Existence of periodic solutions for nonautonomous second order differential systems with (p_{1}, p_{2})-Laplacian using the duality mappings

Jenică Crînganu and Daniel Paşca
Communicated by George Dinca

Abstract

Some existence theorems are obtained for periodic solutions of nonautonomous second-order differential systems with (p_{1}, p_{2})-Laplacian.

Key words and phrases : $\left(p_{1}, p_{2}\right)$-Laplacian, periodic solutions, duality mapping, demicontinuous operator.

Mathematics Subject Classification (2000) : 34C25, 49J15.

1. Introduction

In the last years many authors starting with Mawhin and Willem (see [6]) proved the existence of solutions for problem

$$
\begin{align*}
& \ddot{u}(t)=\nabla F(t, u(t)) \text { a.e. } t \in[0, T], \\
& u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0, \tag{1.1}
\end{align*}
$$

under suitable conditions on the potential F (see [4], [18]-[28], [30]). Also in a series of papers (see [7]-[9]) we have generalized some of these results for the case when the potential F is just locally Lipschitz in the second variable x not continuously differentiable. Very recent (see [10] and [14]) we have considered the second order Hamiltonian inclusions systems with p-Laplacian.

In [1] the authors described a new method for proving the existence of periodic solutions for the following system

$$
\begin{align*}
& \frac{d}{d t}\left(|\dot{u}(t)|^{p-2} \dot{u}(t)\right)=|u(t)|^{p-2} u(t)+F(t, u(t)), \tag{1.2}\\
& u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{align*}
$$

where p is a real number so that $1<p<\infty, 0<T<\infty$ is a constant and $F:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$, is a measurable function in t for each $x \in \mathbb{R}^{N}$ and continuous in x for a.e. $t \in[0, T]$.

The aim of this paper is to show how the results obtained in [1] can be generalized. More exactly our results represent the extensions to secondorder differential systems with $\left(p_{1}, p_{2}\right)$-Laplacian. This type of systems have been also considered in [3], [12], [13], [15]-[17].

Consider the second order system

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(\left|\dot{u}_{1}(t)\right|^{p_{1}-2} \dot{u}_{1}(t)\right)=\left|u_{1}(t)\right|^{p_{1}-2} u_{1}(t)+F_{1}\left(t, u_{1}(t), u_{2}(t)\right), \tag{1.3}\\
\frac{d}{d t}\left(\left|\dot{u}_{2}(t)\right|^{p_{2}-2} \dot{u}_{2}(t)\right)=\left|u_{2}(t)\right|^{p_{2}-2} u_{2}(t)+F_{2}\left(t, u_{1}(t), u_{2}(t)\right) \text { a.e. } t \in[0, T], \\
u_{1}(0)-u_{1}(T)=\dot{u}_{1}(0)-\dot{u}_{1}(T)=0, \\
u_{2}(0)-u_{2}(T)=\dot{u}_{2}(0)-\dot{u}_{2}(T)=0,
\end{array}\right.
$$

where $1<p_{1}, p_{2}<\infty, T>0$, and $F_{i}:[0, T] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, i=1,2$ satisfy the following assumption (A):

- F_{i} is measurable in t for each $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$;
- F_{i} is continuous in $\left(x_{1}, x_{2}\right)$ for a.e. $t \in[0, T]$.

2. Equivalent formulation of the problem (1.3)

Let $X=W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}, X^{*}=\left(W_{T}^{1, p_{1}}\right)^{*} \times\left(W_{T}^{1, p_{2}}\right)^{*}, q_{1}=\frac{p_{1}}{p_{1}-1}, q_{2}=\frac{p_{2}}{p_{2}-1}$ and $J_{p_{1}-1, p_{2}-1}: X \rightarrow X^{*}$ defined as follows:

$$
\begin{gather*}
\left.\left\langle J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}=\left.\int_{0}^{T}\langle | u_{1}(t)\right|^{p_{1}-2} u_{1}(t), v_{1}(t)\right\rangle d t+ \tag{2.1}\\
\left.\left.+\left.\int_{0}^{T}\langle | \dot{u}_{1}(t)\right|^{p_{1}-2} \dot{u}_{1}(t), \dot{v}_{1}(t)\right\rangle d t+\left.\int_{0}^{T}\langle | u_{2}(t)\right|^{p_{2}-2} u_{2}(t), v_{2}(t)\right\rangle d t+ \\
\left.+\left.\int_{0}^{T}\langle | \dot{u}_{2}(t)\right|^{p_{2}-2} \dot{u}_{2}(t), \dot{v}_{2}(t)\right\rangle d t
\end{gather*}
$$

for all $\left(v_{1}, v_{2}\right) \in X$.
In fact we have:

$$
\begin{equation*}
J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)=\left(J_{p_{1}-1} u_{1}, J_{p_{2}-1} u_{2}\right) . \tag{2.2}
\end{equation*}
$$

From (2.2), following the estimates obtained in Section 2 of [1], we get:

$$
\begin{gathered}
\left|\left\langle J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}\right| \leq \\
\leq\left|\left\langle J_{p_{1}-1} u_{1}, v_{1}\right\rangle_{\left(W_{T}^{1, p_{1}}\right)^{*}, W_{T}^{1, p_{1}} \mid}+\left|\left\langle J_{p_{2}-1} u_{2}, v_{2}\right\rangle_{\left(W_{T}^{1, p_{2}}\right)^{*}, W_{T}^{1, p_{2}}}\right| \leq\right. \\
\leq \frac{\left\|u_{1}\right\|_{W_{T}^{1, p_{1}}}^{p_{1}}}{q_{1}}+\frac{\left\|v_{1}\right\|_{W_{T}^{1, p_{1}}}^{p_{1}}}{p_{1}}+\frac{\left\|u_{2}\right\|_{W_{T}^{1, p_{2}}}^{p_{2}}}{q_{2}}+\frac{\left\|v_{2}\right\|_{W_{T}^{1, p_{2}}}^{p_{2}}}{p_{2}},
\end{gathered}
$$

and

$$
\begin{equation*}
\left\langle J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right)\right\rangle_{X^{*}, X}=\left\|u_{1}\right\|_{W_{T}^{1, p_{1}}}^{p_{1}}+\left\|u_{2}\right\|_{W_{T}^{1, p_{2}}}^{p_{2}} . \tag{2.3}
\end{equation*}
$$

We known that (see Section 2 of [1]):

$$
\left\|J_{p_{1}-1} u_{1}\right\|_{\left(W_{T}^{1, p_{1}}\right)^{*}}=\left\|u_{1}\right\|_{W_{T}^{1, p_{1}}}^{p_{1}-1}, \quad\left\|J_{p_{2}-1} u_{2}\right\|_{\left(W_{T}^{1, p_{2}}\right)^{*}}=\left\|u_{2}\right\|_{W_{T}^{1, p_{2}}}^{p_{2}-1}
$$

From (2.2) we have

$$
\begin{align*}
\left\|J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)\right\|_{X^{*}} & =\left\|J_{p_{1}-1} u_{1}\right\|_{\left(W_{T}^{1, p_{1}}\right)^{*}}+\left\|J_{p_{2}-1} u_{2}\right\|_{\left(W_{T}^{1, p_{2}}\right)^{*}}= \tag{2.4}\\
& =\left\|u_{1}\right\|_{W_{T}^{1, p_{1}}}^{p_{1}-1}+\left\|u_{2}\right\|_{W_{T}^{1, p_{2}}}^{p_{2}-1}
\end{align*}
$$

Suppose that for any $\left(u_{1}, u_{2}\right) \in L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)$ the map

$$
t \in[0, T] \mapsto\left(F_{1}\left(t, u_{1}(t), u_{2}(t)\right), F_{2}\left(t, u_{1}(t), u_{2}(t)\right)\right)
$$

belongs to $L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right)$. We may consider the operator

$$
A: L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right)
$$

defined by

$$
\begin{equation*}
\left(A\left(u_{1}, u_{2}\right)\right)(t)=\left(F_{1}\left(t, u_{1}(t), u_{2}(t)\right), F_{2}\left(t, u_{1}(t), u_{2}(t)\right)\right) \tag{2.5}
\end{equation*}
$$

a.e. on $[0, T]$, and for all $\left(u_{1}, u_{2}\right) \in L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)$.

