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Abstract - We prove a Filippov type existence theorem for a class of a
nonconvex second-order differential inclusions by applying the contraction
principle in the space of selections of the multifunction instead of the space
of solutions. This approach allows to obtain also the Lipschitz dependence
on the initial condition of the solution set of the problem considered.
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1. Introduction

In this paper we study second-order differential inclusions of the form

(p(t)x′(t))′ ∈ F (t, x(t)) a.e. ([0, T ]), x(0) = x0, x′(0) = x1, (1.1)

where F : [0, T ]×X → P(X) is a set-valued map, X is a separable Banach
space, x0, x1 ∈ X and p(.) : [0, T ]→ (0,∞) is continuous.

The present paper is motivated by a recent paper of Chang and Li ([10])
in which several existence results concerning problem (1.1) are obtained via
fixed point techniques. Even if we deal with an initial value problem instead
of a boundary value problem as usual, the differential inclusion (1.1) may be
regarded as an extension to the set-valued framework of the classical Sturm-
Liouville differential equation. Some existence and qualitative results for
problem (1.1) may be found in [7-10,16] etc.

The aim of our paper is to provide several additional results for problem
(1.1). More exactly, we prove a Filippov type result concerning the existence
of solutions to problem (1.1). We recall that for a differential inclusion
defined by a lipschitzian set-valued map with nonconvex values, Filippov’s
theorem (see [13]) consists in proving the existence of a solution starting
from a given ”quasi” or ”almost” solution. Moreover, the result provides an
estimate between the ”quasi” solution and the solution obtained.

127



128 Aurelian Cernea

Our approach is different from the one in [10] and consists in applying the
contraction principle in the space of selections of the multifunction instead
of the space of solutions. At the same time, using the same idea we prove
that the map that associates to a given initial condition (x0, x1) ∈ X×X the
set of solutions of problem (1.1) starting from (x0, x1) depends Lipschitz-
continuously on the initial condition.

The Filppov type result we propose in the present paper is an alternative
to the one in [8]. The two results are not comparable since the methods used
in their proofs are also different: the proof of the result in [8] follows Filip-
pov’s construction, while in our approach we obtain a ”pointwise” estimate
from a norm estimate.

We note that the idea of applying the set-valued contraction principle
due to Covitz and Nadler ([11]) in the space of derivatives of the solutions
belongs to Kannai and Tallos ([14], [17]) and it was already used for similar
results obtained for other classes of differential inclusions ([2-6]).

The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section
3 we prove the main results.

2. Preliminaries

Let denote by I the interval [0, T ], T > 0 and let X be a real separable
Banach space with the norm |.| and with the corresponding metric d(., .).

Consider F : I×X → P(X) a set-valued map, x0, x1 ∈ X and p(.) : I →
(0,∞) a continuous mapping that defined the Cauchy problem (1.1).

A continuous mapping x(.) ∈ C(I,X) is called a solution of problem
(1.1) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such
that:

f(t) ∈ F (t, x(t)) a.e. (I), (2.1)

x(t) = x0 + p(0)x1

∫ t

0

1
p(s)

ds+
∫ t

0

1
p(s)

∫ s

0
f(u)duds ∀t ∈ I. (2.2)

Note that, if we denote S(t, u) :=
∫ t
u

1
p(s) , t ∈ I, then (2.2) may be rewrite

as

x(t) = x0 + p(0)x1S(t, 0) +
∫ t

0
S(t, u)f(u)du ∀t ∈ I, (2.3)

We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if (2.1) and
(2.2) are satisfied.

We shall use the following notations for the solution sets of (1.1).

S(x0, x1) = {(x(.), f(.)) | (x(.), f(.)) is a trajectory-selection pair of (1.1)}
(2.4)

S1(x0, x1) = {x(.) |x(.) is a solution of (1.1)}. (2.5)
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In the sequel the following conditions are satisfied.

Hypothesis 2.1. (i) F (., .) : I × X → P(X) has nonempty closed values
and for every x ∈ X, F (., x) is measurable.

(ii) There exists L(.) ∈ L1(I, (0,∞)) such that for almost all t ∈ I, F (t, .)
is L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ X,

where dH(A,B) is the Pompeiu-Hausdorff distance between A,B ⊂ X

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B) | a ∈ A}.

(iii) d(0, F (t, 0)) ≤ L(t) a.e.(I)
(iv) p(.) : I → (0,∞) is a continuous function.

