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1. Introduction

This paper is concerned with some basic questions on regularity conditions
for a differentiable vector optimization problem. We prefer the terms “reg-
ularity condition”, as these conditions involve both the (vector) objective
function and the constraints, and shall use the terms “constraint qualifica-
tion” for those conditions involving only the constraints.

The paper is organized as follows.
In Section 2 we investigate various regularity conditions for a differen-

tiable Pareto optimization problem, with both inequality and equality con-
straints, generalizing some results of Maeda (see [24]) and specifying, for
the case under consideration, some corresponding results of Giorgi, Jiménez
and Novo (see [11]).

In Section 3 we shall be concerned, always for the problem introduced in
the previous sections, with various regularity conditions of the type consid-
ered by Bigi and Pappalardo (see [4]), Castellani, Mastroeni and Pappalardo
(see [6]), and recently by Maciel, Santos and Sottosanto (see [23]). We shall
give shorter and more compact proofs of some results obtained by the said
authors and we shall point out some new results.

We first fix some notations and the terminology used in this paper.
If x and y are two vectors of Rn, we write x ≤ y if xi ≤ yi, i = 1, 2, ..., n,

and x < y if xi < yi, i = 1, 2, ..., n.
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If S is a subset of Rn, by clS, coS, coneS we denote, respectively, the
closure of S, the convex hull of S, and the cone generated by S.

We denote by B(x0, δ) the ball centered at x0, with radius δ.
Given S ⊂ Rn and f : Rn −→ Rp, consider the following vector opti-

mization problem:

(vop) min {f(x) | x ∈ S} .
A point x0 ∈ S is said to be a Pareto minimum of f on S or an efficient

solution to problem (vop) if there is no x ∈ S such that f(x) ≤ f(x0) and
f(x) 6= f(x0); the point x0 is a local Pareto minimum if there exists B(x0, δ)
such that

Sf ∩ S ∩B(x0, δ) = ∅

being
Sf =

{
x ∈ Rn | f(x) ≤ f(x0), f(x) 6= f(x0)

}
.

A point x0 ∈ S is said to be a weak Pareto minimum of f on S if there
is no x ∈ S such that f(x) < f(x0).

It is evident the notion of local weak Pareto minimum of f on S.

Obviously every Pareto minimum point is also a weak Pareto minimum
point and it can be proved (see [27]) that if S is convex and if the objective
functions are quasiconvex with at least one strictly quasiconvex, the set of
local Pareto minimum points is a subset of the set of weak Pareto minimum
points: indeed, under the above-mentioned assumptions, all the local Pareto
minimum points are also global.

Definition 1.1. Let S ⊂ Rn and x0 ∈ clS.

(1.1a) The set

T (S, x0) =
{
v ∈ Rn | ∃ tk > 0, ∃ xk ∈ S, xk → x0 s.t. tk(xk − x0)→ v

}
is the Bouligand tangent cone to S at x0 or contingent cone to S at
x0.

(1.1b) The set

A(S, x0) =

{
v ∈ Rn | ∃ δ > 0, ∃ γ : [0, δ]→ Rn such that
γ(0) = x0, γ(t) ∈ S, ∀t ∈ (0, δ] , γ′(0) = v

}

is the cone of the attainable directions to S at x0.

(1.1c) The set

Z(S, x0) =
{
v ∈ Rn | ∃ δ > 0 such that x0 + tv ∈ S, ∀t ∈ (0, δ]

}
is the cone of the feasible directions to S at x0.
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It is well known that T (S, x0) is a nonempty closed cone and that, if S
is convex, then so is T (S, x0) (see [1], [2], [10], [9]). For these cones we have
the following inclusions:

Z(S, x0) ⊂ A(S, x0) ⊂ T (S, x0).

Now we introduce a generalization of the concept of linear independence
for vectors of Rn.
Given a set of vectors of Rn, A =

{
a1, a2, ..., ap

}
, we define the following

sets:
A− =

{
v ∈ Rn | aiv < 0, ∀i

}
;

A∗ =
{
v ∈ Rn | aiv ≤ 0, ∀i

}
;

ker(A) =
{
v ∈ Rn | aiv = 0, ∀i

}
;

lin(A) is the linear subspace generated by A.
We say that the set of vectors of A are positively linearly independent or
that A is positively linearly independent (pli) if{

p∑
i=1

λia
i = 0, λ ≥ 0

}
⇒ λ = 0.

Otherwise we say that A is positively linearly dependent (pld).

Definition 1.2. (see [29]) Let A =
{
a1, a2, ..., ap

}
and B =

{
b1, b2, .., bq

}
two finite sets of vectors of Rn such that A ∪ B 6= ∅. We say that (A, B)
is positive linearly independent if there is no (λ, µ) 6= 0, λ ∈ Rp, µ ∈
Rq, λ ≥ 0, such that

p∑
i=1

λia
i +

q∑
j=1

µjb
j = 0,

or, equivalently, if
p∑
i=1

λia
i +

q∑
j=1

µjb
j = 0, λ ≥ 0

⇒ (λ, µ) = 0. (1.1)

Otherwise we say, that (A,B) is positively linearly dependent (pld).