Let $i_{p_{1}}$ be the compact injection of $W_{T}^{1, p_{1}}$ in $L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right)$ and $i_{p_{1}}^{*}$: $L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow\left(W_{T}^{1, p_{1}}\right)^{*}$ its adjoint. Similarly, let $i_{p_{2}}$ be the compact injection of $W_{T}^{1, p_{2}}$ in $L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)$ and $i_{p_{2}}^{*}: L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow\left(W_{T}^{1, p_{2}}\right)^{*}$ its adjoint. We define

$$
i: W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}} \rightarrow L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right), \quad i\left(x_{1}, x_{2}\right)=\left(i_{p_{1}} x_{1}, i_{p_{2}} x_{2}\right)
$$

and

$$
\begin{gather*}
i^{*}: L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow\left(W_{T}^{1, p_{1}}\right)^{*} \times\left(W_{T}^{1, p_{2}}\right)^{*} \\
i^{*}\left(x_{1}^{*}, x_{2}^{*}\right)=\left(i_{p_{1}}^{*} x_{1}^{*}, i_{p_{2}}^{*} x_{2}^{*}\right)=\left(x_{1}^{*} \circ i_{p_{1}}, x_{2}^{*} \circ i_{p_{2}}\right) \tag{2.6}
\end{gather*}
$$

for all $\left(x_{1}^{*}, x_{2}^{*}\right) \in L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right)$.
Clearly, (2.6) reads as follows: for every $\left(v_{1}, v_{2}\right) \in W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$,

$$
\begin{equation*}
\left\langle i^{*}\left(x_{1}^{*}, x_{2}^{*}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}=\left\langle x_{1}^{*}, i_{p_{1}}\left(v_{1}\right)\right\rangle_{L^{q_{1}}, L^{p_{1}}}+\left\langle x_{2}^{*}, i_{p_{2}}\left(v_{2}\right)\right\rangle_{L^{q_{2}}, L^{p_{2}}} \tag{2.7}
\end{equation*}
$$

Let $\left(u_{1}, u_{2}\right) \in W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$ be a solution of equation

$$
\begin{equation*}
J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)=-\left(i^{*} A i\right)\left(u_{1}, u_{2}\right) \tag{2.8}
\end{equation*}
$$

Then, for every $\left(v_{1}, v_{2}\right) \in W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$, one has

$$
\left\langle J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}=-\left\langle\left(i^{*} A i\right)\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}=
$$

$$
\begin{gathered}
=-\left\langle i^{*}\left(A\left(i_{p_{1}} u_{1}, i_{p_{2}} u_{2}\right)\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}= \\
=-\left\langle i^{*}\left(F_{1}\left(\cdot, u_{1}(\cdot), u_{2}(\cdot)\right), F_{2}\left(\cdot, u_{1}(\cdot), u_{2}(\cdot)\right)\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}= \\
=-\left\langle F_{1}\left(\cdot, u_{1}(\cdot), u_{2}(\cdot)\right), i_{p_{1}}\left(v_{1}\right)\right\rangle_{L^{q_{1}}, L^{p_{1}}}-\left\langle F_{2}\left(\cdot, u_{1}(\cdot), u_{2}(\cdot)\right), i_{p_{2}}\left(v_{2}\right)\right\rangle_{L^{q_{2}}, L^{p_{2}}}= \\
=-\int_{0}^{T}\left[\left\langle F_{1}\left(t, u_{1}(t), u_{2}(t)\right), v_{1}(t)\right\rangle+\left\langle F_{2}\left(t, u_{1}(t), u_{2}(t)\right), v_{2}(t)\right\rangle\right] d t .
\end{gathered}
$$

Taking into account (2.1), the equality

$$
\begin{gathered}
\left\langle J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}=-\int_{0}^{T}\left[\left\langle F_{1}\left(t, u_{1}(t), u_{2}(t)\right), v_{1}(t)\right\rangle+\right. \\
\left.+\left\langle F_{2}\left(t, u_{1}(t), u_{2}(t)\right), v_{2}(t)\right\rangle\right] d t
\end{gathered}
$$

rewrites as

$$
\begin{gather*}
\left.\left.\left.\int_{0}^{T}\langle | \dot{u}_{1}(t)\right|^{p_{1}-2} \dot{u}_{1}(t), \dot{v}_{1}(t)\right\rangle d t+\left.\int_{0}^{T}\langle | \dot{u}_{2}(t)\right|^{p_{2}-2} \dot{u}_{2}(t), \dot{v}_{2}(t)\right\rangle d t= \tag{2.9}\\
\left.=-\left.\int_{0}^{T}\langle | u_{1}(t)\right|^{p_{1}-2} u_{1}(t)+F_{1}\left(t, u_{1}(t), u_{2}(t)\right), v_{1}(t)\right\rangle d t- \\
- \\
\left.-\left.\int_{0}^{T}\langle | u_{2}(t)\right|^{p_{2}-2} u_{2}(t)+F_{2}\left(t, u_{1}(t), u_{2}(t)\right), v_{2}(t)\right\rangle d t
\end{gather*}
$$

for all $\left(v_{1}, v_{2}\right) \in W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$. In particular, (2.9) is satisfied for any $\left(v_{1}, v_{2}\right)=\left(f_{1}, f_{2}\right) \in \mathcal{C}_{T}^{\infty} \times \mathcal{C}_{T}^{\infty} \subset W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$.

Consequently, if $\left(u_{1}, u_{2}\right) \in W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$ is a solution of the operator equation (2.8), then $\left(u_{1}, u_{2}\right)$ is a solution of the problem (1.3). Thus, in order to prove the existence of a solution for the problem (1.3), it would be sufficient to prove the existence of a solution for the operator equation (2.8).

It is a simple matter to see that the operator A generated by the functions $F_{1}(\cdot, \cdot, \cdot), F_{2}(\cdot, \cdot, \cdot)$ may be replaced by any operator

$$
N: L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right)
$$

defined by

$$
\begin{equation*}
\left(N\left(u_{1}, u_{2}\right)\right)(t)=\left(N_{1}\left(u_{1}(t), u_{2}(t)\right), N_{2}\left(u_{1}(t), u_{2}(t)\right)\right) . \tag{2.10}
\end{equation*}
$$

Thus we obtain the following proposition:
Proposition 2.1. Let $J_{p_{1}-1, p_{2}-1}: X \rightarrow X^{*}, 1<p_{1}, p_{2}<\infty$ be defined by (2.1) and let $N: L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times$ $L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right)$ be given. Let $i: X \rightarrow L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)$ and $i^{*}: L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow X^{*}$ defined as above.

If $\left(u_{1}, u_{2}\right) \in X$ is a solution of the operator equation

$$
\begin{equation*}
J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)=-\left(i^{*} N i\right)\left(u_{1}, u_{2}\right) \tag{2.11}
\end{equation*}
$$

then $\left(u_{1}, u_{2}\right)$ is a solution for the problem

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(\left|\dot{u}_{1}(t)\right|^{p_{1}-2} \dot{u}_{1}(t)\right)=\left|u_{1}(t)\right|^{p_{1}-2} u_{1}(t)+N_{1}\left(u_{1}(t), u_{2}(t)\right), \tag{2.12}\\
\frac{d}{d t}\left(\left|\dot{u}_{2}(t)\right|^{p_{2}-2} \dot{u}_{2}(t)\right)=\left|u_{2}(t)\right|^{p_{2}-2} u_{2}(t)+N_{2}\left(u_{1}(t), u_{2}(t)\right) \text { a.e. } t \in[0, T], \\
u_{1}(0)-u_{1}(T)=\dot{u}_{1}(0)-\dot{u}_{1}(T)=0, \\
u_{2}(0)-u_{2}(T)=\dot{u}_{2}(0)-\dot{u}_{2}(T)=0 .
\end{array}\right.
$$

3. Preliminary results

In [2] (see Corollary 1) the authors have proved the following abstract result:
Theorem 3.1. Let X be a reflexive real Banach space, $T: X \rightarrow X^{*}$ be a monotone, hemicontinuous, coercive operator, satisfying condition $(S)_{2}$ and let $K: X \rightarrow X^{*}$ be compact. If there is a constant $k>0$ such that $T v=K u$ and $\|u\| \leq k$ implies $\|v\| \leq k$, then the equation $T u=K u$ has a solution $u \in X$, with $\|u\| \leq k$.

We observe that in (2.11), the right-hand operator $K=-i^{*} N i$ is compact and therefore equation (2.11) reduces to the case $T\left(u_{1}, u_{2}\right)=K\left(u_{1}, u_{2}\right)$ with $T\left(u_{1}, u_{2}\right)=J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)$ and $K: X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}$ compact.

