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1. Introduction

In the last years many authors starting with Mawhin and Willem (see [6])
proved the existence of solutions for problem

ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

(1.1)

under suitable conditions on the potential F (see [4], [18]-[28], [30]). Also
in a series of papers (see [7]-[9]) we have generalized some of these results
for the case when the potential F is just locally Lipschitz in the second
variable x not continuously differentiable. Very recent (see [10] and [14])
we have considered the second order Hamiltonian inclusions systems with
p–Laplacian.

In [1] the authors described a new method for proving the existence of
periodic solutions for the following system

d
dt

(
|u̇(t)|p−2u̇(t)

)
= |u(t)|p−2u(t) + F (t, u(t)),

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,
(1.2)

where p is a real number so that 1 < p <∞, 0 < T <∞ is a constant and
F : [0, T ] × RN → RN , is a measurable function in t for each x ∈ RN and
continuous in x for a.e. t ∈ [0, T ].
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The aim of this paper is to show how the results obtained in [1] can
be generalized. More exactly our results represent the extensions to second-
order differential systems with (p1, p2)–Laplacian. This type of systems have
been also considered in [3], [12], [13], [15]-[17].

Consider the second order system
d
dt

(
|u̇1(t)|p1−2u̇1(t)

)
= |u1(t)|p1−2u1(t) + F1(t, u1(t), u2(t)),

d
dt

(
|u̇2(t)|p2−2u̇2(t)

)
= |u2(t)|p2−2u2(t) + F2(t, u1(t), u2(t)) a.e. t ∈ [0, T ],

u1(0)− u1(T ) = u̇1(0)− u̇1(T ) = 0,
u2(0)− u2(T ) = u̇2(0)− u̇2(T ) = 0,

(1.3)
where 1 < p1, p2 < ∞, T > 0, and Fi : [0, T ] × RN × RN → RN , i = 1, 2
satisfy the following assumption (A):

• Fi is measurable in t for each (x1, x2) ∈ RN × RN ;

• Fi is continuous in (x1, x2) for a.e. t ∈ [0, T ].

2. Equivalent formulation of the problem (1.3)

Let X = W 1,p1
T ×W 1,p2

T , X∗ = (W 1,p1
T )∗ × (W 1,p2

T )∗, q1 = p1
p1−1 , q2 = p2

p2−1
and Jp1−1,p2−1 : X → X∗ defined as follows:

〈Jp1−1,p2−1(u1, u2), (v1, v2)〉X∗,X =
∫ T

0
〈|u1(t)|p1−2u1(t), v1(t)〉dt+ (2.1)

+
∫ T

0
〈|u̇1(t)|p1−2u̇1(t), v̇1(t)〉dt+

∫ T

0
〈|u2(t)|p2−2u2(t), v2(t)〉dt+

+
∫ T

0
〈|u̇2(t)|p2−2u̇2(t), v̇2(t)〉dt

for all (v1, v2) ∈ X.
In fact we have:

Jp1−1,p2−1(u1, u2) = (Jp1−1u1, Jp2−1u2). (2.2)

From (2.2), following the estimates obtained in Section 2 of [1], we get:∣∣〈Jp1−1,p2−1(u1, u2), (v1, v2)〉X∗,X
∣∣ ≤

≤
∣∣〈Jp1−1u1, v1〉(W 1,p1

T )∗,W
1,p1
T

∣∣+
∣∣〈Jp2−1u2, v2〉(W 1,p2

T )∗,W
1,p2
T

∣∣ ≤
≤
‖u1‖p1

W
1,p1
T

q1
+
‖v1‖p1

W
1,p1
T

p1
+
‖u2‖p2

W
1,p2
T

q2
+
‖v2‖p2

W
1,p2
T

p2
,

and

〈Jp1−1,p2−1(u1, u2), (u1, u2)〉X∗,X = ‖u1‖p1
W

1,p1
T

+ ‖u2‖p2
W

1,p2
T

. (2.3)
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We known that (see Section 2 of [1]):

‖Jp1−1u1‖(W 1,p1
T )∗

= ‖u1‖p1−1

W
1,p1
T

, ‖Jp2−1u2‖(W 1,p2
T )∗

= ‖u2‖p2−1

W
1,p2
T

.

From (2.2) we have

‖Jp1−1,p2−1(u1, u2)‖X∗ = ‖Jp1−1u1‖(W 1,p1
T )∗

+ ‖Jp2−1u2‖(W 1,p2
T )∗

= (2.4)

= ‖u1‖p1−1

W
1,p1
T

+ ‖u2‖p2−1

W
1,p2
T

.

