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1. Introduction

In the last years many authors starting with Mawhin and Willem (see [6])
proved the existence of solutions for problem

i(t) = VF(t,u(t)) a.e. t € [0,T], (1.1)
u(0) — u(T) = u(0) —u(T) =0, '
under suitable conditions on the potential F' (see [4], [18]-[28], [30]). Also
in a series of papers (see [7]-]9]) we have generalized some of these results
for the case when the potential F' is just locally Lipschitz in the second
variable x not continuously differentiable. Very recent (see [10] and [14])
we have considered the second order Hamiltonian inclusions systems with
p—Laplacian.

In [1] the authors described a new method for proving the existence of
periodic solutions for the following system

)

-2
dt (‘“
u(0) — ( )
where p is a real number so that 1 < p < 00, 0 < T < o0 is a constant and

F :[0,T] x RN — R¥ is a measurable function in ¢ for each z € RY and
continuous in x for a.e. t € [0,7].

:) u(T) h 0, (1.2)
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The aim of this paper is to show how the results obtained in [1] can
be generalized. More exactly our results represent the extensions to second-
order differential systems with (p1, p2)-Laplacian. This type of systems have
been also considered in [3], [12], [13], [15]-[17].

Consider the second order system

L(Jar ()P =201 (1)) = ua ()P~ 2un (t) + Fi(t, ua (t), ua(t)),
%("LLQ ’pQ QUQ( )) ‘UQ(t)’m 2UQ(t) + FQ(t, ul(t),uQ(t)) a.e. t e [O,T],
u1(0) — uy(T) = 1 (0) — wr (T ):
u2(0) — uz(T) = 12(0) — (1) = w3
where 1 < p1,pa < 00, T > 0, and F; : [0,T] x RN x RN — RN 4 =1,2

satisfy the following assumption (A):
e F; is measurable in ¢ for each (21, z2) € RY x RY;

e F; is continuous in (x1,z2) for a.e. t € [0,7].

2. Equivalent formulation of the problem (1.3)

Let X — W%,Pl « Wq{g@) X* — (W%JH)* « (W%7p2)*’ q = pfnl’ ¢ = pfil
and Jp, —1p,—1 : X — X* defined as follows:
T
(st st (1, ), (01, 02)) e x = / Jur ()P 2un(8), va ()it (2.1)
0
T T
T / (lin (8)P1240 (8), 60 (£)) it + / (Jua(8) P2~ 2un(t), v (1) b+
0 0
T
4 / (i (£) P 2aa (), bo(t)) dt
0

for all (vy,v2) € X.
In fact we have:

Ipr—1pp-1(ur, ug) = (Jp,—1u1, Jp,—1u2). (2.2)
From (2.2), following the estimates obtained in Section 2 of [1], we get:
[(Ipy—1,p2—1 (11, ug), (v1,v2)) x= x| <

< ‘<Jp1,1ul, U1>(W%,p1)*7W%;P1 ‘ + ‘(Jpgflu% U2>(W%’p2)*,W%’p2‘ <

p1 p1 p2 p2
U1 , V1 ) U9 : V9
Vel Ml Wl el
q1 p1 qz p2

and

(o1 —1,p2-1 (ur, u2), (ur, u2)) x= x = w00, + lluall(? 1, (2:3)
T T
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We known that (see Section 2 of [1]):
1pr -1l gy 1oy, = HU1||p1%p1’ 1 Tpe—1ti2l gy 1m2). = HWHPZ%W
From (2.2) we have

H‘Ipl—lypz—l(ULUQ)HX* = HJP1—1U1H(W%7P1)* + HJP2—1UQH(W7{7P2)* = (2'4)
= HU1||p11;1)1 + [|u 2||lei2

Suppose that for any (uy,uz) € LP1(0,T;RY) x LP2(0, T; RY) the map
t €10, T) — (Fi(t,ui(t), ua(t)), Falt, ui(t), ua(t)))
belongs to L (0, T;R™) x L%(0,T;R™). We may consider the operator
A L0, T;RY) x LP2(0, T;RY) — L@ (0, T;RY) x L®(0, T; RY)
defined by
(A1, 1)) (8) = (Fi(t, w1 (8), wa(0), Bt (1), ua(®)))  (2.5)

a.e. on [0,7T], and for all (ug,uz) € LP*(0,T;RN) x LP2(0, T;RN).

Let i, be the compact injection of W%’p Uin LP1(0,T;RY) and in,
L1(0, T;RN) — (W%’pl)* its adjoint. Similarly, let ¢,, be the compact
injection of W, in LP2(0,T;RN) and i, : L2(0, T;RN) — (W)™ its
adjoint. We define

i WP s WP — LPY 0, T; RY ) LP2 (0, T; RY),  i(wy, @9) = (i, @1, ipy2)

and
@ L0, T;RY) x L2(0, T3 RY) — (W)™ x (Wp?)”

Z*(SCT,‘%‘;) ( p1$1’1p2x2) (xl O’LPNJ:Q OZPQ) (2'6)

for all (z%, %) € L9 (0, T;RYN) x L%(0,T;RN).
Clearly, (2.6) reads as follows: for every (vi,v2) € W%’p tx W%’p 2,

(" (21, 23), (01, 02)) x= x = (21, dpy (V1)) 1 L1 + (23, s (V2)) Loz vz (2.7)
Let (u1,u2) € W%’pl X Wj{’pz be a solution of equation

Ipr—1,pe—1(u1,u2) = — (3" Az) (u1, u2). (2.8)
Then, for every (vi,v2) € Wr}’p tx W%’p 2, one has

(Jpr—1pp—1(u1,u2), (v1,02)) x+ x = — (" Ai) (u1, ug), (v1,v2)) x= . x =
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= — (" (A(ip, u1, ip,u2)), (v1,v2)) x+ x =
= (" (F1(yur (), ua(-)), Fa( un (), ua())), (v1,v2)) x= x =
= —(F1(-;un (), u2(4))yipy (V1)) pan o — (F2( ur (), u2(+))s ipy (v2)) L9z, 172 =

T
= —/0 [(F1L(8 ur(£), ua(t)), 01 (2)) + (Fa(t, ua(t), uz(t)), va(t))]dt.

Taking into account (2.1), the equality

T
(Tps—1pp—1 (11, 42), (01, 02)) x+ x = — / (Pt w1 (1), ua(8)), 1 (1)) +

+(Fo(t, ur (1), ua(t)), va(t))]dt

rewrites as

T T
/ (i () [P~ 24 (t), 01 (¢))dt + / (lao(t) P2~ 2o (t), bo(t))dt = (2.9)
0 0
T
- _/0 (lur ()P 2un () + Fu(t, ua (8), ua(t)), vi(t))dt—

- /()T<!U2(t)|p22u2(t) + F(t, ur(t), uz(t)), va(t))dt

for all (vi,ve) € W%’p tx W%’p >, In particular, (2.9) is satisfied for any
(v1,02) = (1, f2) € CF x C € WP x W™,

Consequently, if (uy,us) € WTl,’p Ux W%’p % is a solution of the operator
equation (2.8), then (uj,u2) is a solution of the problem (1.3). Thus, in
order to prove the existence of a solution for the problem (1.3), it would be
sufficient to prove the existence of a solution for the operator equation (2.8).

It is a simple matter to see that the operator A generated by the functions
Fi(,-,-), Fs(-,-,-) may be replaced by any operator

N : LPY(0,T;RYN) x LP2(0, T; RY) — L7 (0, T;RYN) x L2(0, T;RY)
defined by
(N(ul, UQ)) (t) = (Nl (Ul (t), ug(t)), Ng(ul (t), ug(t))) . (2.10)

Thus we obtain the following proposition:

Proposition 2.1. Let J, _1p,—1 : X — X*, 1 < p1,p2 < oo be de-
fined by (2.1) and let N : LP*(0, T;RN) x LP2(0, T;RN) — L9 (0, T; RY) x
L2(0,T;RN) be given. Let i : X — LPY(0,T;RN) x LP2(0,T;R"N) and
i L9(0, T; RN x L2(0, T;RYN) — X* defined as above.
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If (u1,u2) € X is a solution of the operator equation
Ipi—1pa—1(u1, uz) = —(i"Ni)(u1, up) (2.11)

then (u1,uz) is a solution for the problem

Ll (@) =2an (2)) = [ur(t)Pr~2ug (t) + Ny (u(t), ua(t)),

Lz (t)[P2~2ua(t)) = [ug(t)[P2~ua(t) + Na(us(t), ua(t)) a.e. t € [0,T]
u1(0) — ur(T) = u1(0) — w1 (T) = 0,

us(0) — us(T) = ia(0) — () = 0.

(2.12)

3. Preliminary results

In [2] (see Corollary 1) the authors have proved the following abstract result:

Theorem 3.1. Let X be a reflexive real Banach space, T : X — X™* be a
monotone, hemicontinuous, coercive operator, satisfying condition (S)2 and
let K : X — X* be compact. If there is a constant k > 0 such that Tv = Ku
and ||lu|| < k implies ||v|| < k, then the equation Tu = Ku has a solution
u € X, with ||ul| < k.

We observe that in (2.11), the right-hand operator K = —i* Ni is compact
and therefore equation (2.11) reduces to the case T'(uy, u2) = K (uj, uz) with
T(ul,ug) = Jp1,17p2,1(u1,uz) and K : X1 x Xy — Xik X X; compact.

In order to be able to apply the above abstract result to solve our problem
(2.11) we start to list some definitions and useful results.

Definition 3.1. Let X be a real Banach space and X* denotes the dual
space of X. An operator T : X — X* is

- monotone if:

(Tu —Tv,u—v) >0 for all u,v € X,

- hemicontinuous if:

(T(u+ v),w) — (Tu,w) as X — 0 for all u,v,w € X,

coercive if:
(Tu, u)

[l

— 00 as |lu|| — oo,

- demicontinuous if:

Uy, — u tmplies Tu, — Tu as n — oo.
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Definition 3.2. The operator T : X — X* is said to satisfy condition (S)2
iff, as n — o0, the following holds:

Uy — U, Tuy — Tu implies u, — u.

We have denoted by “—” (respectively “—”) the convergence in the weak
(respectively strong) topology.

Proposition 3.1. If 71 : X1 — X{ and Ty : Xo — X; are monotone,
hemicontinuous, coercive operators which satisfy condition (S)o then T :
X1 x X9 — X x X3 given by T(u1,u2) = (Thur, Toug) has the same prop-
erties.

Proof. Indeed we have

(T'(u1,u2) — T(vi,v2), (u1, uz) = (v1,v2)) =

= ((Thu1, Touz) — (Thvy, Tovg), (U — v1,u2 — v2)) =
= ((Thu1 — Tyv, Toug — Tovg), (ug — v1,u2 — v2)) =
= (Thur — Thvr,up — v1) + (Taug — Thva, ug — va) > 0,

hence T is monotone.
ItT : Xy — X{ and Ty : Xy — X3 are hemicontinuous operators then
we have

(T((u1,u2) + A(v1,v2)), (w1, w2)) = (T'(u1 + Avr, ug + Av2), (w1, wa2)) =
= ((Th (u1 + Avy), To(ug + Ava)), (w1, ws)) =
= <T1 (u1 + /\'Ul), w1> + <T2(U2 + )\UQ),'UjQ) — A0 <T1ul,w1> + <T2U2,'LU2> =
= ((Thu, Thug), (w1, we)) = (T'(u1, uz), (w1, wa)).
IftTy : X1 — X{ and T : X9 — X are coercive then we have:

(T'(u1,u2), (u1,u2))  (Trur,ur) + (Toug, uz)

[, us) | - [ || + [zl
_ (T, w) — lual] (Toug, ug) |luall
Juall full + [luzll luall - fluall 4 [luzll

If ||ui|| — oo and |luz|| is bounded, then

T T:
(Thu, w) ) s , (Tous, ua) is bounded from below,
[[ual [Jua || + lluz|] [Juzl|
HUQH <T(’LL1,’LL2), (Ul,U2)>

— 0, and then — 00.

[[ua ]| + fJuz| (1, ug) |
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Similar if ||uz|] — oo and ||uy| is bounded. If |jui|| — oo and [Jua| — oo
(passing to a subsequences, if necessary) we use the inequality

Aa + (1 — A)b > min(a,b), for a,b € R, X € [0,1].
If 71 : X1 — X7 and Ty : Xo — X satisfy condition (S)s then we have:
(U1n, ugn) = (u1,u2) = Upm — Ui, 1 = 1,2

and
T(uin, ugn) — T(ur, uz) = Tiwim — Tiu;, i =1,2

and hence u;, — u;,i = 1,2 which implies (w1, uon) — (u1,u2). a

4. Duality mappings

Let i = 1,2, (Xj, || - [|x,) be real Banach spaces, X} the corresponding dual
spaces and (-,-) the duality between X’ and X;. Let ¢; : Ry — Ry be
gauge functions, such that ¢, are continuous, strictly increasing, ¢,(0) = 0
and ¢;(t) — 0o as t — oo. The duality mapping corresponding to the gauge
function ¢; is the set valued mapping J,, : X; — 2X{, defined by

Jo, v = {2} € X | (a7, zi) = eilwillx)illxi, |271x; = i(llasllx,) }-

If X; are smooth, then J, : X; — X[ is defined by

Jo0=0,  Jomi=lailx)l Iy, (@), @i #£0,

and the following metric properties being consequent:
g zill xr = willlzilx,), (Jo,z, ) = pilllzillx)lwill x,. (4.1)

Now we can define J, o, @ X1 x Xo — 2% x 2%2 by J, o (21,20) =
(Jo, 21, Jp,x2). From (4.1) we get

[ o100 (T1522) X35 x5 = ([T, 21l x5 + ([T, 22l x5 = (4.2)

= o1([|z1lx,) + w272l x,),
<‘]501,s02(x17x2)7 ($17$2)> = <J9011"17x1> + <J9021"271"2> = (43)
= o1zl x)lzillx; + eallz2lx,) |72l X, -

For our aim in what follows we will consider the particular case when
Jp, + Xy — X[ are the duality mappings, assumed to be single-valued,
corresponding to the gauge functions ¢, (t) = tP171 py(t) = P27 1 <
p1,p2 < oo. In this case we denote Jp, 1 p,—1 : X1 x Xo — XT x X3 given
by Jp1—1,p2—1 = (‘]p1—17 Jpz—l)'
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Note that the hypothesis on J,,, to be single-valued mappings is satisfied
iff X; are smooth (iff X; are with G-differentiable norms, iff X are strictly
convex).

Let i1 and i9 the compactly embedded injections of X7, X5 in Z1 and Z5
respectively:

||Z'1(’IL1)||Z1 < Czlﬂulnxl for all ul € X1, (4.4)
HZ'Q(UQ)HZ? < CZQ||’LL2HX2 for all uy € Xs.

We introduce

|41 (u1) 1%,

- [ ur (1%,
1=inf ¢ ——=—: w3 € X7\ {0}, >0,

Ay = inf M ’LLQGXQ\{O} >0
| d2(uz) |17,

Proposition 4.1. \;, Ay are attained and )\l_l/q and )\2—1/;) are the best
constants Cz, and Cgz,, respectively in the writing of the embeddings of X
mto Z1 and X into Zo, respectively.