In order to be able to apply the above abstract result to solve our problem (2.11) we start to list some definitions and useful results.

Definition 3.1. Let X be a real Banach space and X^{*} denotes the dual space of X. An operator $T: X \rightarrow X^{*}$ is

- monotone if:

$$
\langle T u-T v, u-v\rangle \geq 0 \text { for all } u, v \in X,
$$

- hemicontinuous if:

$$
\langle T(u+\lambda v), w\rangle \rightarrow\langle T u, w\rangle \text { as } \lambda \rightarrow 0 \text { for all } u, v, w \in X
$$

- coercive if:

$$
\frac{\langle T u, u\rangle}{\|u\|} \rightarrow \infty \text { as }\|u\| \rightarrow \infty
$$

- demicontinuous if:

$$
u_{n} \rightarrow u \text { implies } T u_{n} \rightharpoonup T u \text { as } n \rightarrow \infty
$$

Definition 3.2. The operator $T: X \rightarrow X^{*}$ is said to satisfy condition $(S)_{2}$ iff, as $n \rightarrow \infty$, the following holds:

$$
u_{n} \rightharpoonup u, T u_{n} \rightarrow T u \text { implies } u_{n} \rightarrow u .
$$

We have denoted by " \rightarrow " (respectively " \rightarrow ") the convergence in the weak (respectively strong) topology.

Proposition 3.1. If $T_{1}: X_{1} \rightarrow X_{1}^{*}$ and $T_{2}: X_{2} \rightarrow X_{2}^{*}$ are monotone, hemicontinuous, coercive operators which satisfy condition $(S)_{2}$ then T : $X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}$ given by $T\left(u_{1}, u_{2}\right)=\left(T_{1} u_{1}, T_{2} u_{2}\right)$ has the same properties.

Proof. Indeed we have

$$
\begin{gathered}
\left\langle T\left(u_{1}, u_{2}\right)-T\left(v_{1}, v_{2}\right),\left(u_{1}, u_{2}\right)-\left(v_{1}, v_{2}\right)\right\rangle= \\
=\left\langle\left(T_{1} u_{1}, T_{2} u_{2}\right)-\left(T_{1} v_{1}, T_{2} v_{2}\right),\left(u_{1}-v_{1}, u_{2}-v_{2}\right)\right\rangle= \\
=\left\langle\left(T_{1} u_{1}-T_{1} v_{1}, T_{2} u_{2}-T_{2} v_{2}\right),\left(u_{1}-v_{1}, u_{2}-v_{2}\right)\right\rangle= \\
=\left\langle T_{1} u_{1}-T_{1} v_{1}, u_{1}-v_{1}\right\rangle+\left\langle T_{2} u_{2}-T_{2} v_{2}, u_{2}-v_{2}\right\rangle \geq 0,
\end{gathered}
$$

hence T is monotone.
If $T_{1}: X_{1} \rightarrow X_{1}^{*}$ and $T_{2}: X_{2} \rightarrow X_{2}^{*}$ are hemicontinuous operators then we have

$$
\begin{gathered}
\left\langle T\left(\left(u_{1}, u_{2}\right)+\lambda\left(v_{1}, v_{2}\right)\right),\left(w_{1}, w_{2}\right)\right\rangle=\left\langle T\left(u_{1}+\lambda v_{1}, u_{2}+\lambda v_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle= \\
=\left\langle\left(T_{1}\left(u_{1}+\lambda v_{1}\right), T_{2}\left(u_{2}+\lambda v_{2}\right)\right),\left(w_{1}, w_{2}\right)\right\rangle= \\
=\left\langle T_{1}\left(u_{1}+\lambda v_{1}\right), w_{1}\right\rangle+\left\langle T_{2}\left(u_{2}+\lambda v_{2}\right), w_{2}\right\rangle \longrightarrow^{\lambda \rightarrow 0}\left\langle T_{1} u_{1}, w_{1}\right\rangle+\left\langle T_{2} u_{2}, w_{2}\right\rangle= \\
=\left\langle\left(T_{1} u_{1}, T_{2} u_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle=\left\langle T\left(u_{1}, u_{2}\right),\left(w_{1}, w_{2}\right)\right\rangle .
\end{gathered}
$$

If $T_{1}: X_{1} \rightarrow X_{1}^{*}$ and $T_{2}: X_{2} \rightarrow X_{2}^{*}$ are coercive then we have:

$$
\begin{aligned}
& \frac{\left\langle T\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right)\right\rangle}{\left\|\left(u_{1}, u_{2}\right)\right\|}=\frac{\left\langle T_{1} u_{1}, u_{1}\right\rangle+\left\langle T_{2} u_{2}, u_{2}\right\rangle}{\left\|u_{1}\right\|+\left\|u_{2}\right\|}= \\
= & \frac{\left\langle T_{1} u_{1}, u_{1}\right\rangle}{\left\|u_{1}\right\|} \frac{\left\|u_{1}\right\|}{\left\|u_{1}\right\|+\left\|u_{2}\right\|}+\frac{\left\langle T_{2} u_{2}, u_{2}\right\rangle}{\left\|u_{2}\right\|} \frac{\left\|u_{2}\right\|}{\left\|u_{1}\right\|+\left\|u_{2}\right\|} .
\end{aligned}
$$

If $\left\|u_{1}\right\| \rightarrow \infty$ and $\left\|u_{2}\right\|$ is bounded, then

$$
\begin{gathered}
\frac{\left\langle T_{1} u_{1}, u_{1}\right\rangle}{\left\|u_{1}\right\|} \rightarrow \infty, \frac{\left\|u_{1}\right\|}{\left\|u_{1}\right\|+\left\|u_{2}\right\|} \rightarrow 1, \frac{\left\langle T_{2} u_{2}, u_{2}\right\rangle}{\left\|u_{2}\right\|} \text { is bounded from below, } \\
\frac{\left\|u_{2}\right\|}{\left\|u_{1}\right\|+\left\|u_{2}\right\|} \rightarrow 0 \text {, and then } \frac{\left\langle T\left(u_{1}, u_{2}\right),\left(u_{1}, u_{2}\right)\right\rangle}{\left\|\left(u_{1}, u_{2}\right)\right\|} \rightarrow \infty
\end{gathered}
$$

Similar if $\left\|u_{2}\right\| \rightarrow \infty$ and $\left\|u_{1}\right\|$ is bounded. If $\left\|u_{1}\right\| \rightarrow \infty$ and $\left\|u_{2}\right\| \rightarrow \infty$ (passing to a subsequences, if necessary) we use the inequality

$$
\lambda a+(1-\lambda) b \geq \min (a, b), \text { for } a, b \in \mathbb{R}, \lambda \in[0,1]
$$

If $T_{1}: X_{1} \rightarrow X_{1}^{*}$ and $T_{2}: X_{2} \rightarrow X_{2}^{*}$ satisfy condition $(S)_{2}$ then we have:

$$
\left(u_{1 n}, u_{2 n}\right) \rightharpoonup\left(u_{1}, u_{2}\right) \Rightarrow u_{i n} \rightharpoonup u_{i}, i=1,2
$$

and

$$
T\left(u_{1 n}, u_{2 n}\right) \rightarrow T\left(u_{1}, u_{2}\right) \Rightarrow T_{i} u_{i n} \rightarrow T_{i} u_{i}, i=1,2
$$

and hence $u_{i n} \rightarrow u_{i}, i=1,2$ which implies $\left(u_{1 n}, u_{2 n}\right) \rightarrow\left(u_{1}, u_{2}\right)$.