Suppose that for any (u1, u2) ∈ Lp1(0, T ; RN )× Lp2(0, T ; RN ) the map

t ∈ [0, T ] 7→
(
F1(t, u1(t), u2(t)), F2(t, u1(t), u2(t))

)
belongs to Lq1(0, T ; RN )× Lq2(0, T ; RN ). We may consider the operator

A : Lp1(0, T ; RN )× Lp2(0, T ; RN )→ Lq1(0, T ; RN )× Lq2(0, T ; RN )

defined by (
A(u1, u2)

)
(t) =

(
F1(t, u1(t), u2(t)), F2(t, u1(t), u2(t))

)
(2.5)

a.e. on [0, T ], and for all (u1, u2) ∈ Lp1(0, T ; RN )× Lp2(0, T ; RN ).
Let ip1 be the compact injection of W 1,p1

T in Lp1(0, T ; RN ) and i∗p1 :
Lq1(0, T ; RN ) →

(
W 1,p1
T

)∗ its adjoint. Similarly, let ip2 be the compact
injection of W 1,p2

T in Lp2(0, T ; RN ) and i∗p2 : Lq2(0, T ; RN ) →
(
W 1,p2
T

)∗ its
adjoint. We define

i : W 1,p1
T ×W 1,p2

T → Lp1(0, T ; RN )×Lp2(0, T ; RN ), i(x1, x2) = (ip1x1, ip2x2)

and
i∗ : Lq1(0, T ; RN )× Lq2(0, T ; RN )→

(
W 1,p1
T

)∗ × (W 1,p2
T

)∗
i∗(x∗1, x

∗
2) = (i∗p1x

∗
1, i
∗
p2x
∗
2) = (x∗1 ◦ ip1 , x∗2 ◦ ip2), (2.6)

for all (x∗1, x
∗
2) ∈ Lq1(0, T ; RN )× Lq2(0, T ; RN ).

Clearly, (2.6) reads as follows: for every (v1, v2) ∈W 1,p1
T ×W 1,p2

T ,

〈i∗(x∗1, x∗2), (v1, v2)〉X∗,X = 〈x∗1, ip1(v1)〉Lq1 ,Lp1 + 〈x∗2, ip2(v2)〉Lq2 ,Lp2 (2.7)

Let (u1, u2) ∈W 1,p1
T ×W 1,p2

T be a solution of equation

Jp1−1,p2−1(u1, u2) = −(i∗Ai)(u1, u2). (2.8)

Then, for every (v1, v2) ∈W 1,p1
T ×W 1,p2

T , one has

〈Jp1−1,p2−1(u1, u2), (v1, v2)〉X∗,X = −〈(i∗Ai)(u1, u2), (v1, v2)〉X∗,X =
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= −〈i∗(A(ip1u1, ip2u2)), (v1, v2)〉X∗,X =

= −〈i∗
(
F1(·, u1(·), u2(·)), F2(·, u1(·), u2(·))

)
, (v1, v2)〉X∗,X =

= −〈F1(·, u1(·), u2(·)), ip1(v1)〉Lq1 ,Lp1 − 〈F2(·, u1(·), u2(·)), ip2(v2)〉Lq2 ,Lp2 =

= −
∫ T

0
[〈F1(t, u1(t), u2(t)), v1(t)〉+ 〈F2(t, u1(t), u2(t)), v2(t)〉]dt.

Taking into account (2.1), the equality

〈Jp1−1,p2−1(u1, u2), (v1, v2)〉X∗,X = −
∫ T

0
[〈F1(t, u1(t), u2(t)), v1(t)〉+

+〈F2(t, u1(t), u2(t)), v2(t)〉]dt

rewrites as∫ T

0
〈|u̇1(t)|p1−2u̇1(t), v̇1(t)〉dt+

∫ T

0
〈|u̇2(t)|p2−2u̇2(t), v̇2(t)〉dt = (2.9)

= −
∫ T

0
〈|u1(t)|p1−2u1(t) + F1(t, u1(t), u2(t)), v1(t)〉dt−

−
∫ T

0
〈|u2(t)|p2−2u2(t) + F2(t, u1(t), u2(t)), v2(t)〉dt

for all (v1, v2) ∈ W 1,p1
T × W 1,p2

T . In particular, (2.9) is satisfied for any
(v1, v2) = (f1, f2) ∈ C∞T × C∞T ⊂W

1,p1
T ×W 1,p2

T .
Consequently, if (u1, u2) ∈ W 1,p1

T ×W 1,p2
T is a solution of the operator

equation (2.8), then (u1, u2) is a solution of the problem (1.3). Thus, in
order to prove the existence of a solution for the problem (1.3), it would be
sufficient to prove the existence of a solution for the operator equation (2.8).

It is a simple matter to see that the operator A generated by the functions
F1(·, ·, ·), F2(·, ·, ·) may be replaced by any operator

N : Lp1(0, T ; RN )× Lp2(0, T ; RN )→ Lq1(0, T ; RN )× Lq2(0, T ; RN )

defined by(
N(u1, u2)

)
(t) =

(
N1(u1(t), u2(t)), N2(u1(t), u2(t))

)
. (2.10)

Thus we obtain the following proposition:

Proposition 2.1. Let Jp1−1,p2−1 : X → X∗, 1 < p1, p2 < ∞ be de-
fined by (2.1) and let N : Lp1(0, T ; RN ) × Lp2(0, T ; RN ) → Lq1(0, T ; RN ) ×
Lq2(0, T ; RN ) be given. Let i : X → Lp1(0, T ; RN ) × Lp2(0, T ; RN ) and
i∗ : Lq1(0, T ; RN )× Lq2(0, T ; RN )→ X∗ defined as above.
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If (u1, u2) ∈ X is a solution of the operator equation