Let m(t) =
∫ t
0 L(u)du and M := supt∈I

1
p(t) . Note that |S(t, u)| ≤ Mt

∀t, u ∈ I, u ≤ t.
Given α ∈ R we consider on L1(I,X) the following norm

|f |1 =
∫ T

0
e−αm(t)|f(t)|dt, f ∈ L1(I,X),

which is equivalent with the usual norm on L1(I,X).
Consider the following norm on C(I,X)× L1(I,X)

|(x, f)|C×L = |x|C + |f |1 ∀ (x, f) ∈ C(I,X)× L1(I,X),

where, as usual, |x|C = supt∈I |x(t)| ∀ x ∈ C(I,X).

Finally we recall some basic results concerning set-valued contractions
that we shall use in what follows.

Let (Z, d) be a metric space and consider a set-valued map T on Z with
nonempty closed values in Z. T is said to be a λ-contraction if there exists
0 < λ < 1 such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ Z.

If Z is complete, then every set-valued contraction has a fixed point, i.e.
a point z ∈ Z such that z ∈ T (z) (see [11]).

We denote by Fix(T ) the set of all fixed point of the multifunction T .
Obviously, Fix(T ) is closed.

Proposition 2.1. (see [15]) Let Z be a complete metric space and suppose
that T1, T2 are λ-contractions with closed values in Z. Then

dH(Fix(T1), F ix(T2)) ≤ 1
1− λ

sup
z∈Z

dH(T1(z), T2(z)).
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3. The main results

We are ready now to present an existence theorem concerning solutions for
the Cauchy problem (1.1).

Theorem 3.1. Let Hypothesis 2.1 be satisfied and let α > MT and let y(.)
be a solution of the problem

(p(t)y′(t))′ = g(t) a.e. ([0, T ]), y(0) = y0, y′(0) = y1,

where g(.) ∈ L1(I,X) and there exists q(.) ∈ L1(I,R) such that

d(g(t), F (t, y(t))) ≤ q(t), a.e. (I).

Then for every ε > 0 there exists x(.) a solution of (1.1) satisfying for
all t ∈ I

|x(t)− y(t)| ≤ (1 +
MT

α−MT
eαm(t))|x0 − y0|+ p(0)MT (1+

MT

α−MT
eαm(t))|x1 − y1|+

αMTeαm(t)

α−MT

∫ T

0
e−αm(s)q(s)ds+ ε.

(3.1)

Proof. Let us consider x0, x1 ∈ X, f(.) ∈ L1(I,X) and define the following
set-valued maps

Mx0,x1,f (t) = F (t, x0 + S(t, 0)p(0)x1 +
∫ t

0
S(t, u)f(u)du), t ≥ 0, (3.2)

Tx0,x1(f) = {φ(.) ∈ L1(I,X) |φ(t) ∈Mx0,x1,f (t) a.e. (I)}. (3.3)

We shall prove first that Tx0,x1(f) is nonempty and closed for every f ∈
L1(I,X). The fact that that the set-valued map Mx0,x1,f (.) is measurable is
well known. For example, the map t→ x0 +S(t, 0)p(0)x1 +

∫ t
0 S(t, u)f(u)du

can be approximated by step functions and we can apply Theorem III. 40 in
[1]. Since the values of F are closed and X is separable with the measurable
selection theorem (Theorem III.6 in [1]) we infer that Mx0,x1,f (.) admits a
measurable selection φ. According to Hypothesis 2.1 one has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t, x(t))) ≤ L(t)(1 + |x(t)|)

≤ L(t)(1 + |x0|+ p(0)Mt|x1|+
∫ t

0
M(t− s)|f(s)|ds).

Thus integrating by parts we obtain∫ T

0
e−αm(t)|φ(t)|dt ≤

∫ T

0
e−αm(t)L(t)(1 + |x0|+ p(0)Mt|x1|+
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∫ t

0
M(t− s)|f(s)|ds)dt ≤ 1 + |x0|

α
+
MTp(0)|x1|

α
+
MT |f |1

α
.

Hence, if φ(.) is a measurable selection of Mx0,x1,f (.), then φ(.) ∈ L1(I,X)
and thus Tx0,x1(f) 6= ∅.

The set Tx0,x1(f) is closed. Indeed, if φn ∈ Tx0,x1(f) and |φn − φ|1 → 0
then we can pass to a subsequence φnk such that φnk(t) → φ(t) for a.e.
t ∈ I, and we find that φ ∈ Tx0,x1(f).

The next step of the proof will show that Tx0,x1(.) is a contraction on
L1(I,X).