4. Duality mappings

Let $i=1,2,\left(X_{i},\|\cdot\|_{X_{i}}\right)$ be real Banach spaces, X_{i}^{*} the corresponding dual spaces and $\langle\cdot, \cdot\rangle$ the duality between X_{i}^{*} and X_{i}. Let $\varphi_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be gauge functions, such that φ_{i} are continuous, strictly increasing, $\varphi_{i}(0)=0$ and $\varphi_{i}(t) \rightarrow \infty$ as $t \rightarrow \infty$. The duality mapping corresponding to the gauge function φ_{i} is the set valued mapping $J_{\varphi_{i}}: X_{i} \rightarrow 2^{X_{i}^{*}}$, defined by

$$
J_{\varphi_{i}} x=\left\{x_{i}^{*} \in X_{i}^{*} \mid\left\langle x_{i}^{*}, x_{i}\right\rangle=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\left\|x_{i}\right\|_{X_{i}},\left\|x_{i}^{*}\right\|_{X_{i}^{*}}=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\right\} .
$$

If X_{i} are smooth, then $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ is defined by

$$
J_{\varphi_{i}} 0=0, \quad J_{\varphi_{i}} x_{i}=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\| \|_{X_{i}}^{\prime}\left(x_{i}\right), \quad x_{i} \neq 0,
$$

and the following metric properties being consequent:

$$
\begin{equation*}
\left\|J_{\varphi_{i}} x_{i}\right\|_{X_{i}^{*}}=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right), \quad\left\langle J_{\varphi_{i}} x, x\right\rangle=\varphi_{i}\left(\left\|x_{i}\right\|_{X_{i}}\right)\left\|x_{i}\right\|_{X_{i}} \tag{4.1}
\end{equation*}
$$

Now we can define $J_{\varphi_{1}, \varphi_{2}}: X_{1} \times X_{2} \rightarrow 2^{X_{1}^{*}} \times 2^{X_{2}^{*}}$ by $J_{\varphi_{1}, \varphi_{2}}\left(x_{1}, x_{2}\right)=$ ($J_{\varphi_{1}} x_{1}, J_{\varphi_{2}} x_{2}$). From (4.1) we get

$$
\begin{gather*}
\left\|J_{\varphi_{1}, \varphi_{2}}\left(x_{1}, x_{2}\right)\right\|_{X_{1}^{*} \times X_{2}^{*}}=\left\|J_{\varphi_{1}} x_{1}\right\|_{X_{1}^{*}}+\left\|J_{\varphi_{2}} x_{2}\right\|_{X_{2}^{*}}= \tag{4.2}\\
=\varphi_{1}\left(\left\|x_{1}\right\|_{X_{1}}\right)+\varphi_{2}\left(\left\|x_{2}\right\|_{X_{2}}\right), \\
\left\langle J_{\varphi_{1}, \varphi_{2}}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle=\left\langle J_{\varphi_{1}} x_{1}, x_{1}\right\rangle+\left\langle J_{\varphi_{2}} x_{2}, x_{2}\right\rangle= \tag{4.3}\\
=\varphi_{1}\left(\left\|x_{1}\right\|_{X_{1}}\right)\left\|x_{1}\right\|_{X_{1}}+\varphi_{2}\left(\left\|x_{2}\right\|_{X_{2}}\right)\left\|x_{2}\right\|_{X_{2}} .
\end{gather*}
$$

For our aim in what follows we will consider the particular case when $J_{\varphi_{i}}: X_{i} \rightarrow X_{i}^{*}$ are the duality mappings, assumed to be single-valued, corresponding to the gauge functions $\varphi_{1}(t)=t^{p_{1}-1}, \varphi_{2}(t)=t^{p_{2}-1}, 1<$ $p_{1}, p_{2}<\infty$. In this case we denote $J_{p_{1}-1, p_{2}-1}: X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}$ given by $J_{p_{1}-1, p_{2}-1}=\left(J_{p_{1}-1}, J_{p_{2}-1}\right)$.

Note that the hypothesis on $J_{\varphi_{i}}$ to be single-valued mappings is satisfied iff X_{i} are smooth (iff X_{i} are with G-differentiable norms, iff X_{i}^{*} are strictly convex).

Let i_{1} and i_{2} the compactly embedded injections of X_{1}, X_{2} in Z_{1} and Z_{2} respectively:

$$
\begin{align*}
& \left\|i_{1}\left(u_{1}\right)\right\|_{Z_{1}} \leq C_{Z_{1}}\left\|u_{1}\right\|_{X_{1}} \text { for all } u_{1} \in X_{1}, \tag{4.4}\\
& \left\|i_{2}\left(u_{2}\right)\right\|_{Z_{2}} \leq C_{Z_{2}}\left\|u_{2}\right\|_{X_{2}} \text { for all } u_{2} \in X_{2} .
\end{align*}
$$

We introduce

$$
\begin{aligned}
& \lambda_{1}=\inf \left\{\frac{\left\|u_{1}\right\|_{X_{1}}^{q}}{\left\|i_{1}\left(u_{1}\right)\right\|_{Z_{1}}^{q}}: \quad u_{1} \in X_{1} \backslash\{0\}\right\}>0, \\
& \lambda_{2}=\inf \left\{\frac{\left\|u_{2}\right\|_{X_{2}}^{p}}{\left\|i_{2}\left(u_{2}\right)\right\|_{Z_{2}}^{p}}: \quad u_{2} \in X_{2} \backslash\{0\}\right\}>0 .
\end{aligned}
$$

Proposition 4.1. λ_{1}, λ_{2} are attained and $\lambda_{1}^{-1 / q}$ and $\lambda_{2}^{-1 / p}$ are the best constants $C_{Z_{1}}$ and $C_{Z_{2}}$, respectively in the writing of the embeddings of X_{1} into Z_{1} and X_{2} into Z_{2}, respectively.

Proof. See the proof of Proposition 4 in [2].

5. Existence result for equation $J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)=-\left(i^{*} N i\right)\left(u_{1}, u_{2}\right)$

Since $J_{p_{1}-1, p_{2}-1}$ satisfies the metric relations (2.3), (2.4) it follows that, for any $\left(u_{1}, u_{2}\right) \in W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}, J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right) \in J_{\varphi_{1}, \varphi_{2}}\left(u_{1}, u_{2}\right)=$ ($J_{\varphi_{1}} u_{1}, J_{\varphi_{2}} u_{2}$), where $J_{\varphi_{i}}, i=1,2$ designates (eventually multivalued) duality mapping on $W_{T}^{1, p_{i}}$ corresponding to the gauge function $\varphi_{i}(t)=t^{p_{i}-1}$, $1<p_{i}<\infty, t \geq 0$. But, is well known that $W_{T}^{1, p}$ with $1<p<\infty$ is a smooth Banach space (see for example Theorem 4.1 in [1]) which implies that any duality mapping on $W_{T}^{1, p}, 1<p<\infty$ is single valued. Consequently, $J_{p_{i}-1}: W_{T}^{1, p_{i}} \rightarrow\left(W_{T}^{1, p_{i}}\right)^{*}, i=1,2$ involved in the definition of $J_{p_{1}-1, p_{2}-1}$ are just the duality mappings corresponding to the gauge functions $\varphi_{i}(t)=t^{p_{i}-1}, i=1,2$.

Theorem 5.1. If $1<p_{i}<\infty, i=1,2$ then:
a) the spaces $\left(W_{T}^{1, p_{i}},\|\cdot\|_{W_{T}^{1, p_{i}}}\right)$, are uniformly convex and smooth;
b) the duality mappings on $W_{T}^{1, p_{i}}$ corresponding to the gauge function $\varphi_{i}(t)=t^{p_{i}-1}, t \geq 0$ are single valued, $\left(J_{p_{i}-1}: W_{T}^{1, p_{i}} \rightarrow\left(W_{T}^{1, p_{i}}\right)^{*}\right)$
satisfies condition $(S)_{2}$ and $J_{p_{1}-1, p_{2}-1}: X \rightarrow X^{*}$ is defined as follows: if $\left(u_{1}, u_{2}\right) \in X$, then

$$
\begin{gather*}
\left.\left\langle J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X^{*}, X}=\left.\int_{0}^{T}\langle | u_{1}(t)\right|^{p_{1}-2} u_{1}(t), v_{1}(t)\right\rangle d t+ \\
\left.\left.+\left.\int_{0}^{T}\langle | \dot{u}_{1}(t)\right|^{p_{1}-2} \dot{u}_{1}(t), \dot{v}_{1}(t)\right\rangle d t+\left.\int_{0}^{T}\langle | u_{2}(t)\right|^{p_{2}-2} u_{2}(t), v_{2}(t)\right\rangle d t+ \tag{5.1}\\
\left.\quad+\left.\int_{0}^{T}\langle | \dot{u}_{2}(t)\right|^{p_{2}-2} \dot{u}_{2}(t), \dot{v}_{2}(t)\right\rangle d t
\end{gather*}
$$

for all $\left(v_{1}, v_{2}\right) \in X$.
Proof. See Theorem 4.1 in [1] and we use (4.1).
Now, we need the following result:
Lemma 5.1. Let $p_{1}>p_{2}>1$ and $a, b>0$ such that $a^{p_{1}}+b^{p_{2}} \leq K(a+b)$, where $K>0$. Then $a+b \leq K_{1}$, where

$$
K_{1}=\max \left(1+\max \left((2 K)^{\frac{1}{p_{2}-1}},(2 K)^{\frac{1}{p_{2}}}\right), 2 K^{\frac{1}{p_{2}-1}}\right) .
$$