Of course if B = ∅ we get the previous definitions of A pli or pld.
Let us suppose that A 6= ∅ (B can be also empty). We have the following

results.

Lemma 1.1. The following equivalence holds:

{A is pli} ⇔
{
A− 6= ∅, i.e. there exists v ∈ Rn

such that aiv < 0, ∀i

}
.
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This lemma is nothing but the Gordan theorem of the alternative (see,
e.g., [10], [25]).

Lemma 1.2. The following equivalences hold:
{(A, B) is pli} ⇔

⇔


B is linearly independent and A− ∩ ker(B) 6= ∅,
i.e. there exists v ∈ Rn

such that aiv < 0, ∀i and bjv = 0, ∀j

⇔
⇔ {A is pli, B is linearly independent and (cone coA) ∩ lin(B) = {0}} .

Proof. For the proof of the first two equivalences see, e.g. [15] or [29,
Proposition 2.3]. The third equivalence is proved as follows. Let us denote by
(a), (b) and (c) respectively, the first, second and third proposition between
brackets.

(b)⇒(c) Being A− 6= ∅, for the Motzkin theorem of the alternative (see,

e.g., [25]), there exists no λ ≥ 0, λ 6= 0, such that
p∑
i=1

λia
i = 0, and therefore

A is pli.

Let u ∈(cone coA)∩linB, therefore u =
p∑
i=1

λia
i =

q∑
j=1

µjb
j , with λi ≥ 0,

so we have
p∑
i=1

λia
i+

q∑
j=1

(
−µj

)
bj = 0. From (a) λ = µ = 0, therefore u = 0.

(c)⇒(a) Let us suppose that (1.1) holds. We have

u =
p∑
i=1

λia
i = −

q∑
j=1

µjb
j ∈ (cone coA) ∩ linB = {0} ,

therefore u = 0 and, being B linearly independent, µ = 0.
Finally, being A pli, we have λ = 0. 2

2. Regularity conditions for a differentiable vector optimization
problem

A classical paper on regularity conditions for a vector optimization problem,
under differentiability assumptions of the functions involved, is the one by
Maeda (see [24]). This author however, treats a problem with only inequality
constraints, whereas in the present paper we are concerned with a problem
with both inequality and equality constraints. Moreover, we shall consider
some regularity conditions not examined in [24].
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The analysis of the regularity conditions for a vector optimization prob-
lem has been performed also by other authors, under various differentia-
bility assumptions (see, e.g., the papers by Cambini, Carosi and Martein
[5], Giorgi, Jiménez and Novo [11, 12, 13], Jiménez and Novo [18, 19, 20],
Ishizuka [16], Preda and Chiţescu [28]).

Here we follow the approach of Giorgi, Jiménez and Novo (see [11]),
adapted to the simpler case of differentiability of the functions involved.
See also the paper by Jiménez and Novo [17] for a similar approach.

Let us consider the problem (vop) with

S = {x ∈ Rn | g(x) ≤ 0, h(x) = 0} , (2.1)

being f : Rn → Rp, g : Rn → Rm, h : Rn → Rr, with component functions,
respectively, fi, i ∈ I = {1, 2, ... , p} , gj , j ∈ J = {1, 2, ... ,m} , and
hk, k ∈ K = {1, 2, ... , r} .
Let G = {x | g(x) ≤ 0} , H = {x | h(x) = 0}, so S = G ∩H.
If x0 ∈ S, we denote by J(x0) the subset of J defined by

J(x0) =
{
j ∈ J | gj(x0) = 0

}
,

i.e. J(x0) is the set of the active indices at x0. We define then the following
sets

F =
{
x | f(x) ≤ f(x0)

}
;

S0 = F ∩ S;
F i =

{
x | fj(x) ≤ fj(x0), ∀j ∈ I − {i} , i ∈ I

}
;

Si = F i ∩ S, i ∈ I.
Obviously we have F = ∩

i∈I
F i and S0 = ∩

i∈I
Si.

We suppose that all functions are Fréchet differentiable at the point
taken into consideration, i.e. x0 ∈ S.

We consider also the following linearizing cones to S at x0:

C0(S) =
{
v ∈ Rn | ∇gj

(
x0
)
v < 0, ∀j ∈ J(x0), ∇hk

(
x0
)
v = 0, ∀k ∈ K

}
;

C(S) =
{
v ∈ Rn | ∇gj

(
x0
)
v ≤ 0, ∀j ∈ J(x0), ∇hk

(
x0
)
v = 0, ∀k ∈ K

}
.

Likewise we define these cones with reference to the previous sets given
by restrictions, such as G, H, F , F i, Si, S0. We remark that for the set F
all functions fi, i ∈ I, are active at x0 and for the set F i the same is true
for the functions fj , j ∈ I − {i} .

We put K(H) =ker
(
∇hk

(
x0
))
.

It is obvious that C0(S) = C0(G) ∩K(H) and C(S) = C(G) ∩K(H). We
have also C0(Si) = C0(F i) ∩ C0(S).

Similar expressions hold for C(Si), C0(S0), C(S0), etc.