Jp1−1,p2−1(u1, u2) = −(i∗Ni)(u1, u2) (2.11)

then (u1, u2) is a solution for the problem
d
dt

(
|u̇1(t)|p1−2u̇1(t)

)
= |u1(t)|p1−2u1(t) +N1(u1(t), u2(t)),

d
dt

(
|u̇2(t)|p2−2u̇2(t)

)
= |u2(t)|p2−2u2(t) +N2(u1(t), u2(t)) a.e. t ∈ [0, T ],

u1(0)− u1(T ) = u̇1(0)− u̇1(T ) = 0,
u2(0)− u2(T ) = u̇2(0)− u̇2(T ) = 0.

(2.12)

3. Preliminary results

In [2] (see Corollary 1) the authors have proved the following abstract result:

Theorem 3.1. Let X be a reflexive real Banach space, T : X → X∗ be a
monotone, hemicontinuous, coercive operator, satisfying condition (S)2 and
let K : X → X∗ be compact. If there is a constant k > 0 such that Tv = Ku
and ‖u‖ ≤ k implies ‖v‖ ≤ k, then the equation Tu = Ku has a solution
u ∈ X, with ‖u‖ ≤ k.

We observe that in (2.11), the right-hand operator K = −i∗Ni is compact
and therefore equation (2.11) reduces to the case T (u1, u2) = K(u1, u2) with
T (u1, u2) = Jp1−1,p2−1(u1, u2) and K : X1 ×X2 → X∗1 ×X∗2 compact.

In order to be able to apply the above abstract result to solve our problem
(2.11) we start to list some definitions and useful results.

Definition 3.1. Let X be a real Banach space and X∗ denotes the dual
space of X. An operator T : X → X∗ is

- monotone if:

〈Tu− Tv, u− v〉 ≥ 0 for all u, v ∈ X,

- hemicontinuous if:

〈T (u+ λv), w〉 → 〈Tu,w〉 as λ→ 0 for all u, v, w ∈ X,

- coercive if:
〈Tu, u〉
‖u‖

→ ∞ as ‖u‖ → ∞,

- demicontinuous if:

un → u implies Tun ⇀ Tu as n→∞.
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Definition 3.2. The operator T : X → X∗ is said to satisfy condition (S)2
iff, as n→∞, the following holds:

un ⇀ u,Tun → Tu implies un → u.

We have denoted by “⇀” (respectively “→”) the convergence in the weak
(respectively strong) topology.

Proposition 3.1. If T1 : X1 → X∗1 and T2 : X2 → X∗2 are monotone,
hemicontinuous, coercive operators which satisfy condition (S)2 then T :
X1 ×X2 → X∗1 ×X∗2 given by T (u1, u2) = (T1u1, T2u2) has the same prop-
erties.

Proof. Indeed we have

〈T (u1, u2)− T (v1, v2), (u1, u2)− (v1, v2)〉 =

= 〈(T1u1, T2u2)− (T1v1, T2v2), (u1 − v1, u2 − v2)〉 =

= 〈(T1u1 − T1v1, T2u2 − T2v2), (u1 − v1, u2 − v2)〉 =

= 〈T1u1 − T1v1, u1 − v1〉+ 〈T2u2 − T2v2, u2 − v2〉 ≥ 0,

hence T is monotone.
If T1 : X1 → X∗1 and T2 : X2 → X∗2 are hemicontinuous operators then

we have

〈T ((u1, u2) + λ(v1, v2)), (w1, w2)〉 = 〈T (u1 + λv1, u2 + λv2), (w1, w2)〉 =

= 〈(T1(u1 + λv1), T2(u2 + λv2)), (w1, w2)〉 =

= 〈T1(u1 + λv1), w1〉+ 〈T2(u2 + λv2), w2〉 −→λ→0 〈T1u1, w1〉+ 〈T2u2, w2〉 =

= 〈(T1u1, T2u2), (w1, w2)〉 = 〈T (u1, u2), (w1, w2)〉.

If T1 : X1 → X∗1 and T2 : X2 → X∗2 are coercive then we have:

〈T (u1, u2), (u1, u2)〉
‖(u1, u2)‖

=
〈T1u1, u1〉+ 〈T2u2, u2〉

‖u1‖+ ‖u2‖
=

=
〈T1u1, u1〉
‖u1‖

‖u1‖
‖u1‖+ ‖u2‖

+
〈T2u2, u2〉
‖u2‖

‖u2‖
‖u1‖+ ‖u2‖

.

If ‖u1‖ → ∞ and ‖u2‖ is bounded, then

〈T1u1, u1〉
‖u1‖

→ ∞, ‖u1‖
‖u1‖+ ‖u2‖

→ 1,
〈T2u2, u2〉
‖u2‖

is bounded from below,

‖u2‖
‖u1‖+ ‖u2‖

→ 0, and then
〈T (u1, u2), (u1, u2)〉

‖(u1, u2)‖
→ ∞.
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Similar if ‖u2‖ → ∞ and ‖u1‖ is bounded. If ‖u1‖ → ∞ and ‖u2‖ → ∞
(passing to a subsequences, if necessary) we use the inequality

λa+ (1− λ)b ≥ min(a, b), for a, b ∈ R, λ ∈ [0, 1].

