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Abstract - A.S. Dugas and R. Mart́ınez-Villa proved that if there exists
a stable equivalence of Morita type between the k-algebras Λ and Γ, then
it is possible to replace Λ by a Morita equivalent k-algebra ∆ such that Γ
is a subring of ∆ and the induction and restriction functors induce inverse
stable equivalences. In this note we give an affirmative answer to a question
of Alex Dugas about the existence of a Γ-coring structure on ∆. We do this
by showing that ∆ is a Frobenius extension of Γ.

Key words and phrases : stable equivalence of Morita type, Hopf
algebra, Frobenius extension, coring.

Mathematics Subject Classification (2000) : primary 16D90; sec-
ondary 16D20, 16D50, 16W30, 16S40.

As in [4], we will assume throughout that the algebras Λ and Γ are finite
dimensional over a field k and have no semisimple blocks.

The algebras Λ and Γ are said to be stably equivalent if the categories
of finitely generated modules modulo projectives for Λ and Γ are equivalent
(see [1]).

A pair of left-right projective bimodules ