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Abstract - Learning from data means a process of information extrac-
tion from finite size samples in order to estimate an unknown dependency.
A series of problems can be modeled in terms of a system that computes
according to an unknown rule a response (output) for each input. The pa-
per provides a series of results concerning the learning from data a linear
regressive model in a multivariate framework. The parameter estimates of
the regressive model are determined using the maximum likelihood prin-
ciple and the adaptive learning algorithms are derived using the gradient
ascent technique. In the second section of the paper the parameters of the
linear regressive model are determined by minimizing the arithmetic mean
of square errors and an adaptive learning scheme of gradient descent type
is also considered. We consider a probabilistic approach in the third section
for modeling the effects of both the latent variables and noise. The cumula-
tive effects of latent variables and noise are modeled in terms of multivariate
Gaussian repartitions.
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1. Introduction

Machine Learning deals with programming computers to optimize a perfor-
mance criterion on the basis of finite sets of example data or past experience.
Dealing with the design of algorithms and techniques that allow machines to
learn in the sense that they improved the performance through experience,
machine learning can be viewed as a branch of artificial intelligence.

The tremendous growth in practical applications of machine learning
over the past decade has been accompanied by a wide variety of important
developments in the underlying algorithms and techniques that make use of
concepts and results coming from several areas as mathematical statistics,
computer science and engineering.

Since the main aim of machine learning is to obtain computer programs
that are able to extract information from samples of data and as well as
knowledge from the past experience and include them the process of solving
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problems of high complexity, the research methodology in the field of ma-
chine learning is essentially based on a large class of concepts and results
coming from mathematical statistics, neural and evolutionary computation,
brain models, adaptive control theory and so on.

Learning from data means a process of information extraction from finite
size samples in order to estimate an unknown dependency. A series of prob-
lems can be modeled in terms of a system that computes according to an
unknown rule a response (output) for each input. In supervised learning the
basis of an inference process concerning the unknown dependency between
the inputs and the outputs of the system is represented by a finite size set of
labeled examples (xi, yi), 1 ≤ i ≤ N , where for each (xi, yi), yi is the output
computed by the system for the input xi. Learning from data comprises a
class of model-free methods and algorithms that estimate the unknown de-
pendency without assuming the existence of a model for data, neither in the
input space nor in the space of responses. Once such a dependency has been
accurately estimated, it can be used for prediction of future system outputs
for known input values. The paper provides a series of results concerning the
learning from data a linear regressive model in a multivariate framework.
The parameter estimates of the regressive model are determined using the
maximum likelihood principle and the adaptive learning algorithms are de-
rived using the gradient ascent technique. In the second section of the paper
the parameters of the linear regressive model are determined by minimizing
the arithmetic mean of square errors and an adaptive learning scheme of gra-
dient descent type is also considered. We consider a probabilistic approach
in the third section for modeling the effects of both the latent variables and
noise. The cumulative effects of latent variables and noise are modeled in
terms of multivariate Gaussian repartitions. The predicted output is ex-
pressed as the sum of a linear combination of the entries of the input and
the random vector that represents the effects of the unobservable factors and
noise. The parameters of the regressive model are estimated by maximizing
the likelihood function for given finite length sequence of observations, and
an adaptive learning algorithm of gradient ascent type is proposed in the
final part of the section. The final section of the paper contains a series of
concluding remarks and suggestions for further work.

We consider the learning environment described in [10] and [12], where S
is a system that for any n-dimensional input x computes an m-dimensional
output y according to an unknown law. In the simplest approach we can
assume that the output y is uniquely determined by the input x. However,
the output can be influenced by a series of unobservable factors, and the de-
pendency between the inputs and outputs of S could be of non-deterministic
type. Consequently, in a more sophisticated approach we are forced to take
into account a non-deterministic dependency, modelled for instance in proba-
bilistic terms, as a reasonable hypothesis concerning the unknown law. The
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Generator, denoted by G, is the source that generates the inputs. Mainly,
there are two ways to model G, namely when the mechanism of generating
inputs is known by the observer and when the law according to which the
inputs are generated is also unknown, respectively. The third component of
the learning environment denoted by L, is responsible with possible models
of the unknown dependency corresponding to S. The learning component L
implements a class of hypothesis (models) Ω, such that to each particular
hypothesis ω ∈ Ω corresponds a function ϕω : Rn → Rm defined on the space
of inputs Rn and taking values in the space of outputs Rm. For each particu-
lar input x0, ŷ0 = ϕω (x0) is the estimate of the S’s output corresponding to
x0 in case of the model ω. Being given a criterion function C that expresses
numerically the fitness of each model with respect to the available evidence
E, about S, the best model ω0(E) is a solution of the optimization problem

arg (optimizeω∈Ω C(ω,E)) . (1.1)

In the case of supervised learning the available evidence E is represented
by a finite set of pairs {(xi, yi) , 1 ≤ i ≤ N} ⊂ Rn × Rm, where each yi is
the actual output of S for the input xi. If we assume that the unknown
dependency is of deterministic type, that is the inputs and the outputs of
S are functionally related a reasonable choice of the criterion function C is
the arithmetic mean of the square errors, that is for each ω ∈ Ω,

C(ω,E) =
1
N

N∑
i=1

‖yi − ϕω (xi)‖2 . (1.2)

The optimization problem (1.1) becomes

arg
(

min
ω∈Ω
C(ω,E)

)
, (1.3)

and its solutions are called the Minimum Square Errors (MSE) models com-
puted on the basis of {(xi, yi) , 1 ≤ i ≤ N}.

In case we adopt a more complex approach by including the effects of
possible existing latent variables, each hypothesis ω ∈ Ω corresponds to a
probabilistic model for the latent vector. For simplicity sake, we consider
that the latent vector is a continuous random vector, that is to each ω ∈ Ω
corresponds a conditional density function f(·|·, ; ω). Put in other words,
for each ω ∈ Ω, x ∈ Rn, y ∈ Rm, f(y|x ; ω) expresses ’the chance’ of getting
the output y for the input x in case of the model ω. If the available evidence
about S is {(xi, yi) , 1 ≤ i ≤ N} then a reasonable choice of C(ω,E) is the
likelihood function. If we assume that the inputs x1, . . . , xN are indepen-
dently generated by G then

C(ω,E) =
N∏
i=1

f (yi|xi ; ω) , (1.4)
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and the optimization problem (1.1) becomes

arg
(

max
ω∈Ω

C(ω,E)
)
. (1.5)

The solutions of (1.5) are the Maximum Likelihood ML models computed
on the basis of {(xi, yi) , 1 ≤ i ≤ N}.