162 Giorgio Giorgi and Cesare Zuccotti

Lemma 2.1. We have the following inclusions

Z(S0, x0) ⊂ A(S0, x0) ⊂ T (S0, x0) ⊂

⊂

{
cl coT (S0, x0)
∩
i∈I
T (Si, x0)

}
⊂ ∩

i∈I
cl coT (Si, x0) ⊂ C(S0).

If, moreover, ∇hk
(
x0
)
, k ∈ K, are linearly independent, we have C0(S0) ⊂

A(S0, x0).

Proof. The inclusions

Z(S0, x0) ⊂ A(S0, x0) ⊂ T (S0, x0) ⊂ C(S0)

are proved in [2] as well as the second part of the lemma.
The inclusion

T (S0, x0) ⊂ cl coT (S, x0)

is obvious, and, being S0 ⊂ Si, ∀i ∈ I, it follows,

T (S0, x0) ⊂ T (Si, x0) ⊂ cl coT (Si, x0) ⊂ C(Si),

taking into account that C(Si) is closed and convex and contains T (Si, x0).
Therefore

T (S0, x0) ⊂ ∩
i∈I
T (Si, x0) ⊂ ∩

i∈I
cl coT (Si, x0) ⊂ ∩

i∈I
C(Si) = C(S0).

Finally,

cl coT (S0, x0) ⊂ cl coT (Si, x0), ∀i ∈ I,

and therefore

cl coT (S0, x0) ⊂ ∩
i∈I

cl coT (Si, x0). �

Definition 2.1. Let Γ ⊂ Rn and F : Γ→ R, f differentiable on Γ. Then:

f is said to be pseudoconvex at x0 if ∀x ∈ Γ,{
f(x) < f(x0)

}
⇒
{
∇f(x0)

(
x− x0

)
< 0
}

;

f is pseudoconcave at x0 if and only if − f is pseudoconvex at x0;

f is pseudolinear at x0 if and only if f is both pseudoconvex and pseudo-
concave at x0.
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Lemma 2.2.
(2.2a) If every gj , j ∈ J(x0), is pseudoconcave at x0, then

Z(G, x0) = C(G).

(2.2b) If every hk, k ∈ K, is pseudolinear at x0, then:
(i) Z(H, x0) = T (H, x0) = K(H);
(ii) H = x0 +K(H);
(iii) C0(S0) ⊂ Z(S0, x0).

Proof. For a) and the points (i) and (ii) of b), see [11, Lemma 3.1].
For the proof of (iii), take (i) into account and the inclusion C0(F ∩ G) ⊂
Z(F ∩G, x0), which always hold, if there are no equality constraints. Then
we have

C0(S0) ⊂ C0(F ∩G) ∩K(H) ⊂ Z(F ∩G, x0) ∩ Z(H, x0) = Z(S0, x0). 2

Lemma 2.3. We have the following inclusions

C0(S0) = C0(F ) ∩ C0(G) ∩K(H) ⊂

{
C(F ) ∩ C0(G) ∩K(H)
C0(F ) ∩ C(G) ∩K(H)

}
⊂

⊂ C(F ) ∩ C(G) ∩K(H) = C(S0).

If some of the sets C0(S0), C(F )∩C0(G)∩K(H) and C0(F )∩C(G)∩K(H)
is nonempty, then its closure is C(S0).

Proof. See [11, Lemma 3.2] (the proof is an easy exercise). 2

We now consider the following regularity conditions (r.c.) for (vop).

Definition 2.2. We say that for problem (vop), with S given by (2.1),
it holds:

(1) the Generalized Guignard r.c., (ggrc), if
C(S0) = ∩

i∈I
cl coT (Si, x0);

(2) the Abadie r.c., (arc), if
C(S0) = T (S0, x0);

(3) the Generalized Abadie r.c., (garc) if
C(S0) = ∩

i∈I
T (Si, x0);

(4) the Global Cottle r.c., (gcrc), if
C0(F ) ∩ C0(S) 6= ∅ and the set

{
∇hk(x0) | k ∈ K

}
is linearly

independent;
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(5) the Cottle r.c., (crc), if,
for each i ∈ I, C0(Si) 6= ∅ and the set

{
∇hk(x0) | k ∈ K

}
is linearly independent;

(6) the Slater r.c., (src), if
fi, i ∈ I, gj , j ∈ J(x0), are pseudonvex at x0;
hk, k ∈ K, are pseudolinear at x0;{
∇hk(x0) | k ∈ K

}
is linearly independent and, for each

i = 1, 2, ..., p, there exists xi ∈ Rn such that fj(xi) < fj(x0),
∀j 6= i, gj(xi) < 0, ∀j ∈ J(x0), and hk(xi) = 0, ∀k ∈ K;

(7) the Linear r.c., (lrc), if
fj , gj , hk, i ∈ I, j ∈ J(x0) and k ∈ K, are all linear (affine);

(8) the Linear objectives r.c., (lorc), if
fi, i ∈ I, hk, k ∈ K, are linear and C(F ) ∩ C0(G) 6= ∅;

(9) the Mangasarian-Fromovitz r.c., further specified under
the following sets of assumptions:

(9a) with linearly independent objective functions, (liomfrc), if
C(F ) ∩ C0(S) 6= ∅ and