If T1 : X1 → X∗1 and T2 : X2 → X∗2 satisfy condition (S)2 then we have:

(u1n, u2n) ⇀ (u1, u2)⇒ uin ⇀ ui, i = 1, 2

and
T (u1n, u2n)→ T (u1, u2)⇒ Tiuin → Tiui, i = 1, 2

and hence uin → ui, i = 1, 2 which implies (u1n, u2n)→ (u1, u2). 2

4. Duality mappings

Let i = 1, 2, (Xi, ‖ · ‖Xi) be real Banach spaces, X∗i the corresponding dual
spaces and 〈·, ·〉 the duality between X∗i and Xi. Let ϕi : R+ → R+ be
gauge functions, such that ϕi are continuous, strictly increasing, ϕi(0) = 0
and ϕi(t)→∞ as t→∞. The duality mapping corresponding to the gauge
function ϕi is the set valued mapping Jϕi

: Xi → 2X
∗
i , defined by

Jϕi
x =

{
x∗i ∈ X∗i | 〈x∗i , xi〉 = ϕi(‖xi‖Xi)‖xi‖Xi , ‖x∗i ‖X∗i = ϕi(‖xi‖Xi)

}
.

If Xi are smooth, then Jϕi
: Xi → X∗i is defined by

Jϕi
0 = 0, Jϕi

xi = ϕi(‖xi‖Xi)‖ ‖′Xi
(xi), xi 6= 0,

and the following metric properties being consequent:

‖Jϕi
xi‖X∗i = ϕi(‖xi‖Xi), 〈Jϕi

x, x〉 = ϕi(‖xi‖Xi)‖xi‖Xi . (4.1)

Now we can define Jϕ1,ϕ2
: X1 × X2 → 2X

∗
1 × 2X

∗
2 by Jϕ1,ϕ2

(x1, x2) =
(Jϕ1

x1, Jϕ2
x2). From (4.1) we get

‖Jϕ1,ϕ2
(x1, x2)‖X∗1×X∗2 = ‖Jϕ1

x1‖X∗1 + ‖Jϕ2
x2‖X∗2 = (4.2)

= ϕ1(‖x1‖X1) + ϕ2(‖x2‖X2),

〈Jϕ1,ϕ2
(x1, x2), (x1, x2)〉 = 〈Jϕ1

x1, x1〉+ 〈Jϕ2
x2, x2〉 = (4.3)

= ϕ1(‖x1‖X1)‖x1‖X1 + ϕ2(‖x2‖X2)‖x2‖X2 .

For our aim in what follows we will consider the particular case when
Jϕi

: Xi → X∗i are the duality mappings, assumed to be single-valued,
corresponding to the gauge functions ϕ1(t) = tp1−1, ϕ2(t) = tp2−1, 1 <
p1, p2 < ∞. In this case we denote Jp1−1,p2−1 : X1 ×X2 → X∗1 ×X∗2 given
by Jp1−1,p2−1 = (Jp1−1, Jp2−1).
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Note that the hypothesis on Jϕi
to be single-valued mappings is satisfied

iff Xi are smooth (iff Xi are with G-differentiable norms, iff X∗i are strictly
convex).

Let i1 and i2 the compactly embedded injections of X1, X2 in Z1 and Z2

respectively:

‖i1(u1)‖Z1 ≤ CZ1‖u1‖X1 for all u1 ∈ X1, (4.4)
‖i2(u2)‖Z2 ≤ CZ2‖u2‖X2 for all u2 ∈ X2.

We introduce

λ1 = inf

{
‖ u1 ‖qX1

‖ i1(u1) ‖qZ1

: u1 ∈ X1 \ {0}

}
> 0,

λ2 = inf

{
‖ u2 ‖pX2

‖ i2(u2) ‖pZ2

: u2 ∈ X2 \ {0}

}
> 0.

Proposition 4.1. λ1, λ2 are attained and λ
−1/q
1 and λ

−1/p
2 are the best

constants CZ1 and CZ2, respectively in the writing of the embeddings of X1

into Z1 and X2 into Z2, respectively.

Proof. See the proof of Proposition 4 in [2]. 2

5. Existence result for equation Jp1−1,p2−1(u1, u2) = −(i∗Ni)(u1, u2)

Since Jp1−1,p2−1 satisfies the metric relations (2.3), (2.4) it follows that,
for any (u1, u2) ∈ W 1,p1

T × W 1,p2
T , Jp1−1,p2−1(u1, u2) ∈ Jϕ1,ϕ2

(u1, u2) =
(Jϕ1

u1, Jϕ2
u2), where Jϕi

, i = 1, 2 designates (eventually multivalued) du-
ality mapping on W 1,pi

T corresponding to the gauge function ϕi(t) = tpi−1,
1 < pi < ∞, t ≥ 0. But, is well known that W 1,p

T with 1 < p < ∞ is a
smooth Banach space (see for example Theorem 4.1 in [1]) which implies
that any duality mapping on W 1,p

T , 1 < p < ∞ is single valued. Conse-
quently, Jpi−1 : W 1,pi

T → (W 1,pi

T )∗, i = 1, 2 involved in the definition of
Jp1−1,p2−1 are just the duality mappings corresponding to the gauge func-
tions ϕi(t) = tpi−1, i = 1, 2.