2. Modeling the learning system in terms of linear
hypothesis

Let P be the procedure used by the learning component, L, to extract
information from the available data (x1, y1) , . . . , (xN , yN ) in order to com-
pute an approximation of the actual but unknown dependency between the
inputs and the outputs of S. If we denote by ω̂ the model computed by
P then ŷ = ϕbω (x) is the predicted output if the input x is applied to S
where, ϕbω : Rn −→ Rm. The simplest class of hypothesis is the linear class
where each individual hypothesis corresponds to a linear transform. In this

case for each model ω ∈ Ω, the predicted output is ϕω(x) = βT
(

1
x

)
,

β ∈ M(n+1)×m(R). From the point of view of the MSE (Minimum Square
Errors) criterion, being given the data (x1, y1) , . . . , (xN , yN ), the optimal
model is ω̂ = ωbβMSE

where

β̂MSE = arg

(
min

β∈M(n+1)×m(R)
FN (β)

)
, (2.1)

FN (β) =
1
N

N∑
i=1

∥∥yi − βT zi∥∥2
, zi =

(
1
xi

)
, 1 ≤ i ≤ N .

Using straightforward computations we get

FN (β) = tr
(
P̂N

)
− 2 tr

(
βT Q̂N

)
+ tr

(
βT ŜNβ

)
,

where

P̂N =
1
N

N∑
i=1

yiy
T
i ∈Mm(R) , Q̂N =

1
N

N∑
i=1

ziy
T
i ∈M(n+1)×m(R) ,

ŜN =
1
N

N∑
i=1

ziz
T
i ∈Mn+1(R)

If we denote by

Z = (z1, . . . , zN ) ∈M(n+1)×N (R) , Y = (y1, . . . , yN ) ∈Mm×N (R) .
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the matrices of augmented inputs and corresponding outputs respectively,
we get the compact forms

NFN (β)=tr
((
Y −βTZ

) (
Y −βTZ

)T)
,

NP̂N =Y Y T , NQ̂N =ZY T , NŜN =ZZT .

The generalized gradient is

∇βFN (β) = −2 Q̂N + 2 ŜNβ ,

that is the space of critical points of the objective function FN is

S =
{
β ∈M(n+1)×m(R)

∣∣∣ ŜNβ = Q̂N

}
.

Let us denote by Z+ the Penrose pseudo-inverse matrix. Then, for any
β ∈M(n+1)×m(R),

NFN (β)= tr
(
Y
(
IN−Z+Z

)
Y T
)

+ tr
((
Y Z+−βT

)
ZZT

(
Y Z+−βT

)T) ≥
tr
(
Y
(
IN−Z+Z

)
Y T
)

= NFN

((
Y Z+

)T)
,

that is β̂MSE = (Y Z+)T is the best model for S.
Obviously, Ŝ+

N = N
(
ZT
)+
Z+ and Ŝ+

N Q̂N = (Y Z+)T , therefore the ex-
pression of β̂MSE becomes β̂MSE = (Y Z+)T = Ŝ+

N Q̂N ∈ S . Consequently,
for the input x, the best prediction about the output of S is ŷ = β̂MSEx,
computed on the basis of the available data. So, we can formulate the fol-
lowing result:

Theorem 2.1. (see [10], [15]) The MSE estimation for parameter β for
given data (x1, y1), (x2, y2) , . . . , (xN , yN ), is

β̂MSE =
(
Y Z+

)T
. (2.2)

Adaptive learning based on data (x1, y1) , . . . , (xN , yN ) can be done using
gradient descent methods and/or stochastic gradient methods.

A learning scheme obtained using the gradient descent method (”batch”)
updates the parameter β according to the rule

βnew ← βold + ρ
(
Q− Sβold

)
.

The stochastic gradient method is the sequential version of the gradi-
ent descent procedure, where each example determines new values for the
parameter entries instead of cumulating of the contributions of all at the
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updating step. Put in other words, the new updated entries resulted after
testing the example zi are

βnewjk ← βjk + ρz
(j)
i

y(k)
i −

n+1∑
p=1

z
(p)
i βpk

, 1 ≤ k ≤ m, 1 ≤ j ≤ n+ 1 .

Note that the stochastic gradient learning scheme has a ”locality feature”,
in the sense that the updating of each entry βjk involves only the cur-
rent example and the entries of the column of index k of the matrix β.
This particularity allows the implementation on a simple feed-forward neu-
ral network having an unique computation layer, where each column of β
corresponds to the synaptic memory of just one neuron belonging to the
computation layer. Consequently, we can conclude that the advantages of
using the stochastic gradient method scheme reside, on one hand from its
computational simplicity, and on the other hand from the ”locality feature”
that allows implementation on a simple feed-forward neural network (see
[5]). The stochastic gradient descent learning scheme is briefly,

Input: (x1, y1), . . . , (xN , yN )
Initializations: β0, ρ > 0, C, zi =

(
1
xi

)
, 1 ≤ i ≤ N;

βold ← β0

repeat
β = βold

for i← 1, N
for k ← 1,m

for j ← 1, n+ 1

βnewjk ← βjk + ρz
(j)
i

y(k)
i −

n+1∑
p=1

z
(p)
i βpk


end for

end for
β ← βnew

end for
evaluate C
βold ← βnew

until C
Output: βnew

where C is a stopping condition and a learning rate ρ is a conventionally
selected positive number.

The stochastic gradient learning algorithm can be implemented on a
simple two-layer feed-forward neural architecture where the input layer FX
and the output layer FY consist of n + 1 and m neurons respectively, the
synaptic memories of the neurons in the output layer FY being the columns
of the currently computed matrix β. The scheme is presented in Figure 1.
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Figure 1. Architecture feed-forward type neural model of S.

During the learning process, if (xi, yi) is the current test example,

xi=
(
x

(1)
i , x

(2)
i , . . . , x

(n)
i

)
, yi=

(
y

(1)
i , . . . , y

(m)
i

)
, then the entries of zi=

(
1
xi

)
are applied as inputs to the neurons of FX and the entries of yi are combined
at the level of each neuron k of FY to update its synaptic memory according
to the rule

βjk ← βjk + ρz
(j)
i

y(k)
i −

n+1∑
p=1

z
(p)
i βpk

 , j = 1, . . . , n+ 1 .

3. Probabilistic model

An alternative approach to the modeling of the unknown input-output de-
pendency can be considered by postulating certain parametric expression
for the conditional repartition of the outputs on the inputs. For each hy-
pothesis ω, input x and output y, let f (y|x, ω) be the probability to obtain
the output y for the input x, being given the model ω. Several intuitively
justified criteria can be considered in order to identify the ”fittest” model on
the basis of the available data SN = {(xi, yi) , 1 ≤ i ≤ N}. In the following
we consider the likelihood function L (ω, x1, . . . , xN , y1, . . . , yN ) to express
the quality of each model ω to explain the available data.

Assuming that the inputs are independent and the output depends only
on the applied input, the likelihood of SN is

L (ω, x1, . . . , xN , y1, . . . , yN ) =
N∏
i=1

f (yi|xi, ω) not= L (ω,SN ) ,

an optimal model ω̂MLE according to the principle of maximum likelihood
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being a solution of the optimization problem

arg
(

max
ω∈Ω

(L (ω,SN ))
)
.