{
∇fi(x0) | i ∈ I

}
∪
{
∇hk(x0) | k ∈ K

}
is linearly independent;

(9b) with positively linearly independent objective functions
(pliomfrc), if C(F ) ∩ C0(S) 6= ∅ and the set({
∇fi(x0) | i ∈ I

}
,
{
∇hk(x0) | k ∈ K

})
is pli;

(9c) with positively linearly independent constraints, (plicmfrc),
if C0(F ) ∩ C(S) 6= ∅ and the set({
∇gj(x0) | j ∈ J(x0)

}
,
{
∇hk(x0) | k ∈ K

})
is pli;

(9d) the Maeda-Mangasarian-Fromovitz r.c., (mmfrc), if
K(F ) ∩ C0(S) 6= ∅ and

{
∇fi(x0) | i ∈ I

}
∪
{
∇hk(x0) | k ∈ K

}
is linearly independent;

(10) the Zangwill r.c., (zrc), if
clZ(S0, x0) = C(S0);

(11) the Kuhn-Tucker r.c., (ktrc), if
A(S0, x0) = C(S0);

(12) the Reverse r.c., (rrc), if
fi, i ∈ I, gj , j ∈ J(x0), are pseudoconcave at x0

and every hk, k ∈ K, is pseudolinear at x0.
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Theorem 2.1. The following implications are verified:
(1) Linear ⇒ Reverse ⇒ Zangwill ⇒ Kuhn-Tucker;

(2) Linear objectives ⇒ Zangwill;

(3) Slater ⇒ Cottle;

(4) (mmfrc) ⇒ (liomfrc) ⇒ (pliomfrc);

(5) (plicmfrc) ⇔ Global Cottle ⇔ (pliomfrc);

(6) Global Cottle ⇒ Cottle;

(7) Cottle ⇒ Generalized Abadie;

(8) Global Cottle ⇒ Kuhn-Tucker ⇒ Abadie ⇒
⇒ Generalized Abadie ⇒ Generalized Guignard.

Proof. The proof follows the same lines of the proof of [11, Theorem
3.1] with the obvious modifications for the case under examination (differ-
entiability assumptions). In particular, Lemmas 1.2, 2.1, 2.2 and 2.3 must
be taken into account. However, for the reader’s convenience, we give the
complete proof.

(1a) Linear ⇒ Reverse

It is trivial.

(1b) Reverse ⇒ Zangwill

Thanks to Lemma 2.2 we have Z(F ∩ G, x0) = C(F ∩ G) and, always
for the same Lemma, we have Z(H, x0) = K(H). Therefore, Z(S0, x0) =
Z(F ∩G ∩H, x0) = C(S0).

(1c) Zangwill ⇒ Kuhn-Tucker

It follows from Lemma 2.1.

(2) Linear objectives ⇒ Zangwill

Thanks to Lemma 2.2 we have Z(F, x0) = C(F ) and Z(H, x0) = K(H).
The inclusions C0(G) ⊂ Z(G, x0) ⊂ C(G) are always true; therefore we get

C(F ) ∩ C0(G) ∩K(H) ⊂ Z(F ; x0) ∩ Z(G, x0) ∩ Z(H, x0) =

= Z(S0, x0) ⊂ C(F ) ∩ C(G) ∩K(H) = C(S0).

Applying Lemma 2.3 we conclude that cl Z(S0, x0) = C(S0). We point out
that in Linear objectives r.c. we could substitute “fi, hk linear” with “fi
pseudoconcave and hk pseudolinear”.

(3) Slater ⇒ Cottle

It is sufficient to apply to each scalar problem
(Pj) min

{
fj(x) |x ∈ Sj

}
the implication Slater ⇒ Cottle, proved in [2, Theorem 6.2.3, ii)]
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(4a) (mmfrc) ⇒ (liomfrc)

It is sufficient to note that K(F ) ∩ C0(S) ⊂ C(F ) ∩ C0(S).

(4b) (liomfrc) ⇒ (pliomfrc)

It is trivial, as if A ∪ B is linearly independent, then (A,B) is positively
linearly independent.

(5a) (plicmfrc) ⇒ Global Cottle

If
(
∇gj

(
x0
)
, j ∈ J(x0)

)
,
(
∇hk

(
x0
)
, k ∈ K

)
is positively linearly inde-

pendent, by Lemma 1.2, this is equivalent to C0(G) ∩ K(H) 6= ∅ and(
∇hk

(
x0
)
, k ∈ K

)
is linearly independent. Therefore

cl C0(G) ∩K(H) = C(G) ∩K(H). (2.2)

Let u ∈ C0(F ) and u ∈ C(G)∩K(H) (u exists by assumptions). Being C0(F )
open, there exists a neighborhood B(u) of u such that B(u) ⊂ C0(F ), and,
thanks to (2.2), B(u)∩

(
C0(G) ∩K(H)

)
6= ∅. Therefore, C0(F )∩C0(G)∩

K(H) 6= ∅, so Global Cottle r.c. is verified.

