)

∫
A

|∇u|p dm(x) (2.1)

where

|∇u| =

(
n∑
i=1

(∂iu)2

)1/2

and call the quantity (2.1) the p-capacity of the condenser E .

For the next statement, see, e.g., [6], [9] and [19].

Proposition 2.2. Suppose E = (A,C) is a condenser such that C is con-
nected. Then

cappE = Mp(∆(∂A, ∂C;A \ C)) .

We give here also the following two useful statements (see Proposition 6
in [12]).

Proposition 2.3. Let E = (A,C) be a condenser such that C is connected.
Then for n− 1 < p ≤ n

(capp E)n−1 ≥ γn,p
d(C)p

m(A)1−n+p
,
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where γn,p is a positive constant that depends only on n and p, d(A) is a
diameter and m(A) is the Lebesgue measure of A in Rn.

Proposition 2.4. (see [18]) Let E = (A,C) be a condenser such that C is
connected. Then for 1 ≤ p < n

cappE ≥ nΩ
p
n
n

(
n− p
p− 1

)p−1

[mC]
n−p

n , (2.2)

where Ωn denotes the volume of the unit ball in Rn, and mC is the n-
dimensional Lebesgue measure of C.

3. On finite by Lipschitz Q-homeomorphisms with respect to the
p-modulus

Given a mapping ϕ : E → Rn and a point x ∈ E ⊆ Rn, set

L(x, ϕ) = lim sup
y→x y∈E

|ϕ(y)− ϕ(x)|
|y − x|

. (3.1)

Given a set A ⊆ Rn, n ≥ 1, we say that a mapping f : A→ Rn is called
Lipschitz if there is number L > 0 such that the inequality

| f(x)− f(y)| ≤ L |x− y| (3.2)

holds for all x and y in A. Given an open set Ω ⊆ Rn, we say that a mapping
f : Ω→ Rn is finitely Lipschitz if L(x, f) <∞ for all x ∈ Ω.

Theorem 3.1. Let G and G′ be domains in Rn, n ≥ 2, and Q : G→ [0,∞]
be a measurable function such that

Q0 = lim sup
r→0

1
Ωnεn

∫
B(x0,ε)

Q(x) dm(x) <∞. (3.3)

Then for every Q−homeomorphism f : G → G′ with respect to the p-
modulus, n− 1 < p < n,

L(x0, f) = lim sup
x→x0

|f(x)− f(x0)|
|x− x0|

≤ Cn,pQ
1

n−p

0 (3.4)

where Cn,p is a positive constant that depends only on n and p.

Proof. Let us consider the spherical ring A = A(x0, ε1, ε2) = {x | ε1 <
|x − x0| < ε2}, x ∈ G, ε1, ε2 > 0 such that A(x0, ε1, ε2) ⊂ G. Since(
fB (x0, ε2) , fB (x0, ε1)

)
=
(
fB (x0, ε2) , fB (x0, ε1)

)
are ringlike condensers

in G′, according to Proposition 2.2, we obtain

capp (fB(x0, ε2), fB(x0, ε1)) = Mp(4(∂fB(x0, ε2), ∂fB(x0, ε1); fA)) .
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Note that, since f is homeomorphism, we have

4 (∂fB (x0, ε2) , ∂fB (x0, ε1) ; fA) = f (4 (∂B(x0, ε2), ∂B(x0, ε1);A)) .

By the definition of Q−homeomorphisms with respect to the p-modulus

capp (fB(x0, ε2), fB(x0, ε1)) ≤
∫

A(x0,ε1,ε2)

Q(x) ρp(x) dm(x) (3.5)

for every admissible function ρ of 4 (∂B(x0, ε2), ∂B(x0, ε1);A(x0, ε1, ε2)).
The function

ρ(x) =
{ 1

ε2−ε1 , if x ∈ A(x0, ε1, ε2),
0, if x ∈ G \A(x0, ε1, ε2)

is admissible and, thus,

capp (fB(x0, ε2), fB(x0, ε1)) ≤ 1
(ε2 − ε1)p

∫
B(x0,ε2)

Q(x) dm(x) . (3.6)

By choosing ε1 = ε and ε2 = 2ε, we have

capp (fB(x0, 2ε), fB(x0, ε)) ≤
1
εp

∫
B(x0,2ε)

Q(x) dm(x). (3.7)

On the other hand, by Proposition 2.3

capp (fB(x0, 2ε), fB(x0, ε)) ≥
(
γn,p

dp(fB(x0, ε))
m1−n+p(fB(x0, 2ε))

) 1
n−1

, (3.8)

where γn,p is a positive constant that depends only on n and p.
Combining (3.7) and (3.8) we obtain

(
γn,p

dp(fB(x0, ε))
m1−n+p(fB(x0, 2ε))

) 1
n−1

≤ 1
εp

∫
B(x0,2ε)

Q(x) dm(x) . (3.9)

Next, by choosing ε1 = 2ε and ε2 = 4ε, we have that

capp(fB(x0, 4ε), fB(x0, 2ε)) ≤
1

(2ε)p

∫
B(x0,4ε)

Q(x)dm(x) . (3.10)

By Proposition 2.4

capp (fB(x0, 4ε), fB(x0, 2ε)) ≥ αn,p [m(fB(x0, 2ε))]
n−p

n , (3.11)
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where αn,p is a positive constant that depends only on n and p.
Combining (3.10) and (3.11) we obtain

m(fB(x0, 2ε)) 6 βn,p ε
n

 1
m(B(x, 4ε))

∫
B(x0,4ε)

Q(x) dm(x)


n

n−p

, (3.12)

where βn,p is a positive constant that depends only on n and p.
Combining (3.9) and (3.12), we obtain

d(fB(x0, ε))
ε

≤ Cn,p


∫

B(x0,4ε)

Q(x) dm(x)

m(B(x0, 4ε))


1

n−p

and hence

L(x0, f) = lim sup
x→x0

|f(x)− f(x0)|
|x− x0|

≤ lim sup
ε→0

d(fB(x0, ε))
ε

≤ Cn,pQ
1

n−p

0 ,

where Cn,p is a positive constant that depends only on n and p. 2

Corollary 3.1. Let G and G′ be domains in Rn, n ≥ 2, f : G → G′ be a
Q−homeomorphism with respect to the p-modulus, n− 1 < p < n, such that

lim sup
ε→0

1
Ωnεn

∫
B(x0,ε)

Q(x) dm(x) <∞ ∀ x0 ∈ G. (3.13)

Then f is finitely Lipschitz.
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