Usually, the output of S is conditioned not only by the observable input,
and some unobservable latent variables as well as noise can also influence
its value. In other words, for each input xi the output yi of S depends on
xi and on unobservable variable ε. If we consider a parametric expression
to model the effect of xi on yi then yi = g (β, xi) + ε.

A natural extension of the model proposed in section 2 can result by
additively combining a linear dependency on the input entries with a Gaus-
sian multi-variational model for the effect of noise and/or latent variables.
In this framework the estimate of the unknown conditional repartition of the

output of S on the input is p̂(y|x)=βT
(

1
x

)
+ h(ε), where h is the density

function of the m-dimensional Gaussian repartition h(ε) ∼ N (µ,Σ). Put in
other words, the estimate of the output of L for the input xi is ỹi = βT zi + ε,

where zi=
(

1
xi

)
, ε ∼ N (µ,Σ), µ ∈ IRm and Σ ∈Mm(IR) is a symmetric

positive definite matrix.
In this case, each particular hypothesis ω ∈ Ω corresponds to a tu-

ple (β, µ,Σ), the conditional repartition of the output of L for each input
xi being modeled by the density function of ỹi. Obviously, if the nor-
mal model for the effect of noise and latent variables is assumed, we get
ỹi ∼ N

(
βT zi + µ,Σ

)
, that is the expression of the density function in the

hypothesis ω = (β, µ,Σ) is

f (yi|xi, β, µ,Σ)=
1√

(2π)m |Σ|
exp

{
−1

2
(
yi−βTzi−µ

)T
Σ−1

(
yi−βTzi−µ

)}
,

and the log-likelihood function is

l (β, µ,Σ,SN )=−Nm
2

ln(2π)−N
2

ln |Σ|−

1
2

N∑
i=1

(
yi−βTzi−µ

)T
Σ−1

(
yi−βTzi−µ

)
In the following will try to fit the best model using the paradigm of

the maximum likelihood being given the set of examples {z1, . . . , zN}. For
simplicity sake, we consider two special cases. In the first special case we
consider that the latent variable ε is white noise ε ∼ N (0m, Im). So, the
log-likehood function is

l (β,0m, Im,SN )=−Nm
2

ln(2π)− 1
2

N∑
i=1

(
yi−βT zi

)T (
yi−βT zi

) not= l (β,SN ) ,



Multivariate linear systems for learning from data 187

therefore the best model is

β̂MLE = arg

(
max

β∈M(n+1)×m(IR)
l (β,SN )

)
=

arg

(
min

β∈M(n+1)×m(IR)

N∑
i=1

(
yi − βT zi

)T (
yi − βT zi

))
.

Theorem 3.1. If ε ∼ N (0m, Im) then the MLE estimation for parameter
β, for given data (x1, y1) . . . , (xN , yN ), is

β̂MLE =
(
Y Z+

)T
. (3.1)

Proof. The gradient of the log-likelihood function with respect to β is

∇βl (β,SN ) = ZY T − ZZTβ ,

that is the space of critical points is the set of solutions of the equation

ZY T − ZZTβ = O(n+1)×m.

Since the unique critical point is β0 =
(
Y Z+

)T , the value of the log-likehood
function is

l (β0,SN ) = −mN
2

ln(2π)− 1
2

tr
(
Y
(
IN − Z+Z

) (
IN − Z+Z

)T
Y T
)
.

In order to prove that β0 is the maxima point of the log-likelihood func-
tion, let β be an arbitrary point. Hence

l (β,SN ) = −mN
2

ln(2π)− 1
2

tr
((
Y − βTZ

)T (
Y − βTZ

)T)
.

Using the relations(
IN − Z+Z

) (
IN − Z+Z

)T =
(
IN − Z+Z

)
,

Y − βTZ = Y
(
IN −Z+Z

)
+(β0−β)T Z

we obtain

l (β,SN ) = l (β0,SN )− 1
2

tr
(

(β0−β)T ZZT (β0−β)
)
−

tr
(
Y
(
IN−Z+Z

)
ZT (β0−β)T

)
.

Obviously,
(
IN − Z+Z

)
AZT =ON,n+1, and therefore

l (β,SN ) = l (β0,SN )− 1
2

tr
(

(β0−β)T ZZT (β0−β)
)
≤l (β0,SN ) .

Consequently, β̂MLE = β0. 2
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In the second special case we suppose that the latent variable is
ε ∼ N (µ,Σ0), where Σ0 is a fixed variance matrix, that is the model is
given by ω = (β, µ), and the log-likelihood function is

l (β, µ,Σ0,SN ) not= l (β, µ,SN ) =

−mN
2

ln(2π)− N

2
ln |Σ0| −

1
2

N∑
i=1

(
(yi − µ)T − zTi β

)
Σ−1

0

(
(yi − µ)− βT zi

)
.

Therefore the best MLE model is(
β̂MLE , µ̂MLE

)
= arg

(
max

β∈M(n+1)×m(IR),µ∈IRm
l (β, µ,SN )

)
=

arg

(
min

β∈M(n+1)×m(IR),µ∈IRm

N∑
i=1

(
(yi − µ)T − zTi β

)
Σ−1

0

(
(yi − µ)− βT zi

))
.

Theorem 3.2. If ε ∼ N (µ,Σ0) then the maximum likelihood estimates of
the parameters β, and µ are

β̂MLE =
(
Y (ZA)+)T , µ̂MLE =

1
N

(
Y u− Y (ZA)+ Zu

)
, (3.2)

where u = (1, . . . , 1)T ∈ IRN , A = IN −
1
N
uuT .

Proof. The gradients of the log-likelihood function with respect to β, and
µ are

∇βl (β, µ,SN ) =
(
ZY T − (Zu)µT − ZZTβ

)
Σ−1

0 , and
∇µl (β, µ,SN ) = Σ−1

0

(
Y u−Nµ− βT (Zu)

)
,

that is the space of critical points is the set of the solution of the system{
ZY T − (Zu)µT − ZZTβ = O(n+1)×m
Y u−Nµ− βT (Zu) = 0m .

Since from the second vectorial equation we get µ =
1
N

(
Y u− βTZu

)
, by

replacing it in the first vectorial equation we obtain β0 =
(
ZAZT

)+(
ZAY T

)
.

Using the obvious properties A2 =A=AT and A+=A, we obtain

β0 =
(
Y (ZA)+)T .

Therefore, by replacing it in the expression of µ, we get

µ0 =
1
N
Y
(
IN−Y (ZA)+Z

)
u.
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Using straightforward computations we obtain

l (β0, µ0,SN ) = −mN
2

ln(2π)− N

2
ln |Σ0| −

1
2

tr
(

Σ−1
0 Y

(
A−(ZA)+ZA

) (
A−(ZA)+ZA

)T
Y T
)
.

In order to prove that (β0, µ0) is the maxima point of the log-likelihood
function, for arbitrary (β, µ) we get

l (β, µ,SN ) = −mN
2

ln(2π)− N

2
ln |Σ0| −

1
2

tr
(

Σ−1
0

(
Y − µuT − βTZ

) (
Y − µuT − βTZ

)T)
.