(5b) Global Cottle ⇒ (plicmfrc)

By asumptions we have

C0(F ) ∩ C0(G) ∩K(H) 6= ∅. (2.3)

Therefore, C0(G) ∩K(H) 6= ∅ and, being
(
∇hk

(
x0
)
, k ∈ K

)
linearly in-

dependent, by Lemma 1.2,((
∇gj

(
x0
)
, j ∈ J(x0)

)
,
(
∇hk

(
x0
)
, k ∈ K

))
is positively linearly independent. From (2.3) we get

C0(F ) ∩ C(G) ∩K(H) 6= ∅,

that is (plicmfrc) is verified.

(5c) Global Cottle ⇔ (pliomfrc)

It is sufficient to note that the role played fi and gj in pliomfrc and in
plicmfrc is symmetric, therefore also the said equivalence is true.

(6) Global Cottle ⇒ Cottle
It is trivial.

(7) Cottle ⇒ Generalized Abadie
For each i = 1, 2, ... , p, the condition C0(Si) 6= ∅ implies T (Si, x0) = C(Si).
Therefore, ∩

i∈I
T (Si, x0) = ∩

i∈I
C(Si) = C(S0).
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(8) Global Cottle ⇒ Kuhn-Tucker ⇒ Abadie ⇒
⇒ Generalized Abadie ⇒ Generalized Guignard

The implications follow trivially from Lemma 2.1 2

The following scheme shows the various relationships pointed out in the
previous theorem.

(mmfrc) ⇒ (liomfrc) ⇒ (pliomfrc) Slater
m ⇓

(pliomfrc) ⇔ Global Cottle ⇒ Cottle
⇓ ‖

Lin. obj. ⇒ Zangwill ⇒ Kuhn-Tucker ‖
⇑ ⇓ ‖

Reverse Abadie ‖
⇑ ⇓ ⇓

Linear Generalized Abadie ⇐
⇓

Generalized Guignard

Remark 2.1. It is known that if x0 is a local efficient point for (vop), then

T (S, x0) ∩ C0(F ) = ∅.

If, moreover, the set
{
∇hk(x0) | k ∈ K

}
is l.i., from Lemma 1.1 we have

C0(S) ∩ C0(F ) = ∅, and consequently at x0 the Global Cottle r.c. cannot
occur and obviously cannot occur any r.c. which implies the Global Cottle
r.c. . For example the (mmfrc) and the (liomfrc).

For this reason the Global Cottle r.c. cannot be considered a true reg-
ularity condition, i.e. a condition assuring the existence of not all zero
multipliers in the usual Kuhn-Tucker condition for a local efficient point x0

of (vop), with S given by (2.1).

Remark 2.2. We have said that, at least for vector optimization problems,
it is better to use the term “constraint qualifications” only for those con-
ditions involving only the constraints. With reference to (vop), where S
is given by (2.1) and all the functions are differentiable on a common open
set, a constraint qualification condition has been considered, e.g. by Lin (see
[22]), Marusciac (see [26]), Singh (see [31, 32]), Wang ([33]). These authors
consider the following Abadie constraint qualification (Abadie c.q.):

C(S) = T (S, x0). (2.4)

Contrary to the scalar case, where the Abadie c.q. assures the positivity of
the multiplier associated to 5f(x0), in the Fritz John necessary optimality
conditions, for (vop) this does not happen.
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Obviously, this holds true also for all other constraint qualifications
which imply the Abadie c.q.
Consider, e.g., the following example.

Example 2.1. Consider the problem

min f(x1, x2) =
(

(x1 − x2) ,− (x1 − x2)3
)

subject to
S =

{
(x1 − x2) ∈ R2 |x1 ≤ 0

}
.

Every feasible point is an efficient solution. In particular x0 = (0, 0) ∈ S is
efficient, it holds C(S) = T (S, x0), but we have

λ1

(
1
−1

)
+ λ2

(
0
0

)
+ µ1

(
1
0

)
=
(

0
0

)
for λ1 = 0, λ2 > 0, µ1 = 0, so λ = (0, λ2) /∈intR2

+.

Indeed, the authors quoted above obtain the following result.
If x0 is a local efficient point for (vop), with S given by (2.1), or

also a local weak efficient point, and the Abadie c.q. (2.4) is satisfied, then
there exist λ ∈ Rp, λ ≥ 0, λ 6= 0, µ ∈ Rm, µ ≥ 0, and ν ∈ Rr such that∑

i∈I
λi 5 fi(x0) +

∑
j∈J

µj 5 gj(x0) +
∑
k∈K

νk 5 hk(x0) = 0

∑
j∈J

µjgj(x0) = 0.

In other words, it is possible to obtain, under the Abadie c.q., only a nec-
essary optimality condition “halfway” between a Fritz John type condition
and a Kuhn-Tucker type condition.

We have to note that the above “weak” Kuhn-Tucker conditions are
useful, together with appropriate (generalized) convexity assumptions, to
obtain sufficient conditions for the weak efficiency (see, e.g., the paper by
Singh [31]). However, the “strong” Kuhn-Tucker conditions, i.e. where
λ > 0 (i.e. λ ∈ intRp

+) are useful to obtain sufficient conditions for the
efficiency and, above all, are connected with the notion of proper efficiency,
a notion which goes back to the basic paper of Kuhn and Tucker [21]. See
also the paper by Geoffrion [8] and the next Remark 2.4.