Proof. Case 1. If $a \geq 1$ then $a^{p_{2}}+b^{p_{2}} \leq a^{p_{1}}+b^{p_{2}} \leq K(a+b)$, hence $a^{p_{2}}+b^{p_{2}} \leq K(a+b)$, and we get

$$
(a+b)^{p_{2}} \leq 2^{p_{2}-1}\left(a^{p_{2}}+b^{p_{2}}\right) \leq 2^{p_{2}-1} K(a+b) .
$$

Finally $a+b \leq 2 K^{\frac{1}{p_{2}-1}}$.
Case 2. If $a<1$ then $b^{p_{2}} \leq a^{p_{1}}+b^{p_{2}} \leq K(a+b) \leq K(1+b)$, and we get $b^{p_{2}} \leq K b+K$.
If $b \geq 1$ then $b^{p_{2}} \leq 2 K b$, from where $b \leq(2 K)^{\frac{1}{p_{2}-1}}$.
If $b<1$ then $b^{p_{2}}<2 K$, from where $b<(2 K)^{\frac{1}{p_{2}}}$, and hence one has $b \leq$ $\max \left((2 K)^{\frac{1}{p_{2}-1}},(2 K)^{\frac{1}{p_{2}}}\right)$. Finally we get $a+b \leq 1+\max \left((2 K)^{\frac{1}{p_{2}-1}},(2 K)^{\frac{1}{p_{2}}}\right)$.

Consequently $a+b \leq K_{1}=\max \left(1+\max \left((2 K)^{\frac{1}{p_{2}-1}},(2 K)^{\frac{1}{p_{2}}}\right), 2 K^{\frac{1}{p_{2}-1}}\right)$.
Remark 5.1. The case $p_{2}>p_{1}>1$ can be done similarly.
Theorem 5.2. Let $i_{p_{1}}$ be the compact injection of $W_{T}^{1, p_{1}}$ in $L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right)$ and $i_{p_{1}}^{*}: L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow\left(W_{T}^{1, p_{1}}\right)^{*}$ its adjoint. Similarly, let $i_{p_{2}}$ be the compact injection of $W_{T}^{1, p_{2}}$ in $L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)$ and $i_{p_{2}}^{*}: L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow\left(W_{T}^{1, p_{2}}\right)^{*}$
its adjoint. Let $J_{p_{1}-1, p_{2}-1}$ (given by (2.1)) which can be defined using the duality mappings on $W_{T}^{p_{i}-1}, i=1,2$ corresponding to the gauge functions $\varphi_{i}(t)=t^{p_{i}-1}, t \geq 0$.

Suppose that

$$
N: L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right),
$$

$N=\left(N_{1}, N_{2}\right)$, is demicontinuous operator which satisfy the growth condition

$$
\begin{equation*}
\left\|N\left(u_{1}, u_{2}\right)\right\|_{L^{q_{1}} \times L^{q_{2}}} \leq c_{1}\left\|\left(u_{1}, u_{2}\right)\right\|_{L^{p_{1}} \times L^{p_{2}}}^{r-1}+c_{2} \text { for all }\left(u_{1}, u_{2}\right) \in L^{p_{1}} \times L^{p_{2}}, \tag{5.2}
\end{equation*}
$$

where $c_{1}, c_{2} \geq 0, c_{1}<\min \left(\frac{1}{2}, \frac{1}{2^{r-1}}\right) \min \left(\lambda_{1 r}, \lambda_{1 R}^{\frac{r}{R}}\right)$, with $r=\min \left(p_{1}, p_{2}\right), R=$ $\max \left(p_{1}, p_{2}\right)$,

$$
\lambda_{1 p_{1}}=\inf \left\{\left.\frac{\left\|u_{1}\right\|_{W_{T}^{1, p_{1}}}^{p_{1}}}{\left\|i_{1}\left(u_{1}\right)\right\|_{L^{p_{1}}}^{p_{1}}} \right\rvert\, u_{1} \neq 0\right\}, \quad \lambda_{1 p_{2}}=\inf \left\{\left.\frac{\left\|u_{2}\right\|_{W_{T}^{1, p_{2}}}^{p_{2}}}{\left\|i_{2}\left(u_{2}\right)\right\|_{L^{p_{2}}}^{p_{2}}} \right\rvert\, u_{2} \neq 0\right\} .
$$

Then, the equation

$$
\begin{equation*}
J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)=-\left(i^{*} N i\right)\left(u_{1}, u_{2}\right) \tag{5.3}
\end{equation*}
$$

has a solution in $X=W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$.
Consequently, the problem

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(\left|\dot{u}_{1}(t)\right|^{p_{1}-2} \dot{u}_{1}(t)\right)=\left|u_{1}(t)\right|^{p_{1}-2} u_{1}(t)+N_{1}\left(u_{1}(t), u_{2}(t)\right), \tag{5.4}\\
\frac{d}{d t}\left(\left|\dot{u}_{2}(t)\right|^{p_{2}-2} \dot{u}_{2}(t)\right)=\left|u_{2}(t)\right|^{p_{2}-2} u_{2}(t)+N_{2}\left(u_{1}(t), u_{2}(t)\right) \text { a.e. } t \in[0, T], \\
u_{1}(0)-u_{1}(T)=\dot{u}_{1}(0)-\dot{u}_{1}(T)=0 \\
u_{2}(0)-u_{2}(T)=\dot{u}_{2}(0)-\dot{u}_{2}(T)=0 .
\end{array}\right.
$$

has a solution in $X=W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$.
Proof. It is standard that $J_{p_{1}-1}$ and $J_{p_{2}-1}$ are monotone, demicontinuous (hence, hemicontinuous) and coercive. According with Proposition 2.1 $J_{p_{1}-1, p_{2}-1}$ is monotone, hemicontinuous and coercive. Therefore, in virtue of Theorem 5.2, $J_{p_{1}-1, p_{2}-1}$ has all properties of T in Theorem 3.1. On the other hand, $K=-i^{*} N i: X_{1} \times X_{2} \rightarrow X_{1}^{*} \times X_{2}^{*}$ is compact. Let us prove that there is some $k>0$ such that $J_{p_{1}-1, p_{2}-1}\left(v_{1}, v_{2}\right)=-\left(i^{*} N i\right)\left(u_{1}, u_{2}\right)$ and $\left\|\left(u_{1}, u_{2}\right)\right\|_{X_{1} \times X_{2}} \leq k$ implies $\left\|\left(v_{1}, v_{2}\right)\right\|_{X_{1} \times X_{2}} \leq k$.

For, let $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in X_{1} \times X_{2}$ be with

$$
J_{p_{1}-1, p_{2}-1}\left(v_{1}, v_{2}\right)=-\left(i^{*} N i\right)\left(u_{1}, u_{2}\right)
$$

Then, by the definitions of $J_{p_{1}-1, p_{2}-1}$ and (4.4), (5.2), we have

$$
\begin{aligned}
& \left\langle J_{p_{1}-1, p_{2}-1}\left(v_{1}, v_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X_{1}^{*} \times X_{2}^{*}, X_{1} \times X_{2}}= \\
= & \left\langle\left(J_{p_{1}-1} v_{1}, J_{p_{2}-1} v_{2}\right),\left(v_{1}, v_{2}\right)\right\rangle_{X_{1}^{*} \times X_{2}^{*}, X_{1} \times X_{2}}=
\end{aligned}
$$