Theorem 5.1. If 1 < pi <∞, i = 1, 2 then:

a) the spaces (W 1,pi

T , ‖ · ‖
W

1,pi
T

), are uniformly convex and smooth;

b) the duality mappings on W 1,pi

T corresponding to the gauge function

ϕi(t) = tpi−1, t ≥ 0 are single valued,
(
Jpi−1 : W 1,pi

T → (W 1,pi

T )∗
)
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satisfies condition (S)2 and Jp1−1,p2−1 : X → X∗ is defined as follows:
if (u1, u2) ∈ X, then

〈Jp1−1,p2−1(u1, u2), (v1, v2)〉X∗,X =
∫ T

0
〈|u1(t)|p1−2u1(t), v1(t)〉dt+

(5.1)

+
∫ T

0
〈|u̇1(t)|p1−2u̇1(t), v̇1(t)〉dt+

∫ T

0
〈|u2(t)|p2−2u2(t), v2(t)〉dt+

+
∫ T

0
〈|u̇2(t)|p2−2u̇2(t), v̇2(t)〉dt

for all (v1, v2) ∈ X.

Proof. See Theorem 4.1 in [1] and we use (4.1). 2

Now, we need the following result:

Lemma 5.1. Let p1 > p2 > 1 and a, b > 0 such that ap1 + bp2 ≤ K(a+ b),
where K > 0. Then a+ b ≤ K1, where

K1 = max
(

1 + max
(
(2K)

1
p2−1 , (2K)

1
p2

)
, 2K

1
p2−1

)
.

Proof. Case 1. If a ≥ 1 then ap2 + bp2 ≤ ap1 + bp2 ≤ K(a + b), hence
ap2 + bp2 ≤ K(a+ b), and we get

(a+ b)p2 ≤ 2p2−1(ap2 + bp2) ≤ 2p2−1K(a+ b).

Finally a+ b ≤ 2K
1

p2−1 .

Case 2. If a < 1 then bp2 ≤ ap1 + bp2 ≤ K(a + b) ≤ K(1 + b), and we get
bp2 ≤ Kb+K.
If b ≥ 1 then bp2 ≤ 2Kb, from where b ≤ (2K)

1
p2−1 .

If b < 1 then bp2 < 2K, from where b < (2K)
1

p2 , and hence one has b ≤
max

(
(2K)

1
p2−1 , (2K)

1
p2

)
. Finally we get a+b ≤ 1+max

(
(2K)

1
p2−1 , (2K)

1
p2

)
.

Consequently a+ b ≤ K1 = max
(

1 + max
(
(2K)

1
p2−1 , (2K)

1
p2

)
, 2K

1
p2−1

)
. 2

Remark 5.1. The case p2 > p1 > 1 can be done similarly.

Theorem 5.2. Let ip1 be the compact injection of W 1,p1
T in Lp1(0, T ; RN )

and i∗p1 : Lq1(0, T ; RN )→
(
W 1,p1
T

)∗ its adjoint. Similarly, let ip2 be the com-
pact injection of W 1,p2

T in Lp2(0, T ; RN ) and i∗p2 : Lq2(0, T ; RN )→
(
W 1,p2
T

)∗
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its adjoint. Let Jp1−1,p2−1 (given by (2.1)) which can be defined using the
duality mappings on W pi−1

T , i = 1, 2 corresponding to the gauge functions
ϕi(t) = tpi−1, t ≥ 0.

Suppose that

N : Lp1(0, T ; RN )× Lp2(0, T ; RN )→ Lq1(0, T ; RN )× Lq2(0, T ; RN ),

N = (N1, N2), is demicontinuous operator which satisfy the growth condition

‖N(u1, u2)‖Lq1×Lq2 ≤ c1‖(u1, u2)‖r−1
Lp1×Lp2 + c2 for all (u1, u2) ∈ Lp1 × Lp2 ,

(5.2)
where c1, c2 ≥ 0, c1 < min

(
1
2 ,

1
2r−1

)
min

(
λ1r, λ

r
R
1R

)
, with r = min(p1, p2), R =

max(p1, p2),

λ1p1 = inf
{ ‖u1‖p1

W
1,p1
T

‖i1(u1)‖p1Lp1

|u1 6= 0
}
, λ1p2 = inf

{ ‖u2‖p2
W

1,p2
T

‖i2(u2)‖p2Lp2

|u2 6= 0
}
.