In order to compare the values of the log-likelihood function for (β, µ)
and (β0, µ0), since(

A− (ZA)+ ZA
) (
A− (ZA)+ ZA

)T
= A−A (ZA)+ (ZA) ,

Y − µuT − βTZ = Y
(
A−(ZA)+ (ZA)

)
+(µ0 − µ)uT +(β0−β)T Z,

we obtain

l (β, µ,SN ) = l (β0, µ0,SN )−
1
2

tr
(

Σ−1
0 (µ0−µ)T uTu (µ0−µ)

)
− 1

2
tr
(

Σ−1
0 (β0−β)T ZZT (β0−β)

)
−

tr
(

Σ−1
0 Y

(
IN−(ZA)+ Z

)
Au (µ0 − µ)T

)
−

tr
(

Σ−1
0 Y

(
IN−(ZA)+ Z

)
AZT (β0−β)T

)
.

Obviously, Au = 0N and
(
IN − (ZA)+ Z

)
AZT =ON,n+1. Therefore

l (β, µ,SN ) = l (β0, µ0,SN )− 1
2

tr
(

Σ−1
0 (µ0−µ)TuTu (µ0−µ)

)
−

1
2

tr
(

Σ−1
0 (β0−β)T ZZT (β0−β)

)
≤ l (β0, µ0,SN ) .

2

The adaptive learning of the parameters µ and β may be installed using
for instance the gradient ascent method (”batch” version), yielding to the
following learning algorithm.

Input: (x1, y1), . . . , (xN , yN ), Σ0

Initializations: β0, µ0, C, ρ > 0

Compute zi =
(

1
xi

)
, 1 ≤ i ≤ N; Q =

N∑
i=1

ziy
T
i ; S =

N∑
i=1

ziz
T
i

Σ01 = Σ−1
0 , βold ← β0 , µold ← µ0

repeat

βnew ← βold + ρ

(
Q−

(
N∑
i=1

zi

)(
µold

)T
− Sβold

)
Σ01
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µnew ← µold + ρΣ01

((
N∑
i=1

yi

)
−

N∑
i=1

(
βold

)T
zi −Nµold

)
evaluate C
βold ← βnew; µold ← µnew

until C
Output: βnew , µnew.

The stopping condition C(δ) may be

C(δ) = true ⇐⇒
∥∥∥βnew − βold∥∥∥+ |µnew − µold| < δ

or C(δ) = true ⇐⇒
∥∥∥βnew − βold∥∥∥ < δ and |µnew − µold| < δ.

The components of the parameters β and µ are updated by the above
procedure as

βnewjk ← βoldjk + ρ
N∑
i=1

z
(j)
i

 m∑
r=1

y(r)
i −

(
µold

)(r)
−
n+1∑
p=1

z
(p)
i βoldpr

(Σ−1
0

)
rk

 ,

1 ≤ j ≤ n+ 1, 1 ≤ k ≤ m,

(µnew)(k)←
(
µold

)(k)
+ ρ

N∑
i=1

 m∑
r=1

(Σ−1
0

)
kr

y(r)
i −

(
µold

)(r)
−
n+1∑
p=1

z
(p)
i βoldpr

 ,

1 ≤ k ≤ m.

According to these relations the following stochastic training scheme can
be derived

Input: (x1, y1), . . . , (xN , yN ); Σ0

Initializations: β0, µ0, C(δ), δ > 0, ρ > 0

zi =
(

1
xi

)
, 1 ≤ i ≤ N;

Σ01 ← Σ−1
0

βold ← β0, µold ← µ0

repeat
β ← βold, µ← µold

for i← 1, N
for k ← 1,m

for j ← 1, n+ 1

βnewjk ← βjk + ρz
(j)
i

m∑
r=1

y(r)
i − µ

(r) −
n+1∑
p=1

z
(p)
i βpr

 (Σ01)rk

end for
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(µnew)(k)← µ(k)+ ρ
m∑
r=1

(Σ01)kr

y(r)
i − µ

(r) −
n+1∑
p=1

z
(p)
i βpr


end for
β ← βnew, µ← µnew

end for
compute C(δ)
βold ← βnew, µold ← µnew

until C(δ)
Output: βnew, µnew.

Unlike the ”batch” procedure, the updating of the parameters β and
µ in the stochastic procedure is performed as a consequence of each tested
example, therefore the order in which examples are considered may influence
both the duration of training, and the accuracy of the resulted estimates.

If Σ0 = Im, then the updating of the entries of the parameters β and µ
is performed according to,

βnewjk ← βoldjk + ρ

N∑
i=1

z
(j)
i

y(k)
i −

((
µold

)(k)
+ βold1k

)
−
n+1∑
p=2

z
(p)
i βoldpk

 ,

1≤j≤n+ 1, 1≤k≤m,

(µnew)(k)←
(
µold

)(k)
+ ρ

N∑
i=1

y(k)
i −

((
µold

)(k)
+ βold1k

)
−
n+1∑
p=2

z
(p)
i βoldpk

 ,

1≤k≤m.

In this case the training corresponding to the stochastic procedure has the
”locality feature”, that is it can be also implemented on a simple two-layer
feed-forward neural architecture. The input layer FX and the output layer
FY consist of n+1 and m neurons respectively, the synaptic memories of the
neurons in the output layer FY being µ+β1, β2, . . . , βm, where β1, β2, . . . , βm
are the columns of the currently computed matrix β. The scheme is pre-
sented in Figure 2.

During the learning process, if (xi, yi) is the current test example,

xi=
(
x

(1)
i , . . . , x

(n)
i

)
, yi=

(
y

(1)
i , . . . , y

(m)
i

)
, then the entries of zi =

(
1
xi

)
are

applied as inputs to the neurons of FX and the entries of yi are combined at
the level of each neuron k of FY to update its synaptic memory according
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to the rule

βjk ← βoldjk + ρ

N∑
i=1

z
(j)
i

y(k)
i −

(
µ(k) + β1k

)
−
n+1∑
p=2

z
(p)
i βpk

 ,

µ(k)← µ(k)+ ρ
N∑
i=1

y(k)
i −

(
µ(k)+ β1k

)
−
n+1∑
p=2

z
(p)
i βpk

 .

Figure 2: Architecture feed-forward type neural model of S, in case µ ∈ Rm and
Σ0 = Im.