We remark that the original proofs of Lin (see [22]), Marusciac (see [26])
and Singh (see [31]) work only if x0 is a global solution or a global weak
solution.

An error in the proof of Lin has been corrected by Marusciac in [26]
and in a more precise way by Wang ([33]). See also the Errata Corrige of
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Singh [32], where, however, no justifying reason is given. For more general
treatments see, e.g., [12] and [18]. It is well known that the Mangasarian-
Fromovitz c.q., (mfcq), expressed by:

C0(S) 6= ∅ and
{
5fi(x0), i ∈ I

}
is linearly independent

is a sufficient condition for the Abadie c.q. (2.4).
A point x0 ∈ S satisfying the previous necessary optimality conditions

(i.e. with λ ≥ 0, λ 6= 0,) is called weak regular in the sense of Bigi and
Pappalardo (see [4]). See the next Section 3.

Remark 2.3. Those regularity conditions which involve generalized con-
vexity assumptions could be further generalized, as pointed out in [5], by
means of classes of vector generalized convex functions, broader then the
corresponding classes of functions, where the generalized convexity is re-
quired for the various components of the vector functions involved. More
precisely, we consider the following definitions.

Definition 2.3. Let F : Rn → Rp defined on an open convex set X ⊆ Rn

and differentiable at x0 ∈ K.
(i) F is said to be intRp

−-pseudoconvex at x0 if the following impli-
cation holds

x ∈ X, F (x) ∈ F (x0)+intRp
− ⇒5F (x0)(x− x0) ∈intRp

−

(ii) F is said to be reverse pseudoconcave at x0 if the following
implication holds

x ∈ X, 5 F (x0)(x− x0) ∈ Rp
− ⇒ F (x) ∈ F (x0) + Rp

−.

When p = 1, (i) and (ii) in Definition 2.3 collapse to the usual definition
of pseudoconvexity at x0 and pseudoncavity at x0, respectively.

It can be proved that the class of componentwise pseudoconvex (pseudon-
cave) vector-valued functions is strictly contained in the class of in Rp

−-
pseudoconvex (reverse pseudoncave) functions.

Finally, we obtain, under the Generalized Guignard r.c., the Kuhn-Tucker
type necessary conditions for (vop), with S given by (2.1).

Theorem 2.2. Let x0 be a local efficient point for (vop), with S given by
(2.1). Let the Generalized Guignard r.c. be verified at x0.

Then the system
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5fj(x0)v ≤ 0, ∀j ∈ I,
5fi(x0)v < 0, for at least one i ∈ I,
5gj(x0)v ≤ 0, ∀j ∈ J(x0),
5hk(x0)v = 0, ∀k ∈ K,

(2.5)

has no solution v ∈ Rn.

Proof. Let us suppose that there exists v ∈ Rn which verifies the said
system.

If x0 is a local efficient point for (vop), with S given by (2.1), then x0

is a local solution of each scalar problem

(Pj) min
{
fj(x) | x ∈ Sj

}
.

Therefore, we have 5fi(x0)u ≥ 0, ∀u ∈ T (Si, x0) and also, for the
linearity and continuity of the differential,

5fi(x0)u ≥ 0, ∀u ∈ cl coT (Si, x0). (2.6)

We have that v ∈ C(S0) and for the Generalized Guignard r.c.,

v ∈ ∩
j∈I

cl coT (Sj , x0).

Therefore, in particular, v ∈cl coT (Si, x0) and, taking relation (2.6) into
account, 5fi(x0)v ≥ 0, in contradiction with the first two conditions of
system (2.5). 2

Theorem 2.3. Let the same assumptions of Theorem 2.2 hold. Then there
exist λ > 0, µ ≥ 0 and ν ∈ Rr such that∑

i∈I
λi 5 fi(x0) +

∑
j∈J(x0)

µj 5 gj(x0) +
∑
k∈K

νk 5 hk(x0) = 0.

Proof. Apply to system (2.5) the Tucker theorem of the alternative (see,
e.g., [25]). 2

Remark 2.4. An efficient solution of (vop), with S given by (2.1), is said
to be a properly efficient solution, in the sense of Kuhn and Tucker, if the
system (2.5) has no solution in v ∈ Rn. This concept was introduced by
Kuhn and Tucker (see [21]), in order to avoid some undesirable situations.
Thus, any “true” regularity condition which holds at an efficient point x0 is
also a condition assuring that x0 is a properly efficient point, in the sense of
Kuhn and Tucker. For the various notions of proper efficiency proposed in
the literature and for their relationships, see the survey paper [14].
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3. The approach of Bigi and Pappalardo

We recall the following Fritz John necessary optimality conditions for (vop),
with S given by (2.1).