Proof. See the proof of Proposition 4 in [2]. O

5. Existence result for equation J, _1 p,—1(u1,u2) = —(*Ni)(ui, u2)

Since Jp,—1,p,—1 satisfies the metric relations (2.3), (2.4) it follows that,
for any (ul,uz) S lew’pl X Wj{,pz, Jprlm,l(ul,uﬂ € J@IWQ(ul,uQ) =
(Jo,u1, Jp uz), where J,, , i = 1,2 designates (eventually multivalued) du-
ality mapping on W%’p ¢ corresponding to the gauge function ¢, (t) = P!,
1 < p; < oo, t>0. But, is well known that W%’p with 1 < p < ooisa
smooth Banach space (see for example Theorem 4.1 in [1]) which implies
that any duality mapping on WP , 1 < p < oo is single valued. Conse-
quently, Jp,—1 : W%’p L (W%’p “)*, i = 1,2 involved in the definition of
Jp1—1,ps—1 are just the duality mappings corresponding to the gauge func-
tions ;(t) = tPi=t i=1,2.

Theorem 5.1. If 1 <p; < o0, i = 1,2 then:

a) the spaces (Wq{’pia - le,pi), are uniformly convex and smooth;
T

sPi

b) the duality mappings on Wr} corresponding to the gauge function

@;(t) = tPi=t t > 0 are single valued, <in,1 : W%’pi — (Wr}’pi)*)
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satisfies condition (S)2 and Jp, —1p,—1 : X — X* is defined as follows:
if (u1,u2) € X, then

T
(st a1 (t1, ), (01, 02)) xe x = / (&)1 20 (£), 00 (£)) i+
] ’ (5.1)
T
4 /0 (lin (&)1 (£), 00 (£)) it + /O (T (®) P>~ 2us(t), v (1)) i+

T
+ / (i (8) P22 (), 6o(t)) dt
for all (vi,v9) € X.

Proof. See Theorem 4.1 in [1] and we use (4.1). O
Now, we need the following result:

Lemma 5.1. Let p; > pa > 1 and a,b > 0 such that a?* + b2 < K(a +b),
where K > 0. Then a+ b < K1, where

1 1 1
Ky = max (14 max ((2K)71, (2K) ), 2K72-1 ).

Proof. Case 1. If a > 1 then aP? 4+ bP2 < aP' + b2 < K(a + b), hence
aP? + "2 < K(a+b), and we get

(a+b)P> <2727 (al? + b72) < 27271 K (a +b).
Finally a + b < QKﬁ.

Case 2. If a < 1 then b7 < aP* + b7 < K(a+b) < K(1+b), and we get
2 < Kb+ K.
1
If b > 1 then o7 < 2K, from where b < (2K)r2-1.
1
If b < 1 then b2 < 2K, from where b < (2K)?2, and hence one has b <

_1 1 _1
max ((2K)72-1, (2K)#?2). Finally we get a+b < 1+max ((2K)r2-1, (2K)?2).

3|~

2

1 1 1
Consequently a +b < K; = max (1 +max ((2K)72 7, (2K)E),2KF>. O
Remark 5.1. The case py > p; > 1 can be done similarly.

Theorem 5.2. Let iy, be the compact injection of W%’pl in LP1(0,T; RN)
and iy, L0, T;RN) — (W%’pl)* its adjoint. Similarly, let ip, be the com-
pact injection of W%’pz in LP2(0,T;RY) and D R (0, T;RN) — (VVqlJpZyk
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its adjoint. Let Jp,—1p,—1 (given by (2.1)) which can be defined using the
duality mappings on Wgﬁ_l, i = 1,2 corresponding to the gauge functions
@i (t) =i~ ¢ >0.

Suppose that

N : LPY(0,T;RY) x LP2(0, T;RY) — L9 (0, T;RY) x L9(0,T;RY),
N = (N1, No), is demicontinuous operator which satisfy the growth condition

IIN (w1, u2)|| Lo xpez < 61H(u1,u2)||2;11><Lp2 + co for all (uy,ug) € LP* x LP?