In the general case of the probabilistic model the dimension of the space
of hypotheses is m(m+n+2), and each particular tuple ω = (β, µ,Σ) defines
a model of S. The log-likelihood function is

l (β, µ,Σ,SN ) = −mN
2

ln(2π)− N

2
ln |Σ|−

1
2

N∑
i=1

(
(yi − µ)T − zTi β

)
Σ−1

(
(yi − µ)− βT zi

)
,

and the best model from the point of view of maximum likelihood principle
is a solution of the constrained optimization problem{

max
β,µ,Σ

(l (β, µ,Σ,SN ))

Σ ∈Mm(R) symmetric and positive defined.
(3.3)

Theorem 3.3. The objective function l (β, µ,Σ,SN ) has an unique critical
point (β0, µ0,Σ0) where

β0 =
(
Y (ZA)+)T , µ0 =

1
N

(
Y u− Y (ZA)+ Zu

)
,

Σ0 =
1
N
Y
(
A− (ZA)+ (ZA)

)
Y T ,

(3.4)

and Σ0 is a symmetric and positive semi-defined matrix.
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Proof. The generalized gradients of l (β, µ,Σ,SN ) with respect to β, µ,
and Σ respectively, are

∇β l (β, µ,Σ,SN ) =
(
ZY T − ZuµT − ZZTβ

)
Σ−1,

∇µ l (β, µ,Σ,SN ) = Σ−1
(
Y u−Nµ− βTZu

)
,

∇Σ l (β, µ,Σ,SN ) = −Σ−1DΣ−1 +
1
2

diag
(
Σ−1DΣ−1

)
,

where

D=NΣ−Y Y T +
(
µ (Y u)T +(Y u)µT

)
+
((
ZY T

)T
β+

βTZY T
)
−NµµT−

(
µ (Zu)Tβ+βT (Zu)µT

)
−βTZZTβ .

From the system {
∇µ l (β, µ,Σ,SN ) = 0m
∇β l (β, µ,Σ,SN ) = On+1,m

,

since |Σ| 6= 0, we get{
Y u−Nµ− βTZu = 0m
ZY T − ZuµT − ZZTβ = On+1,m ,

that is

β=
(
Y (ZA)+)T = β0, µ=

1
N

(
Y u− Y (ZA)+ Zu

)
=µ0.

Replacing µ0, β0 in the system

∇Σ l (β, µ,Σ,SN ) = Om

we obtain −Σ−1DΣ−1 +
1
2

diag
(
Σ−1DΣ−1

)
= Om,

where diag
(
Σ−1DΣ−1

)
∈Mm(R) is the diagonal matrix that retains only

the entries placed on the main diagonal of Σ−1DΣ−1. Since Σ is a positive
definite matrix, we get D = Om and consequently,

Σ =
1
N

(
Y Y T + βT0 ZZ

Tβ0 − Y ZTβ0 − βT0 ZY T+
1
N

(
βT0 Zuu

TY T−βT0 ZuuTZTβ0+Y uuTZTβ0−Y uuTY T
))

=

1
N

(
Y AY T + βT0 ZAZ

Tβ0 − Y AZTβ0 − βT0 ZAY T
)
.

Using the well-known properties of the Penrose pseudo-inverse, the expres-
sion of Σ becomes

Σ =
1
N

(
Y AY T + Y (ZA)+ (ZA)AZT

(
Y (ZA)+)T −

Y AZT
(
Y (ZA)+)T − Y (ZA)+ ZAY T

)
=

1
N
Y
(
A+

(
(ZA)+(ZA)(ZA)+(ZA)

)T−(ZA)+(ZA)−(ZA)+(ZA)
)
Y T =

1
N
Y
(
A− (ZA)+ (ZA)

)
Y T not= Σ0 .
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A further simplification can be obtained by noting that B = A− (ZA)+ ZA
is a symmetric matrix and B2 = B, that is the expression of Σ0 can be
written as

Σ0 =
1
N
Y BBTY T .

Obviously, Σ0 is a symmetric and positive semi-defined matrix. 2

Theorem 3.4. Let β0 and µ0 be given by Theorem 3.3. Then for any
(β, µ,Σ) in the parameter space

l (β, µ,Σ,SN ) ≤ l (β0, µ0,Σ,SN ) . (3.5)

Proof. Using vT v = tr
(
vvT

)
the expression of the log-likelihood function

can be written as

l (β, µ,Σ,SN ) = −mN
2

ln(2π)− N

2
ln |Σ|−

1
2

tr
(

Σ−1
(
Y − µuT − βTZ

) (
Y − µuT − βTZ

)T)
.

Therefore

l (β0, µ0,Σ,SN ) = −mN
2

ln(2π)− N

2
ln |Σ|−

1
2

tr
(

Σ−1Y
(
A− (ZA)+ ZA

) (
A− (ZA)+ ZA

)T
Y T
)
.

Using the relations A = A2 = AT we get(
A−(ZA)+ZA

) (
A−(ZA)+ZA

)T
=A−A (ZA)+ (ZA) ,

and the term Y − µuT − βTZ becomes

Y −µuT − βTZ=Y
(
A−(ZA)+(ZA)

)
+

1
N

(
Y u−Y (ZA)+Zu−Nµ

)
uT+(

Y (ZA)+−βT
)
Z = Y

(
A−(ZA)+ (ZA)

)
+(µ0 − µ)uT +(β0−β)T Z.

Consequently

l (β, µ,Σ,SN ) = −mN
2

ln(2π)−N
2

ln |Σ|−
1
2

tr
(
Σ−1Y

(
A−(ZA)+ ZA

)(
A−(ZA)+ZA

)T
Y T
)
−

tr
(

Σ−1Y
(
A−(ZA)+ZA

)(
(µ0−µ)uT

)T)−
tr
(

Σ−1Y
(
A−(ZA)+ZA

)(
(β0−β)TZ

)T)
− 1

2
tr
(
Σ−1(µ0−µ)

uTu (µ0−µ)T
)
− 1

2
tr
(

Σ−1 (β0−β)T ZZT (β0−β)
)

=

l (β0, µ0,Σ,SN )− 1
2

tr
(

Σ−1 (µ0−µ)uTu (µ0−µ)T
)

−1
2

tr
((

Σ−1β0−β
)T
ZZT(β0−β)

)
tr
(
Σ−1Y

(
IN−(ZA)+Z

)
Au (µ0−µ)T

)
−tr

(
Σ−1Y

(
IN−(ZA)+Z

)
AZT (β0−β)

)
.
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Since Au =
(
IN −

1
N
uuT

)
u = u− 1

N
u
(
uTu

)
= 0N , we get

Y
(
IN − (ZA)+ Z

)
Au (µ0 − µ)T = Om.

Also, using the properties of the Penrose pseudo-inverse, we get(
IN−(ZA)+Z

)
AZT =ON,n+1 ,

that is
Y
(
IN−(ZA)+ Z

)
AZT (β0−β) = Om.

Taking into account these arguments we finally obtain

l (β, µ,Σ,SN ) = l (β0, µ0,Σ,SN )− 1
2

tr
(
Σ−1(µ0−µ)uTu

(µ0−µ)T
)
− 1

2
tr
(

Σ−1(β0−β)TZZT (β0−β)
)
.