Theorem 3.1. Let us consider (vop), with S given by (2.1) and where
the functions fi, i ∈ I = {1, 2, ... , p} , gj , j ∈ J = {1, 2, ... , m} and
hk, k ∈ K = {1, 2, ... , r} are continuously differentiable in a neighbour-
hood of x0 ∈ S. A necessary condition for x0 to be a local weak efficient
point is that there exist vectors λ ∈ Rp

+
, µ ∈ Rm

+ and ν ∈ Rr such that∑
i∈I

λi 5 fi(x0) +
∑
j∈J

µj 5 gj(x0) +
∑
k∈K

νk 5 hk(x0) = 0; (3.1)

µjgj(x
0) = 0, j ∈ J ; (3.2)

(λ, µ, ν) 6= (0, 0, 0) . (3.3)

See, e.g., [7], [27], [30] and, for further insights and generalizations, [12,
18, 19, 20].

Let M(x0) denote the set of Fritz John multipliers (λ, µ, ν) satisfying
(3.1)-(3.3), associated to x0. Let us introduce the following notations

ai = 5fi(x0), i ∈ I; bj = 5gj(x0), j ∈ J ; ck = 5hk(x0), k ∈ K;

A =
{
ai | i ∈ I

}
; B =

{
bj | j ∈ J

}
; C =

{
ck | k ∈ K

}
.

The subsets of vectors of these three sets, associated respectively to the
subsets of indices I0 of I, J0 of J and K0 of K, are denoted A0(⊂ A);
B0(⊂ B); C0(⊂ C).

We note that the following equivalences hold:{
M(x0) 6= ∅

}
⇔
{

(A ∪B,C) is pld
}
⇔

⇔
{
∃ (λ, µ, ν) ∈ Rp × Rm × Rr such that∑
i∈I

λia
i +
∑
j∈J

µjb
j +

∑
k∈K

νkc
k = 0, (3.4)

(λ, µ) ≥ 0, (λ, µ, ν) 6= (0, 0, 0)
}
. (3.5)

Following [4] and [23], we state the following notions of regularity for (vop),
with S given by (2.1).

Definition 3.1. Given x ∈ S such that M(x) 6= ∅, we say that:

(a) x is weak-regular if there exists (λ, µ, ν) ∈M(x) with λ 6= 0;
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(b) x is totally weak-regular if, for all (λ, µ, ν) ∈ M(x), there exists
i ∈ I such that λi 6= 0;

(c) x is regular if there exists (λ, µ, ν) ∈ M(x), with λi > 0 for all
i ∈ I;

(d) x is totally regular if, for all (λ, µ, ν) ∈M(x), one has λi > 0 for
all i ∈ I.

We note that (d)⇒(c), (d)⇒(b), and (b) and (c) imply (a).
The notions (b) and (c) are not related, as shown by examples in [4].
We now prove, in a more direct and synthetic way, some results of Maciel,

Santos and Sottosanto (see [23]), adding some new results and remarks. First
of all, we note that, without loss of generality, we can always suppose that
all the inequality constraints are active at x0, i.e. J = J(x0).

Theorem 3.2. The following equivalence holds:{
M(x0) 6= ∅ and x0 is totally weak regular

}
⇔

⇔ {(A ∪B, C) is pld and (B, C) is pli} .

Proof. (=⇒)
The first part is clear. Assume that (B,C) is pld. Then there exists

(µ, ν) ∈ Rm × Rr such that µ ≥ 0, (µ, ν) 6= 0 and∑
j∈J

µjb
j +

∑
k∈K

νkc
k = 0. (3.6)

Choosing λ = 0, we have that (0, µ, ν) ∈M(x0), which contradicts that
x0 is totally weak-regular.

(⇐=)
It is clear that M(x0) 6= ∅, since (A∪B, C) is pld. Choose (λ, µ, ν) ∈

M(x0), then (3.4)-(3.5) hold. If we assume that λ = 0, then (3.6) holds with
(µ, ν) 6= 0, but this contradicts the assumption that (B,C) is pli. 2

Remark 3.1. We note that if we assume that M(x0) 6= ∅, then we can
easily prove that (mfcq) is both necessary and sufficient for x0 to be totally
weak regular (Maciel, Santos and Sottosanto are not clear on this point, in
Theorem 3.2 and Remark 3.2 of [23]).

Theorem 3.3. Assume that there exist B0 ⊂ B and C0 ⊂ C such that
(B0, C0) is pli and (A ∪ B0, C0) is pld. Then M(x0) 6= ∅ and x0 is weak-
regular.

Proof. Similar to the proof of the previous theorem. 2
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Remark 3.2. We point out that the condition (A∪B0, C0) is pld is weaker
than (A0 ∪B0, C0) is pld for some A0 ⊂ A, i.e. the condition (A0 ∪B0, C0)
is pld for some A0 ⊂ A implies that (A ∪B0, C0) is pld, but the converse is
false, if A0 6= A. Consider, e.g.,

A = {(−1, 0, 0) , (0,−1, 0) , } , B = {(1, 1, 0)} and C = {(0, 0, 1)} .

Theorem 3.4. If x0 is weak-regular, then A is pld or there exist B0 ⊂ B
and C0 ⊂ C such that (B0, C0) is pli and (A ∪B0, C0) is pld.

Proof. The result is a consequence of Carathéodory’s lemma (see, e.g., [3])
and can be proved also following a scheme similar to the one used by Qi and
Wei (see [29]) in their Proposition 2.2. 2

We note that of course the converse of the first part of the theorem is
true because if A is pld, then x0 is weak-regular.