(5.2)
where c1,co > 0, ¢ < min (;, 27} 1) min (>\1r, )‘1R) with r = min(p,p2), R =
max(p1, p2),

‘|U1||€[1,1,p1 Hu2||€12/1,p2
A :inf{_iTulyéO}, At :inf{,iTuQ#O}.
P = G 7 r = ) 7,
Then, the equation
Ipi—1,pa—1(ur, u2) = —(i*Ni)(u1, uz) (5.3)

has a solution in X = W%’pl X W%’m.
Consequently, the problem

(i ()P 2an () = ug (8) [P~ 2ua () + Na(ua (2), ua(t)),
(i (t) P2~ 2ag(t)) = |ua(t)

1(0) = ur(T) = 41(0) — a1 (T) = 0,
2(0) — uz(T") = 12(0) — ta( :

<

(5.4)
has a solution in X = W%’pl X W%’pz.

Proof. It is standard that J, _1 and Jp,—1 are monotone, demicontinu-
ous (hence, hemicontinuous) and coercive. According with Proposition 2.1
Jp1—1,ps—1 1s monotone, hemicontinuous and coercive. Therefore, in virtue
of Theorem 5.2, Jp, _1p,—1 has all properties of T in Theorem 3.1. On the
other hand, K = —i*Ni : X1 x Xy — X{ x XJ is compact. Let us prove
that there is some k > 0 such that J,, —1 p,—1(v1,v2) = —(i*N4%)(u1, u2) and
I, uz) x5 < e implies [[(v1, v2) | x, x, < K-
For, let (u1,u2), (v1,v2) € X1 x X2 be with

Ipi—1,ps—1(v1,v2) = — (" Ni)(u1, ug).
Then, by the definitions of J,, —1 p,—1 and (4.4), (5.2), we have
(Jp1—1,p2—1(v1,v2), (U1,U2)>X;xxg,xl XXy =

= ((Jp1—101, Jpy—1v2), (V1,V2)) X7 x X5, X1 x X5 =
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= (Jp1—101,01) X x X1+ (Tpa—102, 02) x5 ¢, = loa g, + w2, =

= (=N (i(u1,u2)),i(v1,v2)) 7r x 25,2 x 72 <

zrxzz li(v1, v2)l| 2y x 2, <

<IN (iua, ug))|

< [elitun, w25k g, + o liCwor, v2)l 2,20 =

= leall(ia(un); ia(ua)l5, kg, + €] 11 (v0), iz ()| 21 22 =

= [er(liatwllz + liz(u2)llz,) — + o] [lla@)llz + lia(v2) 2| <

r—1
< [01 (CleulHXl + CZzHUZHX2> + Cz} [CleUlHXl + CZQHWHXQ}-

For the best constants Cz, = )\lpll/pl, Cz, = )‘1p2/m we derive:

1 r—1
ot + lleal, < [er (APl + APl ) + e

o ol + AL el | <

< [eah ™Ml + uall) ™ + ea| Al L, + leallx,)

where A = max(\, 1/p A1p 1/p2) We get:

lonli, + ozl < |erd” o)l box, + c2 101, v2) v, <

< [ E ™+ oAl v2) v

With K = ¢;A"k"~! 4 coA we can apply Lemma 5.1 and we get (if p; >

p2 > 1):
[(v1,v2) Ix1 % x0 = [Jv1llx, + [Jvellx, <

1 1 1
< max (1 + max ((QK)F,(QK)E)QKF),

Taking into account that » = min(p1, p2), it is easy to see that we can choose
k > 0 such that

Ky = masx (14 max ((2K)7T, (2K)7 ), 2KF31) < k.

Indeed we have the following cases:
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(a)

1
K1 =2Kvr2-t. Now, because p; > p2 and

r

c1 < min (%, QL) min ()\17«, )‘FR)

r—1
we have
c < wmin(/\lm,)\’f;{pl).
Furthermore ¢;2P2~1—— 1~ 1 that is
min(A1p, ’)\11731/171)

¢ 221 maX(Afplg,AfpﬁQ/pl) < 150 that ¢;2P271AP2 < 1.