Obviously, since Σ a positive definite matrix

tr
(
Σ−1(µ0−µ)uTu (µ0−µ)T

)
= N(µ0−µ)TΣ−1(µ0−µ)≥0

and

tr
(
Σ−1 (β0−β)T ZZT (β0−β)

)
= tr

(
ZT (β0−β) Σ−1(β0−β)TZ

)
=

tr
((

(β0−β)TZ
)T

Σ−1(β0−β)TZ
)
≥0 ,

that is l (β, µ,Σ,SN ) ≤ l (β0, µ0,Σ,SN ) . 2

Remark. Although, a long series of tests pointed out that the estimate
Σ0 given by Theorem 2.1 is a positive matrix, the mathematical proof is still
an open problem. Also, it is not known whether the unique critical point
(β0, µ0,Σ0) corresponds to the best model in the sense of the maximum
likelihood principle.

An adaptive learning procedure can be obtained using the gradient as-
cent method applied to the log-likelihood criterion function. The search
developed by the adaptive procedure in a m(m + n + 2)-dimensional space
aims to adjust the model parameters β, µ, Σ in order to maximize the log-
likelihood function or, equivalently, to minimize Φ(β, µ,Σ). The procedure
should be implemented using a control parameter δ > 0 and a stopping con-
dition C(δ) usually expressed in terms of the magnitude of the displacement
in the parameter space due to the current iteration. In our tests C(δ) = true
if

‖βnew − βold‖ < δ , ‖µnew − µold‖ < δ , ‖Σnew − Σold‖ < δ

where ‖ · ‖ is a conventionally norm, for instance Euclidian norm.
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Also, the implementation of the procedure can be done using either a
constant learning rate ρ > 0 or a decreasing sequence of positive learning
rates (ρk) that refines the search while the search advances.

Since during the search process the estimates of Σ are not guaran-
teed to be invertible, the implementation procedure describe in procedure
MLE gradient ascent uses approximations of the actual generalized gradi-
ents where the generalized inverse is used instead.

procedure MLE gradient ascent
Input: {(x1, y1), . . . , (xN , yN )}
Initializations: δ > 0, ρ > 0, β̃, µ̃, Σ̃,

Z =
(

1
x1

, . . . ,
1
xN

)
, Y = (y1, . . . , yN ),

u = (1, . . . , 1)T

βold ← β̃ , µold ← µ̃ , Σold ← Σ̃
Compute S = ZZT, Q = ZY T, P = Y Y T

Z1 = Zu, Y1 = Y u
repeat

Σ1 ←
(
Σold

)+
βnew ← βold + ρ

(
Q− Z1

(
µold

)T
− Sβold

)
Σ1

µnew ← µold + ρΣ1

(
Y1 −

(
βold

)T
Z1 −Nµold

)
D=NΣold−P+µoldY T

1 +
(
µoldY T

1

)T
+QTβold+(

QTβold
)T
−Nµold

(
µold

)T
−µold(Z1)Tβold−(

µold(Z1)Tβold
)T
−
(
βold

)T
Sβold

Σnew ← Σold+ρ
(
−Σ1DΣ1+

1
2
diag (Σ1DΣ1)

)
evaluate C(δ)
βold ← βnew, µold ← µnew, Σold ← Σnew

until C(δ)
Output: βnew , µnew ,Σnew.

4. Experimental analysis

Being given that the model (β0, µ0,Σ0) given by (3.4) is not theoretically
guaranteed as the best model from the point of view of maximum likelihood
principle, we have performed a long series of tests aiming to derive conclu-
sions concerning the performance of the proposed method on experimental
way. The test examples xi’s were randomly generated from n-dimensional
Gaussian repartition N (µ1,Σ1). The target responses yi’s were computed
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as yi = β̃
T
xi+ε for given β and ε randomly generated from known Gaussian

repartition N
(
µ̃, Σ̃

)
.

According to the previous arguments the expression of conditional den-
sity function on the output space corresponding to each example xi being
given the model ω = (β, µ,Σ) is

f (y|xi, ω)=
exp

{
−1

2
(
y−βT zi−µ

)T
Σ−1

(
y−βT zi−µ

)}
√

(2π)m |Σ|
,

where zi =
(

1
xi

)
, therefore the most likely output predicted value is

y ′i = βT zi + µ .
In order to evaluate the quality of the resulted model we use some indi-

cators to evaluate the overall error (see [10], [16]).
The first indicator evaluates the overall mean error of miss-prediction for

the given set of example {(xi, yi) | 1 ≤ i ≤ N} corresponding to each possible
model ω

error1 =
1
N

N∑
i=1

(1− f (yi|xi, ω)) . (4.1)

The second indicator is a mean error computed in terms of the actual
responses and the most likely predicted values,

error2 =
1
N

N∑
i=1

‖yi−y ′i ‖2 =
1
N

N∑
i=1

‖yi−βT zi−µ‖2. (4.2)

The third measure, of informational type, aims to evaluate the informa-
tional correlation between the input and the computed output corresponding
to each model, and it is expressed in terms of the empirical mutual infor-
mation.

Since x1, . . . , xN are randomly generated N (µ1,Σ1), the probability dis-
tribution p̃ = (p̃ (x1) , . . . , p̃ (xN )) characterizes the collection of examples

p̃ (xj) =
p (xj)
N∑
i=1

p (xi)

,

where p (xj)=
1√

(2π)n |Σ1|
exp
{

1
2

(xj−µ1)TΣ−1
1 (xj−µ1)

}
, 1≤j≤N .

The empirical entropy of the input samples x1, . . . , xN is given by the
Shannon entropy corresponding to p̃

H (p̃) = −
N∑
i=1

p̃ (xi) ln p̃ (xi) . (4.3)
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Using the transition probabilities

p̃ (yj |xi, ω) =
f (yj |xi, ω)
N∑
k=1

f (yk|xi, ω)

, 1 ≤ i, j ≤ N ,

we define the probability distribution q̃ = (q̃ (y1) , . . . , q̃ (yN )) on the set of
target responses by

q̃ (yj) =
N∑
i=1

p̃ (xi) p̃ (yj |xi, ω) , 1 ≤ j ≤ N ,

and let

H (q̃) = −
N∑
i=1

q̃ (yi) ln q̃ (yi) , (4.4)

be the empirical Shannon entropy of the set of S’s outputs.
Using the well-known expression of the relative information (see [3]), the

empirical relative information we defined by

I (SN )=H (q̃)−
N∑
i=1

N∑
j=1

p̃ (xi) p̃ (yj |xi, ω) ln p̃ (yj |xi, ω) .

The fourth measure is based on the relative entropy (Kullback-Leibler).
Being given two probability distributions p=(p1, . . . , pd) and q=(q1, . . . , qd)
such that q is absolutely continuous with respect to p, the relative entropy
is defined by

K (p, q) =
d∑
i=1

piln
(
pi
qi

)
.

Using straightforward computation one can prove (see [3]) that

K (p, q) ≥ 0 and K (p, q) = 0 if and only if p = q.

In our work we introduce some indicators of Kullback-Leibler type in
order to evaluate the quality of the current computed model ω = (β, µ,Σ)
at each iteration of the procedure MLE gradient ascent with respect to
the quasi-optimal model ω0 = (β0, µ0,Σ0) given by Theorem 3.3.