Let f, g ∈ L1(I,X) be given, φ ∈ Tx0,x1(f) and let δ > 0. Consider the
following set-valued map

G(t) = Mx0,x1,g(t)∩{x ∈ X | |φ(t)−x| ≤ L(t)|
∫ t

0
S(t, s)(f(s)−g(s))ds|+δ}.

Since

d(φ(t),Mx0,x1,g(t)) ≤ d(F (t, x0 + S(t, 0)p(0)x1 +
∫ t

0
S(t, u)f(u)du),

F (t, x0+S(t, 0)p(0)x1+
∫ t

0
S(t, u)g(u)du)) ≤ L(t)|

∫ t

0
S(t, u)(f(u)−g(u))du|

we deduce that G(.) has nonempty closed values. Moreover, according to
Proposition III.4 in [1], G(.) is measurable. Let ψ(.) be a measurable selec-
tion of G(.). It follows that ψ ∈ Tx0,x1(g) and

|φ− ψ|1 =
∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0
e−αm(t)L(t)(

∫ t

0
M(t− s)|f(s)−

g(s)|ds)dt+
∫ T

0
δe−αm(t)dt ≤ MT

α
|f − g|1 + δ

∫ T

0
e−αm(t)dt.

Since δ was arbitrary, we deduce that

d(φ, Tx0,x1(g)) ≤ MT

α
|f − g|1.

Replacing f by g we obtain

d(Tx0,x1(f), Tx0,x1(g)) ≤ MT

α
|f − g|1,

hence Tx0,x1(.) is a contraction on L1(I,X).
We consider next the following set-valued maps

F̃ (t, x) = F (t, x) + q(t)B, (t, x) ∈ I ×X,
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M̃y0,y1,f (t) = F̃ (t, y0 + S(t, 0)p(0)y1 +
∫ t

0
S(t, u)f(u)du), t ∈ I, y0, y1 ∈ X,

T̃y0,y1(f) = {φ(.) ∈ L1(I,X) |φ(t) ∈ M̃y0,y1,f (t) a.e. (I)}, f ∈ L1(I,X),

where B denotes the closed unit ball in X. Obviously, F̃ (., .) satisfies Hy-
pothesis 2.1.

Repeating the previous step of the proof we obtain that T̃y0,y1(.) is also
a MT

α -contraction on L1(I,X) with closed nonempty values.
We prove next the following estimate

dH(Tx0,x1(f), T̃y0,y1(f)) ≤ 1
α
|x0− y0|+

MTp(0)
α

|x1− y1|+
∫ T

0
e−αm(t)q(t)dt

(3.4)
∀ f(.) ∈ L1(I,X).

Let φ ∈ Tx0,x1(f), δ > 0 and, for t ∈ I, define

G1(t) = M̃y0,y1,f (t) ∩ {z ∈ X | |φ(t)− z| ≤
L(t)(|x0 − y0|+ p(0)|S(t, 0)| · |x1 − y1|) + q(t) + δ}

With the same arguments used for the set-valued map G(.), we deduce
that G1(.) is measurable with nonempty closed values. Let ψ(.) be a mea-
surable selection of G1(.). It follows that ψ(.) ∈ T̃y0,y1(f) and one has

|φ− ψ|1 =
∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt ≤

∫ T

0
e−αm(t)[L(t)(|x0 − y0|+ p(0)|S(t)| · |x1 − y1|) + q(t) + δ]dt ≤

1
α
|x0 − y0|+

p(0)MT

α
|x1 − y1|+

∫ T

0
e−αm(t)q(t)dt+ δ

∫ T

0
e−αm(t)q(t)dt.

Since δ > 0 was arbitrary, as above, we obtain (3.4). Applying Proposi-
tion 2.1 we get

dH(Fix(Tx0,x1), F ix(T̃y0,y1)) ≤ 1
α−MT

|x0 − y0|

+
p(0)MT

α−MT
|x1 − y1|+

α

α−MT

∫ T

0
e−αm(t)q(t)dt.

Since g(.) ∈ Fix(T̃y0,y1) it follows that there exists f(.) ∈ Fix(Tx0,x1)
such that for any ε > 0

|g − f |1 ≤
1

α−MT |x0 − y0|+ p(0)MT
α−MT |x1 − y1|+ α

α−MT

∫ T
0 e−αm(t)q(t)dt+ ε

MTeαm(T ) .

(3.5)
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We define x(t) = x0 +S(t, 0)p(0)x1 +
∫ t
0 S(t, u)f(u)du, t ∈ I and we have

|x(t)− y(t)| ≤ |x0 − y0|+ p(0)MT |x1 − y1|+MTeαm(t)|f − g|1.