Then, the equation

Jp1−1,p2−1(u1, u2) = −(i∗Ni)(u1, u2) (5.3)

has a solution in X = W 1,p1
T ×W 1,p2

T .
Consequently, the problem
d
dt

(
|u̇1(t)|p1−2u̇1(t)

)
= |u1(t)|p1−2u1(t) +N1(u1(t), u2(t)),

d
dt

(
|u̇2(t)|p2−2u̇2(t)

)
= |u2(t)|p2−2u2(t) +N2(u1(t), u2(t)) a.e. t ∈ [0, T ],

u1(0)− u1(T ) = u̇1(0)− u̇1(T ) = 0,
u2(0)− u2(T ) = u̇2(0)− u̇2(T ) = 0.

(5.4)
has a solution in X = W 1,p1

T ×W 1,p2
T .

Proof. It is standard that Jp1−1 and Jp2−1 are monotone, demicontinu-
ous (hence, hemicontinuous) and coercive. According with Proposition 2.1
Jp1−1,p2−1 is monotone, hemicontinuous and coercive. Therefore, in virtue
of Theorem 5.2, Jp1−1,p2−1 has all properties of T in Theorem 3.1. On the
other hand, K = −i∗Ni : X1 × X2 → X∗1 × X∗2 is compact. Let us prove
that there is some k > 0 such that Jp1−1,p2−1(v1, v2) = −(i∗Ni)(u1, u2) and
‖(u1, u2)‖X1×X2 ≤ k implies ‖(v1, v2)‖X1×X2 ≤ k.

For, let (u1, u2), (v1, v2) ∈ X1 ×X2 be with

Jp1−1,p2−1(v1, v2) = −(i∗Ni)(u1, u2).

Then, by the definitions of Jp1−1,p2−1 and (4.4), (5.2), we have

〈Jp1−1,p2−1(v1, v2), (v1, v2)〉X∗1×X∗2 ,X1×X2 =

= 〈(Jp1−1v1, Jp2−1v2), (v1, v2)〉X∗1×X∗2 ,X1×X2 =
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= 〈Jp1−1v1, v1〉X∗1×X1 + 〈Jp2−1v2, v2〉X∗2×X2 = ‖v1‖p1X1
+ ‖v2‖p2X2

=

= 〈−N(i(u1, u2)), i(v1, v2)〉Z∗1×Z∗2 ,Z1×Z2 ≤

≤ ‖N(i(u1, u2))‖Z∗1×Z∗2 ‖i(v1, v2)‖Z1×Z2 ≤

≤
[
c1‖i(u1, u2)‖r−1

Z1×Z2
+ c2

]
‖i(v1, v2)‖Z1×Z2 =

=
[
c1‖(i1(u1), i2(u2)‖r−1

Z1×Z2
+ c2

]
‖(i1(v1), i2(v2)‖Z1×Z2 =

=
[
c1

(
‖i1(u1)‖Z1 + ‖i2(u2)‖Z2

)r−1
+ c2

][
‖i1(v1)‖Z1 + ‖i2(v2)‖Z2

]
≤

≤
[
c1

(
CZ1‖u1‖X1 + CZ2‖u2‖X2

)r−1
+ c2

][
CZ1‖v1‖X1 + CZ2‖v2‖X2

]
.

For the best constants CZ1 = λ
−1/p1
1p1

, CZ2 = λ
−1/p2
1p2

, we derive:

‖v1‖p1X1
+ ‖v2‖p2X2

≤
[
c1

(
λ
−1/p1
1p1

‖u1‖X1 + λ
−1/p2
1p2

‖u2‖X2

)r−1
+ c2

]
[
λ
−1/p1
1p1

‖v1‖X1 + λ
−1/p2
1p2

‖v2‖X2

]
≤

≤
[
c1Λr−1(‖u1‖X1 + ‖u2‖X2)r−1 + c2

]
Λ(‖v1‖X1 + ‖v2‖X2)

where Λ = max(λ−1/p1
1p1

, λ
−1/p2
1p2

). We get:

‖v1‖p1X1
+ ‖v2‖p2X2

≤
[
c1Λr‖(u1, u2)‖r−1

X1×X2
+ c2Λ

]
‖(v1, v2)‖X1×X2 ≤

≤
[
c1Λrkr−1 + c2Λ

]
‖(v1, v2)‖X1×X2 .

With K = c1Λrkr−1 + c2Λ we can apply Lemma 5.1 and we get (if p1 >
p2 > 1):

‖(v1, v2)‖X1×X2 = ‖v1‖X1 + ‖v2‖X2 ≤

≤ max
(

1 + max
(
(2K)

1
p2−1 , (2K)

1
p2

)
, 2K

1
p2−1

)
.

Taking into account that r = min(p1, p2), it is easy to see that we can choose
k > 0 such that

K1 = max
(

1 + max
(
(2K)

1
p2−1 , (2K)

1
p2

)
, 2K

1
p2−1

)
≤ k.

Indeed we have the following cases:
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(a) K1 = 2K
1

p2−1 . Now, because p1 > p2 and

c1 < min
(1

2
,

1
2r−1

)
min

(
λ1r, λ

r
R
1R

)
we have

c1 <
1

2p2−1
min(λ1p2 , λ

p2/p1
1p1

).

Furthermore c12p2−1 1

min(λ1p2 ,λ
p2/p1
1p1

)
< 1 that is

c12p2−1 max(λ−1
1p2
, λ
−p2/p1
1p1

) < 1 so that c12p2−1Λp2 < 1.