In case of a classification problem, the outputs y1, . . . , yN represent the
labels of the provenance classes corresponding to the inputs. The informa-
tional distance from any model ω to ω0 computed on the basis of SN can be
expressed many ways. In our work we introduced the following informational
distances of relative entropy type.
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Because for each example (xi, yi) ∈ SN , f (yi|xi, ω) can be viewed as a
strength degree of the association between the input xi and the output yi
in the model ω, the probability distribution on SN defined by

p̄ (yi|xi, ω) =
f (yi|xi, ω)

N∑
k=1

f (yk|xk, ω)

, 1 ≤ i ≤ N ,

characterizes in some way each possible model. Also, the Kullback-Leibler-
like indicator KL1 measures the informational distance between the models
ω and ω0 with respect to the input-output dependency revealed by SN

KL1 = K
(

(p̄ (yi|xi, ω0))1≤i≤N , (p̄ (yi|xi, ω))1≤i≤N

)
=

N∑
i=1

p̄ (yi|xi, ω0) ln
(
p̄ (yi|xi, ω0)
p̄ (yi|xi, ω)

)
.

Also, for each model ω the following empirical distribution on the set
{y1, . . . , yN} can be defined in a natural way,

˜̃p (yi|ω) =
p̃ (yi|ω)
N∑
j=1

p̃ (yj |ω)

where p̃ (yj |ω)=
N∑
k=1

p̃ (xk) f (yj |xk, ω), 1≤ j ≤N . The informational dis-

tance of the model ω to ω0 can be also expressed by

KL2 = K
((˜̃p (yi|ω0)

)
1≤i≤N

,
(˜̃p (yi|ω)

)
1≤i≤N

)
=

N∑
i=1

˜̃p (yi|ω0) ln

(˜̃p (yi|ω0)˜̃p (yi|ω)

)
.

Although (f (yi|xi, ω))1≤i≤N is not a probability distribution on SN , Kullback-
Leibler like expression denoted KL3 can be introduced as a measure of the
quality of ω with respect to ω0 from the point of view of the input-output
dependencies represented by SN

KL3 = K
(

(f (yi|xi, ω0))1≤i≤N , (f (yi|xi, ω))1≤i≤N

)
=

N∑
i=1

f (yi|xi, ω0) ln
(
f (yi|xi, ω0)
f (yi|xi, ω)

)
.

The indicator,
1
N

N∑
i=1

f (yi|xi, ω) is a measure of the average strength de-

gree of the input-output associations in SN . Obviously, using a well-known
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inequality we get

K
(

(f (yi|xi, ω0))1≤i≤N , (f (yi|xi, ω))1≤i≤N

)
≥

N∑
i=1

(f (yi|xi, ω0)− f (yi|xi, ω)) not= DKL .

Another informational distance can be defined by averaging the particular
KL-type distances corresponding to each of the inputs x1, . . . , xN . For each
input xj

p̃j (yi|ω) =
f (yi|xj , ω)

N∑
k=1

f (yk|xj , ω)

,

represents the probability of predicting yi as being the provenance class of
xj being given the model ω. Obviously, for each xj , (p̃j (yi|ω0))1≤i≤N is a
probability distribution on the space of class labels and

K
(

(p̃j (yi|ω0))1≤i≤N , (p̃j (yi|ω))1≤i≤N

)
can be taken as measure of the distance from ω to ω0 from the point of
view of the particular input xj . The overall informational distance KL4 is
defined as an average of them

KL4 =
N∑
j=1

¯̄p (xj)K
(
(p̃j(yi|ω0))1≤i≤N , (p̃j(yi|ω))1≤i≤N

)
=

N∑
j=1

¯̄p (xj)
N∑
i=1

p̃j (yi|ω) ln
(
p̃j (yi|ω0)
p̃j (yi|ω)

)
,

where ¯̄p (xj) = p (xj)/

(
N∑
i=1

p (xi)

)
, p (xj) being the probability that G gen-

erates the input xj .
For instance, if the inputs are generated by randomly sampling from n-
dimensional Gaussian repartition N (µ1,Σ1) (µ1,Σ1 known), then

p (xj)=
exp
{
−1

2
(xj−µ1)TΣ−1

1 (xj−µ1)
}

√
(2π)n |Σ1|

.

In cases when the generating mechanism used by G is not known by the

observer, then according to principle of maxim entropy the values p (xj)=
1
N

should be used in the expression of KL4.
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In the case of regression type problems, the outputs of S can be, in prin-
ciple, any m-dimensional tuple from Rm. In such cases for each generated
input xi the KL-type distance from the model ω to ω0 is expressed by

K (f (·|xi, ω0) , f (·|xi, ω)) =
∫

Rm

f (y|xi, ω0) ln
(
f (y|xi, ω0)
f (y|xi, ω)

)
dy ,

where f (·|xi, ω0) and f (·|xi, ω) are the conditional densities functions on
Rm corresponding to xi being given the models ω0, ω respectively.

In case f1, and f2 are the density functions of the m-dimensional Gaus-
sian repartitions N (µ1,Σ1) and N (µ2,Σ2) respectively, the expression of
the Kullback-Leibler measure is

K (f1, f2)=
∫

Rm

f1(y)ln
(
f1(y)
f2(y)

)
dy=−m

2
+

1
2

ln
(
|Σ2|
|Σ1|

)
+

1
2

tr
(
Σ−1

2 Σ1

)
+

1
2

(µ1 − µ2)T Σ−1
2 (µ1 − µ2) .

In our work, being given the model ω = (β, µ,Σ), for each input xi the condi-
tional density function is also of normal type f (·|xi, ω) ∼ N

(
βTxi + µ,Σ

)
.

Taking f1 = f (·|xi, ω0) and f2 = f (·|xi, ω), in the expression of K (f1, f2)
we get

K (f (·|xi, ω0) , f (·|xi, ω)) =−m
2

+
1
2

ln
(
|Σ|
|Σ0|

)
+

1
2

tr
(
Σ−1Σ0

)
+

1
2

(
(β0−β)T xi+µ0−µ

)T
Σ−1

(
(β0−β)T xi+µ0−µ

)
,

that is the average KL-type measure is

K (ω0, ω) =
N∑
i=1

¯̄p (xi)K (f (·|xi, ω0) , f (·|xi, ω)) =−m
2

+
1
2

ln
(
|Σ|
|Σ0|

)
+

1
2

N∑
i=1

¯̄p (xi)
(
(β0−β)Txi+µ0−µ

)T
Σ−1

(
(β0−β)Txi+µ0−µ

)
.

We performed a long series of tests aiming to establish conclusions con-
cerning the efficiency of the MLE gradient ascent and the quality of the
quasi-optimal model given by Theorem 3.3. All tests proved quick conver-
gence properties toward to the quasi-optimal model ω0. The results of some
tests are presented in Table 1 and Table 2.

Test 1. The settings are n = 2, m = 1, µ1 =
(

1
2

)
, Σ1 =

(
1 0
0 1

)
,

β̃ =
(

0 2 4
)T , µ̃ = 0.25 and Σ̃ = 1. Some of the results for data of

different sizes N , corresponding to the quasi-optimal model ω0 computed
for each data set are summarized in Table 1.