Consequently
P2t op2= L AP2¢P21 L ) N) — o0 as t — 0.
Hence, there is some k£ > 0 such that

kP21 op2=l(c AP2P21 o A) >0

1
which implies 2(01Ap2k:p2_1 + o) 72T < k, so that K1 < k, and then
[ (v1, v2) [l x, % x5 < K

1
Ki =1+ (2K)#-T. In this case, because ¢; < 3 min(Ap,, Aﬁ{pl), we
have 2¢1AP?2 < 1 and then
1
t— (2(01Ap2tp271 + CQA)) 7270 1 — o0 ast — o0.
Hence, there is some k£ > 0 such that

1

k— (2(01A%P2*1 + czA)) S N

which implies

1

1+ (Q(ClATkpzfl + CzA)) P2t <k

so that K7 <k, and then |[(vi,v2)|lx,xx, < k.

1
K; =1+ (2K)?2. In this case we have

1

t— <2(01Ap2tp271 + CQA)) "2 _ 1 00ast— 00

because p;—gl < 1, and we conclude as in (b).
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The case pa > p1 > 1 can be done similarly.
Theorem 3.1 now applies by considering X = X1 x Xo, T' = Jp, _1 p,—1
and K = —i*Ni. i
Taking into account Theorem 5.2 we obtain

Corollary 5.1. Assume

(i) Jp,—1 and Jy,—1 satisfy condition (S)2 (which implies according with
Proposition 2.1 that Jp, —1 p,—1 satisfies condition (S)2);

(11) N : Z1 X Zy — Z7 x Z3 is a demicontinuous operator satisfying the
growth condition

[N (v1,v2)]

Zrxzy < 61!!(01,1)2)”82122—1—02 for all (vy,v2) € (X1 x Xa)
(5.5)
where s < min(p1,p2) and ci,co > 0.

Then the equation Jp, 1 p,—1(u1,u2) = N(ui,u2) has a solution in X1 x Xs.

We need the following result:

Lemma 5.2. Let 1,79, k1, ko > 0. Then there are the constants ks, kqy > 0
such that

k1a™ + kob™ < ks(a + b)™*00r2) Lk for alla,b > 0.
Proof. If a,b> 1 we have
kla” + k_Qbrg < klamax(m,m) + kamax(rl,rz) <

< max(kl, k2)<amax(r1,r2) + bmax(rl,rg)) < max(kl, kg)(a + b)max(m,rg)7

and the proof is ready with k3 = max(kj, k2) and k4 > 0, arbitrary.
If a,b < 1 then
kia™ + kab™ < ki + ko

and we may take ky = k1 + ko, k3 > 0, arbitrary.
Ifa>1,b<1,

kia™ 4 kob"™ < kia™ 4 ky < k(a4 b)" 4 ky < kia + b)) 4y,

and similarly if a < 1,6 > 1. O

Proposition 5.1. Letri,79 > 1, F; : [0, T] x RN xRN — RN (t, 21, 29) —
Fi(t,z1,22) i = 1,2 be two functions measurable in t for each (x1,x2) €
RN x RN and continuous in (x1,z2) for a.e. t € [0,T]. Assume that:

r—1)"2
|t 2, 22)l| < erllen |70+ eoflal 77 4 b1 (1), (5.6)
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for x1,x0 € RN ¢ € [0,T],

1) _
1Fa(t, 21, 22)|| < esllan]| "> V7 + caflaa]|2 7 + ba(t), (5.7)
for z1, 29 € RNt € 0,77,

where ¢y, ¢z, c3,¢4 > 0 are constants, by € L' (0, T;Ry), by € L™2(0,T;R,),
1,01 401 ;1 _
ot = Lo+ = 1. Then the operator defined by

(N(ul, UQ)) (t) = (Fl(t, ul(t), UQ(t)), Fg(t, ul(t), ’LLQ(t)))

s continuous from
L0, T;RN) x L™(0, T;RN) into L' (0, T;RYN) x L"2(0, T;RN) and
Ri—1
HN(Ulu U2) HLT’I (O,T;RN)XLT,? (O,T;RN) S CSH (Ul 9 UQ) ||L7}1 (07T;RN)><LT2 (O,T;RN) + 097
(5.8)
for all (vi,vs) € L™ (0, T;RN)x L™ (0, T; RY), where cg, cg > 0 are constants
and Ry = max(ry,r2).