$$
\begin{gathered}
=\left\langle J_{p_{1}-1} v_{1}, v_{1}\right\rangle_{X_{1}^{*} \times X_{1}}+\left\langle J_{p_{2}-1} v_{2}, v_{2}\right\rangle_{X_{2}^{*} \times X_{2}}=\left\|v_{1}\right\|_{X_{1}}^{p_{1}}+\left\|v_{2}\right\|_{X_{2}}^{p_{2}}= \\
=\left\langle-N\left(i\left(u_{1}, u_{2}\right)\right), i\left(v_{1}, v_{2}\right)\right\rangle_{Z_{1}^{*} \times Z_{2}^{*}, Z_{1} \times Z_{2}} \leq \\
\leq\left\|N\left(i\left(u_{1}, u_{2}\right)\right)\right\|_{Z_{1}^{*} \times Z_{2}^{*}}\left\|i\left(v_{1}, v_{2}\right)\right\|_{Z_{1} \times Z_{2}} \leq \\
\leq\left[c_{1}\left\|i\left(u_{1}, u_{2}\right)\right\|_{Z_{1} \times Z_{2}}^{r-1}+c_{2}\right]\left\|i\left(v_{1}, v_{2}\right)\right\|_{Z_{1} \times Z_{2}}= \\
=\left[c _ { 1 } \| (i _ { 1 } (u _ { 1 }) , i _ { 2 } (u _ { 2 }) \| _ { Z _ { 1 } \times Z _ { 2 } } ^ { r - 1 } + c _ { 2 }] \| \left(i_{1}\left(v_{1}\right), i_{2}\left(v_{2}\right) \|_{Z_{1} \times Z_{2}}=\right.\right. \\
=\left[c_{1}\left(\left\|i_{1}\left(u_{1}\right)\right\|_{Z_{1}}+\left\|i_{2}\left(u_{2}\right)\right\|_{Z_{2}}\right)^{r-1}+c_{2}\right]\left[\left\|i_{1}\left(v_{1}\right)\right\|_{Z_{1}}+\left\|i_{2}\left(v_{2}\right)\right\|_{Z_{2}}\right] \leq \\
\leq\left[c_{1}\left(C_{Z_{1}}\left\|u_{1}\right\|_{X_{1}}+C_{Z_{2}}\left\|u_{2}\right\|_{X_{2}}\right)^{r-1}+c_{2}\right]\left[C_{Z_{1}}\left\|v_{1}\right\|_{X_{1}}+C_{Z_{2}}\left\|v_{2}\right\|_{X_{2}}\right] .
\end{gathered}
$$

For the best constants $C_{Z_{1}}=\lambda_{1 p_{1}}^{-1 / p_{1}}, C_{Z_{2}}=\lambda_{1 p_{2}}^{-1 / p_{2}}$, we derive:

$$
\begin{gathered}
\left\|v_{1}\right\|_{X_{1}}^{p_{1}}+\left\|v_{2}\right\|_{X_{2}}^{p_{2}} \leq\left[c_{1}\left(\lambda_{1 p_{1}}^{-1 / p_{1}}\left\|u_{1}\right\|_{X_{1}}+\lambda_{1 p_{2}}^{-1 / p_{2}}\left\|u_{2}\right\|_{X_{2}}\right)^{r-1}+c_{2}\right] \\
{\left[\lambda_{1 p_{1}}^{-1 / p_{1}}\left\|v_{1}\right\|_{X_{1}}+\lambda_{1 p_{2}}^{-1 / p_{2}}\left\|v_{2}\right\|_{X_{2}}\right] \leq} \\
\leq\left[c_{1} \Lambda^{r-1}\left(\left\|u_{1}\right\|_{X_{1}}+\left\|u_{2}\right\|_{X_{2}}\right)^{r-1}+c_{2}\right] \Lambda\left(\left\|v_{1}\right\|_{X_{1}}+\left\|v_{2}\right\|_{X_{2}}\right)
\end{gathered}
$$

where $\Lambda=\max \left(\lambda_{1 p_{1}}^{-1 / p_{1}}, \lambda_{1 p_{2}}^{-1 / p_{2}}\right)$. We get:

$$
\begin{aligned}
\left\|v_{1}\right\|_{X_{1}}^{p_{1}}+\left\|v_{2}\right\|_{X_{2}}^{p_{2}} & \leq\left[c_{1} \Lambda^{r}\left\|\left(u_{1}, u_{2}\right)\right\|_{X_{1} \times X_{2}}^{r-1}+c_{2} \Lambda\right]\left\|\left(v_{1}, v_{2}\right)\right\|_{X_{1} \times X_{2}} \leq \\
& \leq\left[c_{1} \Lambda^{r} k^{r-1}+c_{2} \Lambda\right]\left\|\left(v_{1}, v_{2}\right)\right\|_{X_{1} \times X_{2}}
\end{aligned}
$$

With $K=c_{1} \Lambda^{r} k^{r-1}+c_{2} \Lambda$ we can apply Lemma 5.1 and we get (if $p_{1}>$ $p_{2}>1$):

$$
\begin{gathered}
\left\|\left(v_{1}, v_{2}\right)\right\|_{X_{1} \times X_{2}}=\left\|v_{1}\right\|_{X_{1}}+\left\|v_{2}\right\|_{X_{2}} \leq \\
\leq \max \left(1+\max \left((2 K)^{\frac{1}{p_{2}-1}},(2 K)^{\frac{1}{p_{2}}}\right), 2 K^{\frac{1}{p_{2}-1}}\right) .
\end{gathered}
$$

Taking into account that $r=\min \left(p_{1}, p_{2}\right)$, it is easy to see that we can choose $k>0$ such that

$$
K_{1}=\max \left(1+\max \left((2 K)^{\frac{1}{p_{2}-1}},(2 K)^{\frac{1}{p_{2}}}\right), 2 K^{\frac{1}{p_{2}-1}}\right) \leq k .
$$

Indeed we have the following cases:
(a) $K_{1}=2 K^{\frac{1}{p_{2}-1}}$. Now, because $p_{1}>p_{2}$ and

$$
c_{1}<\min \left(\frac{1}{2}, \frac{1}{2^{r-1}}\right) \min \left(\lambda_{1 r}, \lambda_{1 R}^{\frac{r}{R}}\right)
$$

we have

$$
c_{1}<\frac{1}{2^{p_{2}-1}} \min \left(\lambda_{1 p_{2}}, \lambda_{1 p_{1}}^{p_{2} / p_{1}}\right) .
$$

Furthermore $c_{1} 2^{p_{2}-1} \frac{1}{\min \left(\lambda_{1 p_{2}}, \lambda_{1 p_{1}}^{p_{2} / p_{1}}\right)}<1$ that is

$$
c_{1} 2^{p_{2}-1} \max \left(\lambda_{1 p_{2}}^{-1}, \lambda_{1 p_{1}}^{-p_{2} / p_{1}}\right)<1 \text { so that } c_{1} 2^{p_{2}-1} \Lambda^{p_{2}}<1
$$

Consequently

$$
t^{p_{2}-1}-2^{p_{2}-1}\left(c_{1} \Lambda^{p_{2}} t^{p_{2}-1}+c_{2} \Lambda\right) \rightarrow \infty \text { as } t \rightarrow \infty .
$$

Hence, there is some $k>0$ such that

$$
k^{p_{2}-1}-2^{p_{2}-1}\left(c_{1} \Lambda^{p_{2}} k^{p_{2}-1}+c_{2} \Lambda\right) \geq 0
$$

which implies $2\left(c_{1} \Lambda^{p_{2}} k^{p_{2}-1}+c_{2} \Lambda\right)^{\frac{1}{p_{2}-1}} \leq k$, so that $K_{1} \leq k$, and then $\left\|\left(v_{1}, v_{2}\right)\right\|_{X_{1} \times X_{2}} \leq k$.
(b) $K_{1}=1+(2 K)^{\frac{1}{p_{2}-1}}$. In this case, because $c_{1}<\frac{1}{2} \min \left(\lambda_{1 p_{2}}, \lambda_{1 p_{1}}^{p_{2} / p_{1}}\right)$, we have $2 c_{1} \Lambda^{p_{2}}<1$ and then

$$
t-\left(2\left(c_{1} \Lambda^{p_{2}} t^{p_{2}-1}+c_{2} \Lambda\right)\right)^{\frac{1}{p_{2}-1}}-1 \rightarrow \infty \text { as } t \rightarrow \infty
$$

Hence, there is some $k>0$ such that

$$
k-\left(2\left(c_{1} \Lambda^{r} k^{p_{2}-1}+c_{2} \Lambda\right)\right)^{\frac{1}{p_{2}-1}}-1 \geq 0
$$

which implies

$$
1+\left(2\left(c_{1} \Lambda^{r} k^{p_{2}-1}+c_{2} \Lambda\right)\right)^{\frac{1}{p_{2}-1}} \leq k
$$

so that $K_{1} \leq k$, and then $\left\|\left(v_{1}, v_{2}\right)\right\|_{X_{1} \times X_{2}} \leq k$.
(c) $K_{1}=1+(2 K)^{\frac{1}{p_{2}}}$. In this case we have

$$
t-\left(2\left(c_{1} \Lambda^{p_{2}} t^{p_{2}-1}+c_{2} \Lambda\right)\right)^{\frac{1}{p_{2}}}-1 \rightarrow \infty \text { as } t \rightarrow \infty
$$

because $\frac{p_{2}-1}{p_{2}}<1$, and we conclude as in (b).