Combining the last inequality with (3.5) we obtain (3.1).

As we already pointed out the idea in the proof of Theorem 3.1 can be
adapted in order to prove that the set of all trajectory-selection pairs of
(1.1) depends Lipschitz-continuously on the initial condition.

Theorem 3.2. Let Hypothesis 2.1 be satisfied and let α > MT .
Then the map (x0, x1) 7→ S(x0, x1) is Lipschitz-continuous on X × X

with nonempty closed values in C(I,X)× L1(I,X).

Proof. For x0, y0 ∈ X, f(.) ∈ L1(I,X) we consider the set valued maps
Mx0,x1,f (.) and Tx0,x1(.) defined in (3.2) and (3.3), respectively. We have
already proved that Tx0,x1(.) is a MT

α -contraction on L1(I,X).
Consequently Tx0,x1(.) admits a fixed point f(.) ∈ L1(I,X). We define

x(t) = x0 + S(t, 0)p(0)x1 +
∫ t
0 S(t, u)f(u)du.

We have that S(x0, x1) ⊂ C(I,X) × L1(I,X) is a closed subset. Let
(xn, fn) ∈ S(x0, x1), |(xn, fn)− (x, f)|C×L → 0. In particular, we have fn ∈
Fix(Tx0,x1) which is a closed set, and thus f(.) ∈ Fix(Tx0,x1). We define
y(t) = x0 + S(t, 0)p(0)x1 +

∫ t
0 S(t, u)f(u)du and we prove that y(.) = x(.).

One may write
|y − xn|C = sup

t∈I
|y(t)− xn(t)| ≤

≤ sup
t∈I

M

∫ t

0
(t− u)|fn(u)− f(u)|du ≤MTeαm(T )|fn − f |1

and finally we get that y(.) = x(.).
We prove next the following inequality

dH(Tx0,x1(f), Tξ0,ξ1(f)) ≤ 1
α

(|x0 − ξ0|+ p(0)MT |x1 − ξ1|) (3.6)

∀f ∈ L1(I,X), x0, x1, ξ0, ξ1 ∈ X. Let us consider the set-valued map
G1(t) =

Mξ0,ξ1,f (t)∩{z ∈ X | |φ(t)−z| ≤ L(t)(|x0−ξ0|+p(0)|S(t, 0)| · |x1−ξ1|)+ε},

t ∈ I, where φ(.) is a measurable selection of Mx0,x1,f (.) and ε > 0.
With the same arguments used for the set valued map G(.), we deduce

that G1(.) is measurable with nonempty closed values. Let ψ(.) be a mea-
surable selection of G1(.). It follows that ψ(.) ∈ Tξ0,ξ1(f) and

|φ− ψ|1 =
∫ T

0
e−αm(t)|φ(t)− ψ(t)|dt ≤
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∫ T

0
e−αm(t)L(t)(|x0 − ξ0|+ p(0)|S(t)| · |x1 − ξ1|)dt+ ε

∫ T

0
e−αm(t)dt

≤ 1
α
|x0 − ξ0|+

MTp(0)
α

|x1 − ξ1|+ ε

∫ T

0
e−αm(t)dt.

Since ε was arbitrary, we deduce that

d(φ, Tx2,y2(f)) ≤ 1
α

(|x0 − ξ0|+MTp(0)|ξ1 − ξ1|).

Replacing (x0, x1) by (ξ0, ξ1) we obtain (3.6).
From (3.6) and Proposition 2.1 we obtain

dH(Fix(Tx0,x1), F ix(Tξ0,ξ1)) ≤ 1
α−MT

(|x0 − ξ0|+ p(0)MT |x1 − ξ1|).

Let x0, x1, ξ0, ξ1 ∈ X and (x(.), f(.)) ∈ S(x0, x1). In particular, f(.) ∈
Fix(Tx0,x1) and thus, for every ε > 0 there exists g(.) ∈ Fix(Tξ0,ξ1) such
that

|f − g|1 ≤
1

α−MT
(|x0 − ξ0|+MTp(0)|x1 − ξ1|) + ε.

Put z(t) = ξ0 + S(t, 0)p(0)ξ1 +
∫ t
0 S(t, u)g(u)du. One has

|x− z|C = sup
t∈I
|x(t)− z(t)| ≤ |x0 − ξ0|+MTp(0)|x1 − ξ1|+

sup
t∈I

∫ t

0
M(t−s)|f(s)−g(s)|ds ≤ |x0−ξ0|+MTp(0)|x1−ξ1|+MTeαm(t)|f−g|1

≤ (1 +
MTeαm(t)

α−MT
)(|x0 − ξ1|+MTp(0)|x1 − ξ1|) +

MTeαm(t)

α−MT
ε.