Several tests aimed to establish conclusions concerning the generalization
capacity of the quasi-optimal model ω0. For instance, in case of a training
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sequence of volume N = 100, the computed quasi-optimal model ω0 =
(β0, µ0,Σ0) is

β0 =
(

0 2.614 4.077
)T
, µ0 = −0.218, Σ0 = 0.457 .

The values of some of the previously introduced indicators for new test data
of different sizes are summarized in Table 2.

Table 1: Model evaluation in case n = 2, m = 1 and for different volumes of
learning data.

N error1 error2 H (p̃) H (q̃) I (SN )
10 0.603 0.533 2.214 2.205 1.335
20 0.702 0.802 2.767 2.796 1.304
50 0.711 0.892 3.768 3.831 1.226

100 0.712 0.950 4.477 4.524 1.233
200 0.716 0.959 5.098 5.188 1.221
300 0.721 1.019 5.510 5.590 1.106
400 0.713 0.953 5.822 5.897 1.155
500 0.725 1.025 6.023 6.113 1.150

Table 2: Model evaluation in case n = 2, m = 1, N = 100 and for different
volumes of test samples.

Ntest error1 error2 H (p̃) H (q̃) I (SN )
15 0.706 1.149 2.458 2.582 1.346
30 0.710 1.257 3.243 3.276 1.367
50 0.683 1.039 3.752 3.829 1.573
70 0.650 1.136 4.146 4.172 1.573
90 0.707 1.292 4.309 4.400 1.637

100 0.709 1.276 4.376 4.483 1.662
200 0.715 1.361 5.124 5.235 1.616
300 0.719 1.375 5.547 5.633 1.579

Also, in case of a training sequence of volume N = 20, the computed
quasi-optimal model is

β0 =
(

0 1.643 3.894
)T
, µ0 = 2.147, Σ0 = 0.620 ,

the values of the Kullback-Leibler-like indicatorsDKL andKLi, i = 1, 2, 3, 4
during the adaptive learning procedure MLE gradient ascent are summa-
rized in Table 3.

Test 2. The settings are n = 2, m = 2, µ1 =
(

1
2

)
, Σ1=

(
1 0
0 1

)
,

β̃=
(

0 2 4
0 1 5

)
, µ̃=

(
0.25
0.25

)
and Σ̃=

(
1 0
0 1

)
. Some of the results for data of
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different sizes N , corresponding to the quasi-optimal model ω0 computed
for each data set are summarized in Table 4.

Table 3: Model evaluation based on relative entropy Kullback-Leibler, in case n=2,
m=1, N=20.

Iteration KL1 KL2 KL3 DKL KL4

2 0.898 0.243 29.234 6.697 2.134
10 0.110 0.139 13.769 5.881 1.261
50 0.093 0.041 9.964 5.133 1.025

100 0.093 0.040 9.914 5.119 1.018
200 0.093 0.040 9.810 5.091 1.005
500 0.092 0.038 9.462 4.997 0.966
900 0.091 0.035 8.861 4.824 0.902

1500 0.085 0.026 7.207 4.269 0.726
1700 0.078 0.021 5.930 3.751 0.583
1900 0.001 0.000 0.174 0.167 0.003

Table 4: Model evaluation in case n = 2, m = 2 and for different volumes of
learning data.

N error1 error2 H (p̃) H (q̃) I (SN )
15 0.887 1.436 2.500 2.483 1.610
20 0.877 1.282 2.816 2.720 1.521
50 0.892 1.473 3.748 3.675 1.810

100 0.926 2.030 4.441 4.369 1.583
200 0.908 1.774 5.090 5.065 1.704
300 0.923 2.072 5.513 5.495 1.638
400 0.919 1.982 5.810 5.768 1.661
500 0.918 1.954 6.014 5.987 1.763

Several tests aimed to establish conclusions concerning the generalization
capacity of the quasi-optimal model. For instance, in case of a training
sequence of volume N = 100, the computed quasi-optimal model is

β0=

 0 0
1.87 1.01
4.13 5.04

 , µ0=
(

0.27
0.10

)
, Σ0=

(
0.67 0

0 0.89

)
,

the results are summarized in Table 5.
Also, in case of a training sequence of volume N = 10, the computed

quasi-optimal model is

β0=

 0 0
1.80 0.89
3.77 5.96

 , µ0=
(

1.14
−1.23

)
, Σ0=

(
1.35 0.02
0.02 1.27

)
,

and the results are summarized in Table 6.
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Table 5: Model evaluation in case n = 2, m = 2, N = 100 and for different
volumes of test samples.

Ntest error1 error2 H (p̃) H (q̃) I (SN )
15 0.917 2.154 2.542 2.311 1.277
30 0.912 1.874 3.190 3.116 1.763
50 0.890 1.438 3.764 3.699 1.627
70 0.910 2.216 4.042 3.889 1.772
90 0.907 1.881 4.349 4.277 1.769

100 0.912 2.014 4.432 4.292 1.783
200 0.906 1.938 5.098 5.062 1.698
300 0.902 1.860 5.512 5.457 1.822

Table 6: Model evaluation based on relative entropy Kullback-Leibler, in case n=2,
m=2, N=10.

Iteration KL1 KL2 KL3 DKL KL4

27 18.021 0.506 13.396 0.593 8.753
35 0.754 0.182 1.568 0.507 1.134
50 0.267 0.170 1.047 0.464 0.909

100 0.120 0.145 0.823 0.429 0.677
300 0.078 0.094 0.625 0.372 0.501
700 0.049 0.068 0.521 0.336 0.407

1000 0.045 0.058 0.471 0.314 0.352
1200 0.043 0.051 0.428 0.293 0.309
1500 0.036 0.036 0.333 0.243 0.223
1700 0.025 0.020 0.219 0.173 0.129
1800 0.013 0.008 0.125 0.106 0.055
1900 0.003 0.001 0.028 0.026 0.004

5. Conclusion and future work

In this paper we present two linear regressive models: one is a linear regres-
sive model determined by minimizing the arithmetic mean of square errors,
and the other is a probabilistic model which includes effects of the latent
variables and the noise. For both models we found solutions for the param-
eters. For two special cases, in Theorem 3.1 and Theorem 3.2 we give the
exact expressions of the parameters for proposed probabilistic model. The
research aimed to establish theoretical conclusions concerning the extent to
which a multivariate noisy system can be learned on the basis of a finite size
sequence of observations. The theoretical development has led to the con-
clusions formulated in Theorem 3.3 and in Theorem 3.4. The unique critical
point given by Theorem 3.3 has not been proved yet as being the optimal
model from the point of view of the maximum likelihood principle, the op-
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timality being partially confirmed by Theorem 3.4. However, a long series
of tests pointed out quick convergence toward this quasi-optimal solution.

The research aiming to extend these results to more general types of
systems is still in progress and the results will be published in the near
future.
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