Consequently

tp2−1 − 2p2−1(c1Λp2tp2−1 + c2Λ)→∞ as t→∞.

Hence, there is some k > 0 such that

kp2−1 − 2p2−1(c1Λp2kp2−1 + c2Λ) ≥ 0

which implies 2(c1Λp2kp2−1 + c2Λ)
1

p2−1 ≤ k, so that K1 ≤ k, and then
‖(v1, v2)‖X1×X2 ≤ k.

(b) K1 = 1 + (2K)
1

p2−1 . In this case, because c1 < 1
2 min(λ1p2 , λ

p2/p1
1p1

), we
have 2c1Λp2 < 1 and then

t−
(

2(c1Λp2tp2−1 + c2Λ)
) 1

p2−1 − 1→∞ as t→∞.

Hence, there is some k > 0 such that

k −
(

2(c1Λrkp2−1 + c2Λ)
) 1

p2−1 − 1 ≥ 0

which implies

1 +
(

2(c1Λrkp2−1 + c2Λ)
) 1

p2−1 ≤ k

so that K1 ≤ k, and then ‖(v1, v2)‖X1×X2 ≤ k.

(c) K1 = 1 + (2K)
1

p2 . In this case we have

t−
(

2(c1Λp2tp2−1 + c2Λ)
) 1

p2 − 1→∞ as t→∞

because p2−1
p2

< 1, and we conclude as in (b).
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The case p2 > p1 > 1 can be done similarly.
Theorem 3.1 now applies by considering X = X1 ×X2, T = Jp1−1,p2−1

and K = −i∗Ni. 2

Taking into account Theorem 5.2 we obtain

Corollary 5.1. Assume

(i) Jp1−1 and Jp2−1 satisfy condition (S)2 (which implies according with
Proposition 2.1 that Jp1−1,p2−1 satisfies condition (S)2);

(ii) N : Z1 × Z2 → Z∗1 × Z∗2 is a demicontinuous operator satisfying the
growth condition

‖N(v1, v2)‖Z∗1×Z∗2 ≤ c1‖(v1, v2)‖s−1
Z1×Z2

+c2 for all (v1, v2) ∈ i(X1×X2)
(5.5)

where s < min(p1, p2) and c1, c2 ≥ 0.

Then the equation Jp1−1,p2−1(u1, u2) = N(u1, u2) has a solution in X1×X2.

We need the following result:

Lemma 5.2. Let r1, r2, k1, k2 > 0. Then there are the constants k3, k4 > 0
such that

k1a
r1 + k2b

r2 ≤ k3(a+ b)max(r1,r2) + k4, for all a, b > 0.

Proof. If a, b ≥ 1 we have

k1a
r1 + k2b

r2 ≤ k1a
max(r1,r2) + k2b

max(r1,r2) ≤

≤ max(k1, k2)(amax(r1,r2) + bmax(r1,r2)) ≤ max(k1, k2)(a+ b)max(r1,r2),

and the proof is ready with k3 = max(k1, k2) and k4 > 0, arbitrary.
If a, b < 1 then

k1a
r1 + k2b

r2 ≤ k1 + k2

and we may take k4 = k1 + k2, k3 > 0, arbitrary.
If a ≥ 1, b < 1,

k1a
r1 + k2b

r2 ≤ k1a
r1 + k2 ≤ k1(a+ b)r1 + k2 ≤ k1(a+ b)max(r1,r2) + k2,

and similarly if a < 1, b ≥ 1. 2

Proposition 5.1. Let r1, r2 > 1, Fi : [0, T ]×RN ×RN → RN , (t, x1, x2) 7→
Fi(t, x1, x2) i = 1, 2 be two functions measurable in t for each (x1, x2) ∈
RN × RN and continuous in (x1, x2) for a.e. t ∈ [0, T ]. Assume that:

‖F1(t, x1, x2)‖ ≤ c1‖x1‖r1−1 + c2‖x2‖
(r1−1)

r2
r1 + b1(t), (5.6)
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for x1, x2 ∈ RN, t ∈ [0, T ],

‖F2(t, x1, x2)‖ ≤ c3‖x1‖
(r2−1)

r1
r2 + c4‖x2‖r2−1 + b2(t), (5.7)

for x1, x2 ∈ RN, t ∈ [0, T ],

where c1, c2, c3, c4 > 0 are constants, b1 ∈ Lr
′
1(0, T ; R+), b2 ∈ Lr

′
2(0, T ; R+),

1
r1

+ 1
r′1

= 1, 1
r2

+ 1
r′2

= 1. Then the operator defined by(
N(u1, u2)

)
(t) =

(
F1(t, u1(t), u2(t)), F2(t, u1(t), u2(t))

)
is continuous from
Lr1(0, T ; RN )× Lr2(0, T ; RN ) into Lr

′
1(0, T ; RN )× Lr′2(0, T ; RN ) and

‖N(v1, v2)‖
Lr′1 (0,T ;RN )×Lr′2 (0,T ;RN )

≤ c8‖(v1, v2)‖R1−1
Lr1 (0,T ;RN )×Lr2 (0,T ;RN )

+ c9,

(5.8)
for all (v1, v2) ∈ Lr1(0, T ; RN )×Lr2(0, T ; RN ), where c8, c9 > 0 are constants
and R1 = max(r1, r2).