Definition 3.2. A vector d ∈ Rn is said to be a positive linear combi-
nation (plc) of (B, C) if there exists (µ, ν) with µ ≥ 0 such that

d =
∑
j∈J

µjb
j +

∑
k∈K

νkc
k.

Definition 3.3. The triplet (A, B, C) satisfies the strict positive linear
dependence (spld) if for every s ∈ I, −as is a plc of (As ∪B, C), where
As = A − {as} . Equivalently: for every s ∈ I there exists (αs, βs, γs) ∈
RcardI−{s} × Rm × Rr such that (αs, βs) ≥ 0 and

as +
∑
i 6=s

αsia
i +
∑
j∈J

βsjb
j +

∑
k∈K

γskc
k = 0. (3.7)

Theorem 3.5. The following equivalence holds:

{(spld) holds} ⇔
{
M(x0) 6= ∅ and x0 is regular

}
.

Proof.
(=⇒)

It is sufficient to sum up in s ∈ I the equations (3.7) to obtain (λ, µ, ν) ∈
M(x0) with λ > 0.

(⇐=)
It is obvious , since if (3.2) holds with λs > 0, ∀s ∈ I, we can find −as

for each s ∈ I, satisfying Definition 3.3. 2

We now recall the Cottle regularity condition (Cottle r.c.): see Section 2
of the present paper.
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Definition 3.4. We say that Cottle r.c. holds at x0 ∈ S if C is linearly
independent and for each s ∈ I,

A−s ∩B− ∩ ker(C) 6= ∅, where As = A− {as} .

The condition above is called in [23] “Mangasarian-Fromovitz regular-
ity condition” (mfrc), but we prefer to use the term “Cottle r.c.”, as the
Maeda-Mangasarian-Fromovitz r.c. is another type of regularity condition
(see Section 2 of the present paper).

According to Lemma 1.2 we have the following result.

Theorem 3.6. The following equivalence holds:

{(Cottle r.c.) holds} ⇔ {For every s ∈ I the set (As ∪B, C) is pli}.

The following result connects Cottle r.c. and totally regular points.

Theorem 3.7. Let M(x0) 6= ∅. Then:

{(Cottle r.c.) holds} ⇔
{
x0 is totally regular } .

Proof.
(=⇒)

Take (λ, µ, ν) ∈ M(x0 ) then (3.2)-(3.3) hold. Assume that λs = 0 for
some s ∈ I. This implies that (As ∪ B, C) is pld, which is a contradiction
to the fact that (As ∪B, C) is pli, which holds, thanks to Theorem 3.6.

(⇐=)
If for some s ∈ I, (As ∪ B, C) is pld, then (3.2)-(3.3) are satisfied with

λs = 0, but this contradicts the assumption that x0 is totally regular. 2

Definition 3.5. We say that (vop), with S given by (2.1), satisfies the
positive linear independence regularity condition (plirc) at x0 ∈ S
if:
(i) (B, C) is pli;

(ii) for every s ∈ I there does not exist

(α, β, γ) ∈ RcardI−{s} × Rm × Rr such that (α, β) ≥ 0, α 6= 0,
and∑
i 6=s

αia
i +
∑
j∈J

βjb
j +

∑
k∈K

γkc
k = 0.

Remark 3.3.
(a) According to Lemma 1.2, the condition (i) of the previous Definition

is equivalent to: C is linearly independent and B− ∩ ker(C) 6= ∅.
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(b) By Motzkin alternative theorem (see, e.g., the papers [10], [25]), the
condition (ii) of the previous Definition is equivalent to:
for each s ∈ I it holds A−s ∩B∗∩ker(C) 6= ∅.

Theorem 3.8. The following equivalence holds:

{(plirc) holds} ⇔ {(Cottle r.c.) holds} .

Proof.

(=⇒)
Let us prove that for each s ∈ I we have A−s ∩B−∩ker(C) 6= ∅. Indeed,

by Remark 3.3 (a), there exists u ∈ B−∩ker(C) and by Remark 3.3 (b),
there exists v ∈ As∩B∗∩ker(C). For each α ∈ (0, 1) let ωα = αu+ (1−α)v.
It is easy to check that ωα ∈ B−∩ker(C), ∀α ∈ (0, 1). As lim

α→0+
ωα = v ∈ A−s

and A−s is an open set, it follows that ωα ∈ A−s ∩ B−∩ker(C), for α > 0
small enough.

Now, as C is linearly independent (see Remark 3.3 (a)), we have that
(Cottle r.c.) holds.

(⇐=)
The proof is obtained from the definition of (Cottle r.c.), taking Remark

3.3 in to account and observing that

{A−s ∩B− ∩ ker(C) 6= ∅} ⇒ {B− ∩ ker(C) 6= ∅} . �

An immediate consequence of Theorem 3.7 is the following result.

Theorem 3.9. Let M(x∗) 6= ∅. Then:

{(plirc) holds} ⇔ {x∗ is totally regular} .

Both Theorems 3.7 and 3.8 are present in [23], but our proofs are more
direct and stringent.
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