The case $p_{2}>p_{1}>1$ can be done similarly.
Theorem 3.1 now applies by considering $X=X_{1} \times X_{2}, T=J_{p_{1}-1, p_{2}-1}$ and $K=-i^{*} N i$.

Taking into account Theorem 5.2 we obtain
Corollary 5.1. Assume
(i) $J_{p_{1}-1}$ and $J_{p_{2}-1}$ satisfy condition $(S)_{2}$ (which implies according with Proposition 2.1 that $J_{p_{1}-1, p_{2}-1}$ satisfies condition $\left.(S)_{2}\right)$;
(ii) $N: Z_{1} \times Z_{2} \rightarrow Z_{1}^{*} \times Z_{2}^{*}$ is a demicontinuous operator satisfying the growth condition

$$
\begin{equation*}
\left\|N\left(v_{1}, v_{2}\right)\right\|_{Z_{1}^{*} \times Z_{2}^{*}} \leq c_{1}\left\|\left(v_{1}, v_{2}\right)\right\|_{Z_{1} \times Z_{2}}^{s-1}+c_{2} \text { for all }\left(v_{1}, v_{2}\right) \in i\left(X_{1} \times X_{2}\right) \tag{5.5}
\end{equation*}
$$

where $s<\min \left(p_{1}, p_{2}\right)$ and $c_{1}, c_{2} \geq 0$.
Then the equation $J_{p_{1}-1, p_{2}-1}\left(u_{1}, u_{2}\right)=N\left(u_{1}, u_{2}\right)$ has a solution in $X_{1} \times X_{2}$.
We need the following result:
Lemma 5.2. Let $r_{1}, r_{2}, k_{1}, k_{2}>0$. Then there are the constants $k_{3}, k_{4}>0$ such that

$$
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{3}(a+b)^{\max \left(r_{1}, r_{2}\right)}+k_{4}, \text { for all } a, b>0 .
$$

Proof. If $a, b \geq 1$ we have

$$
\begin{gathered}
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{1} a^{\max \left(r_{1}, r_{2}\right)}+k_{2} b^{\max \left(r_{1}, r_{2}\right)} \leq \\
\leq \max \left(k_{1}, k_{2}\right)\left(a^{\max \left(r_{1}, r_{2}\right)}+b^{\max \left(r_{1}, r_{2}\right)}\right) \leq \max \left(k_{1}, k_{2}\right)(a+b)^{\max \left(r_{1}, r_{2}\right)},
\end{gathered}
$$

and the proof is ready with $k_{3}=\max \left(k_{1}, k_{2}\right)$ and $k_{4}>0$, arbitrary.
If $a, b<1$ then

$$
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{1}+k_{2}
$$

and we may take $k_{4}=k_{1}+k_{2}, k_{3}>0$, arbitrary.
If $a \geq 1, b<1$,

$$
k_{1} a^{r_{1}}+k_{2} b^{r_{2}} \leq k_{1} a^{r_{1}}+k_{2} \leq k_{1}(a+b)^{r_{1}}+k_{2} \leq k_{1}(a+b)^{\max \left(r_{1}, r_{2}\right)}+k_{2},
$$

and similarly if $a<1, b \geq 1$.
Proposition 5.1. Let $r_{1}, r_{2}>1, F_{i}:[0, T] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N},\left(t, x_{1}, x_{2}\right) \mapsto$ $F_{i}\left(t, x_{1}, x_{2}\right) i=1,2$ be two functions measurable in t for each $\left(x_{1}, x_{2}\right) \in$ $\mathbb{R}^{N} \times \mathbb{R}^{N}$ and continuous in $\left(x_{1}, x_{2}\right)$ for a.e. $t \in[0, T]$. Assume that:

$$
\begin{equation*}
\left\|F_{1}\left(t, x_{1}, x_{2}\right)\right\| \leq c_{1}\left\|x_{1}\right\|^{r_{1}-1}+c_{2}\left\|x_{2}\right\|^{\left(r_{1}-1\right) \frac{r_{2}}{r_{1}}}+b_{1}(t) \tag{5.6}
\end{equation*}
$$

$$
\begin{gather*}
\text { for } x_{1}, x_{2} \in \mathbb{R}^{\mathbb{N}}, t \in[0, T], \\
\left\|F_{2}\left(t, x_{1}, x_{2}\right)\right\| \leq c_{3}\left\|x_{1}\right\|^{\left(r_{2}-1\right) \frac{r_{1}}{r_{2}}}+c_{4}\left\|x_{2}\right\|^{r_{2}-1}+b_{2}(t), \tag{5.7}\\
\text { for } x_{1}, x_{2} \in \mathbb{R}^{\mathbb{N}}, t \in[0, T],
\end{gather*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}>0$ are constants, $b_{1} \in L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}_{+}\right), b_{2} \in L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}_{+}\right)$, $\frac{1}{r_{1}}+\frac{1}{r_{1}^{\prime}}=1, \frac{1}{r_{2}}+\frac{1}{r_{2}^{\prime}}=1$. Then the operator defined by

$$
\left(N\left(u_{1}, u_{2}\right)\right)(t)=\left(F_{1}\left(t, u_{1}(t), u_{2}(t)\right), F_{2}\left(t, u_{1}(t), u_{2}(t)\right)\right)
$$

is continuous from $L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)$ into $L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
\left\|N\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)} \leq c_{8}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)}^{R_{1}-1}+c_{9}, \tag{5.8}
\end{equation*}
$$

for all $\left(v_{1}, v_{2}\right) \in L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)$, where $c_{8}, c_{9}>0$ are constants and $R_{1}=\max \left(r_{1}, r_{2}\right)$.
Proof. From (5.6) and (5.7), for $\left.\left(v_{1}, v_{2}\right) \in L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)\right)$ we have

$$
\begin{gathered}
\left\|N\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)}= \\
=\left\|N_{1}\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)}+\left\|N_{2}\left(v_{1}, v_{2}\right)\right\|_{L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)} \leq \\
\leq c_{1}\left\|\left|v_{1}\right|^{r_{1}-1}\right\|_{L^{r_{1}^{\prime}}}+c_{2}\left\|\left|v_{2}\right|^{\left(r_{1}-1\right) \frac{r_{2}}{r_{1}}}\right\|_{L^{r_{1}^{\prime}}}+\left\|b_{1}\right\|_{L^{r_{1}^{\prime}}}+ \\
+c_{3}\left\|\left|v_{1}\right|^{\left(r_{2}-1\right) \frac{r_{1}}{r_{2}}}\right\|_{L^{r_{2}^{\prime}}}+c_{4}\left\|\left|v_{2}\right|^{r_{2}-1}\right\|_{L^{r_{2}^{\prime}}}+\left\|b_{2}\right\|_{L^{r_{2}^{\prime}}}= \\
=c_{1}\left\|v_{1}\right\|_{L^{r_{1}}}^{r_{1}-1}+c_{2}\left\|v_{2}\right\|_{L^{r_{2}}}^{\left(r_{1}-1\right) \frac{r_{2}}{r_{1}}}+K_{1}+c_{3}\left\|v_{1}\right\|_{L^{r_{1}}}^{\left(r_{2}-1\right) \frac{r_{1}}{r_{2}}}+c_{4}\left\|v_{2}\right\|_{L^{r_{2}}}^{r_{2}-1}+K_{2} .
\end{gathered}
$$

By Lemma 5.2 there are the constants $c_{5}, c_{6}, c_{7}>0$, such that

$$
\begin{gathered}
\left\|N\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)} \leq c_{5}\left(\left\|v_{1}\right\|_{L^{r_{1}}}+\left\|v_{2}\right\|_{L^{r_{2}}}\right)^{\max \left(r_{2}-1, r_{1}-1\right)}+ \\
+c_{6}\left(\left\|v_{1}\right\|_{L^{r_{1}}}+\left\|v_{2}\right\|_{\left.L^{r_{2}}\right)^{\max }\left(\left(r_{1}-1\right) \frac{r_{2}}{r_{1}},\left(r_{2}-1\right) \frac{r_{1}}{r_{2}}\right)}+c_{7}=\right. \\
=c_{5}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{\left.r_{1} \times L^{r_{2}}\right)}}^{\max \left(r_{2}-1, r_{1}-1\right)}+c_{6}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}} \times L^{r_{2}}}^{\max \left(\left(r_{1}-1\right) \frac{r_{2}}{r_{1}},\left(r_{2}-1\right) \frac{r_{1}}{r_{2}}\right)}+c_{7} .
\end{gathered}
$$

Since

$$
\max \left(\left(r_{1}-1\right) \frac{r_{2}}{r_{1}},\left(r_{2}-1\right) \frac{r_{1}}{r_{2}}\right) \leq \max \left(r_{2}-1, r_{1}-1\right)
$$

we obtain

$$
\left\|N\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)} \leq c_{8}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)}^{R_{1}-1}+c_{9},
$$

for all $\left(v_{1}, v_{2}\right) \in L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)$, where $c_{8}, c_{9}>0$ are constants and $R_{1}=\max \left(r_{1}, r_{2}\right)$.