Proof. From (5.6) and (5.7), for (v1, v2) ∈ Lr1(0, T ; RN ) × Lr2(0, T ; RN ))
we have

‖N(v1, v2)‖
Lr′1 (0,T ;RN )×Lr′2 (0,T ;RN )

=

= ‖N1(v1, v2)‖
Lr′1 (0,T ;RN )

+ ‖N2(v1, v2)‖
Lr′2 (0,T ;RN )

≤

≤ c1‖|v1|r1−1‖
Lr′1

+ c2

∥∥∥|v2|(r1−1)
r2
r1

∥∥∥
Lr′1

+ ‖b1‖Lr′1
+

+c3
∥∥∥|v1|(r2−1)

r1
r2

∥∥∥
Lr′2

+ c4‖|v2|r2−1‖
Lr′2

+ ‖b2‖Lr′2
=

= c1‖v1‖r1−1
Lr1 + c2‖v2‖

(r1−1)
r2
r1

Lr2 +K1 + c3‖v1‖
(r2−1)

r1
r2

Lr1 + c4‖v2‖r2−1
Lr2 +K2.

By Lemma 5.2 there are the constants c5, c6, c7 > 0, such that

‖N(v1, v2)‖
Lr′1 (0,T ;RN )×Lr′2 (0,T ;RN )

≤ c5(‖v1‖Lr1 + ‖v2‖Lr2 )max(r2−1,r1−1)+

+c6(‖v1‖Lr1 + ‖v2‖Lr2 )max
(
(r1−1)

r2
r1
,(r2−1)

r1
r2

)
+ c7 =

= c5‖(v1, v2)‖max(r2−1,r1−1)
Lr1×Lr2 ) + c6‖(v1, v2)‖

max
(
(r1−1)

r2
r1
,(r2−1)

r1
r2

)
Lr1×Lr2 + c7.

Since
max

(
(r1 − 1)

r2
r1
, (r2 − 1)

r1
r2

)
≤ max(r2 − 1, r1 − 1)

we obtain

‖N(v1, v2)‖
Lr′1 (0,T ;RN )×Lr′2 (0,T ;RN )

≤ c8‖(v1, v2)‖R1−1
Lr1 (0,T ;RN )×Lr2 (0,T ;RN )

+ c9,

for all (v1, v2) ∈ Lr1(0, T ; RN )×Lr2(0, T ; RN ), where c8, c9 > 0 are constants
and R1 = max(r1, r2). 2
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Remark 5.2. If we choose r1, r2 > 1 be such that R1 = max(r1, r2) < r =
min(p1, p2), then r1 < p1, r2 < p2 and then q1 < r′1, q2 < r′2. So we have the
embeddings

Lp1(0, T ; RN )× Lp2(0, T ; RN )→ Lr1(0, T ; RN )× Lr2(0, T ; RN ),

Lr
′
1(0, T ; RN )× Lr′2(0, T ; RN )→ Lq1(0, T ; RN )× Lq2(0, T ; RN ),

and then there are the constants c10, c11, c12 > 0 such that

‖N(v1, v2)‖Lq1 (0,T ;RN )×Lq2 (0,T ;RN ) ≤ c10‖N(v1, v2)‖
Lr′1 (0,T ;RN )×Lr′2 (0,T ;RN )

≤

≤ c10

(
c8‖(v1, v2)‖R1−1

Lr1 (0,T ;RN )×Lr2 (0,T ;RN )
+ c9

)
≤

≤ c11‖(v1, v2)‖R1−1
Lp1 (0,T ;RN )×Lp2 (0,T ;RN )

+ c12,

for all (v1, v2) ∈ Lp1(0, T ; RN )× Lp2(0, T ; RN ).
Let us remark, too, that if R1 = max(r1, r2) = r = min(p1, p2) we

can choose the constants c1, c2, c3, c4 > 0, small enough, such that c11 <

min
(

1
2 ,

1
2r−1

)
min

(
λ1r, λ

r
R
1R

)
.

As an application of Theorem 5.2 we give an existence result for problem
(1.3). This result is contained in the following theorem:

Theorem 5.3. Let r1, r2 > 1, Fi : [0, T ] × RN × RN → RN , (t, x1, x2) 7→
Fi(t, x1, x2) i = 1, 2 be two functions measurable in t for each (x1, x2) ∈
RN × RN and continuous in (x1, x2) for a.e. t ∈ [0, T ], satisfy conditions
(5.6) and (5.7) with either
(i) R1 < r and c1, c2, c3, c4 > 0, or
(ii) R1 = r and c1, c2, c3, c4 > 0, small enough, such that
c11 < min

(
1
2 ,

1
2r−1

)
min

(
λ1r, λ

r
R
1R

)
.

Then, problem (1.3) has a solution in X = W 1,p1
T ×W 1,p2

T .
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