If we denote k = max{1 + MTeαm(T )

α−MT , p(0)MT (1 + MTeαm(T )

α−MT } we deduce
first that

d((x, f),S(ξ0, ξ1)) ≤ k[|x0 − ξ0|+ |x1 − ξ1|]

and by interchanging (x0, x1) and (ξ0, ξ1) we obtain

dH(S(x0, x1),S(ξ0, ξ1)) ≤ k[|x0 − ξ0|+ |x1 − ξ1|]

and the proof is complete.

Obviously, from Theorem 3.2 we also obtain

Corollary 3.1. Let Hypothesis 2.1 be satisfied and let α > MT . Then the
map (x0, x1)→ S1(x0, x1) is Lipschitz continuous on X ×X with nonempty
values in C(I,X).
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In general, under the hypothesis of Theorem 3.2 the solution set S1

is not closed in C(I,X). The next result shows that if X is reflexive
and the multifunction F (., .) is convex valued and integrably bounded then
S1(x0, x1) ⊂ C(I,X) is closed.

Let B be the closed unit ball in X.

Theorem 3.3. Assume that X is reflexive, α > MT and let F (., .) : I ×
X → P(X) be a convex valued set valued map that satisfies Hypothesis 2.1.
Assume that there exists k(.) ∈ L1(I,X) such that for almost all t ∈ I and
for all x ∈ X, F (t, x) ⊂ k(t)B.

Then for every x0, x1 ∈ X, the set S1(x0, x1) ⊂ C(I,X) is closed.

Proof. Let xn(.) ∈ S1(x0, x1) such that |xn − x|C → 0. There exists
hn(.) ∈ L1(I,X) such that (xn(.), hn(.)) is a trajectory-selection pair of
(1.1) for all n ∈ N. We define fn(t) = e−αm(t)hn(t), t ∈ I.

The set valued map F (., .) being integrably bounded, we have that fn(.)
is bounded in L1(I,X) and for any ε > 0 there exists δ > 0 such that
for any E ⊂ I, µ(E) < δ, |

∫
E fn(s)ds| < ε uniformly with respect to n.

Moreover, X is reflexive and so by the Dunford-Pettis criterion (see [12]),
taking a subsequence and keeping the same notations, we may assume that
fn(.) converges weakly in L1(I,X) to some f(.) ∈ L1(I,X).

We recall that for convex subsets of a Banach space the strong closure
coincides with the weak closure. We apply this result. Since fn(.) converges
weakly in L1(I,X) to f(.) ∈ L1(I,X) for all h ≥ 0, f(.) belongs to the
weak closure of the convex hull co{fn(.)}n≥h of the subset {fn(.)}n≥h. It
coincides with the strong closure of co{fn(.)}n≥h. Hence there exist λni >
0, i = n, . . . k(n) such that

k(n)∑
i=1

λni = 1, gn(.) =
k(n)∑
i=n

λni fi(.) ∈ co{fn(.)}n≥h

and such that gn(.) converges strongly to f(.) in L1(I,X). Let

ln(.) =
k(n)∑
i=n

λni hi(.)

Then there exists a subsequence gnj (.) that converges to f(.) almost every-
where. In particular, lnj (.) converges almost everywhere to l(.) = eαm(.)f(.)
∈ L1(I,X). Hence using the Lebesgue dominated convergence theorem, for
every t ∈ I we obtain

lim
j→∞

∫ t

0
S(t, u)lnj (u)du =

∫ t

0
S(t, u)l(u)du
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We define

y(t) = x0 + S(t, 0)p(0)x1 +
∫ t

0
S(t, u)l(u)du, t ∈ I

and observe that

|x(t)− y(t)| ≤ |x(.)− xnj (.)|C + |
∫ t

0
S(t, u)lnj (u)du−

∫ t

0
S(t, u)l(u)du|,

which yields x(t) = y(t) ∀t ∈ I.
Let us observe now that for almost every t ∈ I

lnj (t) ∈
k(nj)∑
i=nj

λ
nj
i F (t, xi(t)) ⊂ F (t, x(t)) + L(t)

k(nj)∑
i=nj

λ
nj
i |x(t)− xi(t)|B.

Since limi→∞ |x(t)− xi(t)| = 0, we deduce that f(t) ∈ F (t, x(t)) a.e.(I)
and the proof is complete.
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