Remark 5.2. If we choose $r_{1}, r_{2}>1$ be such that $R_{1}=\max \left(r_{1}, r_{2}\right)<r=$ $\min \left(p_{1}, p_{2}\right)$, then $r_{1}<p_{1}, r_{2}<p_{2}$ and then $q_{1}<r_{1}^{\prime}, q_{2}<r_{2}^{\prime}$. So we have the embeddings

$$
\begin{aligned}
& L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow L^{r_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right), \\
& L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \rightarrow L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right),
\end{aligned}
$$

and then there are the constants $c_{10}, c_{11}, c_{12}>0$ such that

$$
\begin{gathered}
\left\|N\left(v_{1}, v_{2}\right)\right\|_{L^{q_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{q_{2}}\left(0, T ; \mathbb{R}^{N}\right)} \leq c_{10}\left\|N\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{r_{2}^{\prime}}\left(0, T ; \mathbb{R}^{N}\right)} \leq \\
\leq c_{10}\left(c_{8}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{r_{1}}\left(0, T ; ; \mathbb{R}^{N}\right) \times L^{r_{2}}\left(0, T ; \mathbb{R}^{N}\right)}^{R_{1}}+c_{9}\right) \leq \\
\leq c_{11}\left\|\left(v_{1}, v_{2}\right)\right\|_{L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)}^{R_{1}-}+c_{12},
\end{gathered}
$$

for all $\left(v_{1}, v_{2}\right) \in L^{p_{1}}\left(0, T ; \mathbb{R}^{N}\right) \times L^{p_{2}}\left(0, T ; \mathbb{R}^{N}\right)$.
Let us remark, too, that if $R_{1}=\max \left(r_{1}, r_{2}\right)=r=\min \left(p_{1}, p_{2}\right)$ we can choose the constants $c_{1}, c_{2}, c_{3}, c_{4}>0$, small enough, such that $c_{11}<$ $\min \left(\frac{1}{2}, \frac{1}{2^{r-1}}\right) \min \left(\lambda_{1 r}, \lambda_{1 R}^{\frac{r}{R}}\right)$.
As an application of Theorem 5.2 we give an existence result for problem (1.3). This result is contained in the following theorem:

Theorem 5.3. Let $r_{1}, r_{2}>1, F_{i}:[0, T] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N},\left(t, x_{1}, x_{2}\right) \mapsto$ $F_{i}\left(t, x_{1}, x_{2}\right) i=1,2$ be two functions measurable in t for each $\left(x_{1}, x_{2}\right) \in$ $\mathbb{R}^{N} \times \mathbb{R}^{N}$ and continuous in $\left(x_{1}, x_{2}\right)$ for a.e. $t \in[0, T]$, satisfy conditions (5.6) and (5.7) with either
(i) $R_{1}<r$ and $c_{1}, c_{2}, c_{3}, c_{4}>0$, or
(ii) $R_{1}=r$ and $c_{1}, c_{2}, c_{3}, c_{4}>0$, small enough, such that
$c_{11}<\min \left(\frac{1}{2}, \frac{1}{2^{r-1}}\right) \min \left(\lambda_{1 r}, \lambda_{1 R}^{\frac{r}{R}}\right)$.
Then, problem (1.3) has a solution in $X=W_{T}^{1, p_{1}} \times W_{T}^{1, p_{2}}$.

References

[1] G. Dincă, D. Goeleven and D. Paşca, Duality mappings and the existence of periodic solutions for non-autonomous second order systems, Port. Math., 63 (2006), 47-68.
[2] G. Dincă and P. Jebelean, Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Anal., 46 (2001), 347-363.
[3] P. Jebelean and R. Precup, Solvability of p, q-Laplacian systems with potential boundary conditions, Appl. Anal., 89 (2010), 221-228.
[4] J. MA and C.L. TANG, Periodic solutions for some nonautonomous second-order systems, J. Math. Anal. Appl., 275 (2002), 482-494.
[5] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.
[6] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin, New York, 1989.
[7] D. Paşca, Periodic solutions for second order differential inclusions, Comm. Appl. Nonlinear Anal., 6 (1999), 91-98.
[8] D. PaşCA, Periodic solutions for second order differential inclusions with sublinear nonlinearity, Panamer. Math. J., 10 (2000), 35-45.
[9] D. PAŞCA, Periodic solutions of a class of non-autonomous second order differential inclusions systems, Abstr. Appl. Anal., 6 (2001), 151-161.
[10] D. PaşCA, Periodic solutions of second-order differential inclusions systems with p Laplacian, J. Math. Anal. Appl., 325 (2007), 90-100.
[11] D. PaşCA, Periodic solutions for nonautonomous second order differential inclusions systems with p-Laplacian, Comm. Appl. Nonlinear Anal., 16 (2009), 13-23.
[12] D. Paşca, Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-Laplacian, Bull. Belg. Math. Soc. Simon Stevin, 17 (2010), 841850.
[13] D. PaşCA, Periodic solutions of second-order differential inclusions systems with (q, p)-Laplacian, Anal. Appl. (Singap.), 9 (2011), 201-223.
[14] D. Paşca and C.L. TANG, Subharmonic solutions for nonautonomous sublinear second order differential inclusions systems with p-Laplacian, Nonlinear Anal., 69 (2008), 1083-1090.
[15] D. Paşca and C.L. Tang, Some existence results on periodic solutions of nonautonomous second order differential systems with (q, p)-Laplacian, Appl. Math. Lett., 23 (2010), 246-251.
[16] D. Paşca and C.L. TANG, Some existence results on periodic solutions of ordinary (q, p)-Laplacian systems, J. Appl. Math. Inform., 29 (2011), 39-48.
[17] D. PaşCa and C.L. TANG, New existence results on periodic solutions of nonautonomous second order differential systems with (q, p)-Laplacian, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 19-27.
[18] C.L. Tang, Periodic solutions of non-autonomous second-order systems with γ quasisubadditive potential, J. Math. Anal. Appl., 189 (1995), 671-675.
[19] C.L. Tang, Periodic solutions of non-autonomous second order systems, J. Math. Anal. Appl., 202 (1996), 465-469.
[20] C.L. Tang, Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 126 (1998), 3263-3270.
[21] C.L. TANG, Existence and multiplicity of periodic solutions of nonautonomous second order systems, Nonlinear Anal., 32 (1998), 299-304.
[22] C.L. Tang and X.P. Wu, Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl., 259 (2001), 386-397.
[23] C.L. Tang and X.P. Wu, Notes on periodic solutions of subquadratic second order systems, J. Math. Anal. Appl., 285 (2003), 8-16.
[24] C.L. Tang and X.P. Wu, Subharmonic solutions for nonautonomous second order hamiltonian systems, J. Math. Anal. Appl., 304 (2005), 383-393.
[25] Y. Tian and W. Ge, Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal., 66 (2007), 192-203.
[26] X.P. Wu, Periodic solutions for nonautonomous second-order systems with bounded nonlinearity, J. Math. Anal. Appl., 230 (1999), 135-141.
[27] X.P Wu and C.L. TANG, Periodic solutions of a class of non-autonomous secondorder systems, J. Math. Anal. Appl., 236 (1999), 227-235.
[28] X.P WU and C.L. TANG, Periodic solutions of nonautonomous second-order hamiltonian systems with even-typed potentials, Nonlinear Anal., 55 (2003), 759-769.
[29] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer, New York, 1990.
[30] F. Zhao and X. Wu, Saddle point reduction method for some non-autonomous second order systems, J. Math. Anal. Appl., 291 (2004), 653-665.

Jenică Crînganu
Department of Mathematics, University of Galaţi
Str. Domnească 47, Galaţi, Romania
E-mail: jcringanu@ugal.ro

Daniel Paşca
Department of Mathematics and Informatics, University of Oradea
University Street 1, 410087 Oradea, Romania
E-mail: dpasca@uoradea.ro