Proof. From (5.6) and (5.7), for (vi,v2) € L™ (0, T;RN) x L™(0,T;RN))
we have
[N (01, v2) |

= || N1(v1, v2)]|

L™ (0,T;RN)x L™ (0,T;RN)

)T [ N2(v1,v2) ||

<
L™ (0,T;RN L"2(0,T;RN) =

_ —1)22
< arllfor]" ) g + e joo DR

ot [[ball, -+

1)
S (TN

T callfoal > oy + 102l 0y =
(r1—1)22

Ty (T2_1)% ro—1
+ K1+ csllvilpn + callv2|| 55 + Ko

= cllor||37" + eallvallr

By Lemma 5.2 there are the constants cs, cg, ¢y > 0, such that

1N L v2)ll 1t o vy 7t o, vy < Cs(llvallzm + [ g pra )mex(r2 ==l
—1)72 (po—1)"L
+CG(HU1||LT1 + ||,U2HLT2)max ((7“1 l)r1 (2 1)T2) Yo =
—1r1—1 max ((r1—1)72,(r2—1) 1L
- 05"(7)1’”2)‘@2)(532) "y col|(v1,v2)l 1y ><(LT2 " %) + 7.

Since . .

max ((7”1 — 1)%, (ro — 1)T—;> <max(ro — 1,71 — 1)
we obtain

R;—1

HN(Ula UQ) HLT/1 (O,T;RN)XLTé (O,T;RN) S C8H <U17 UQ) HL’ll (O,T;RN)XLTQ (O,T;RN) + Co,

for all (vy,ve) € L™ (0, T; RY) x L™2(0, T; RY), where cg, cg > 0 are constants
and Ry = max(ry, 7). O
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Remark 5.2. If we choose 71,73 > 1 be such that Ry = max(ry,rs) <r =
min(py, p2), then 71 < p1,r2 < p2 and then ¢1 < 77, g2 < 5. So we have the
embeddings

LP1(0,T;RN) x LP2(0, T; RY) — L™ (0, T;RY) x L"(0, T; RY),
L0, T;RY) x L"2(0, T;RY) — L% (0, T; RN) x L%(0, T; R"),

and then there are the constants cig, c11,c12 > 0 such that

HN(vh UQ) ”qu (0,T;RN)x L92(0,T;RN) < c1o ”N(’Ul, UQ) HLTII (0,T;RN) « L2 (0,T;RN) <

R1—1
<cio <68 H (U17 UQ) HL’l'l (0,T;RN)x L2 (0,T;RN) + CQ) <

Ri—1
< cull(vr, U2)|’L;1(07T;RN)><LP2(O,T;RN) + c12,

for all (vi,v) € LP*(0, T;RYN) x LP2(0,T;RY).
Let us remark, too, that if R; = max(ry,r2) = r = min(pi,p2) we
can choose the constants ci,ca,c3,cq4 > 0, small enough, such that c;; <

min (%, T%l) min ()\17«, )‘FR)'

As an application of Theorem 5.2 we give an existence result for problem
(1.3). This result is contained in the following theorem:

Theorem 5.3. Let 1,79 > 1, F; : [0,T] x RV x RN — RN (t,21,29)
Fi(t,x1,22) i = 1,2 be two functions measurable in t for each (x1,z2) €
RN x RN and continuous in (x1,x9) for a.e. t € [0,T)], satisfy conditions
(5.6) and (5.7) with either

(i) Ry < r and c1,ca,c3,¢4 >0, or

(ii) Ry = r and c1,c2,c3,c4 > 0, small enough, such that

c11 < min (%, T%l) min ()\17«, )‘FR)'

Then, problem (1.3) has a solution in X = W%’pl X Wj{’pQ.
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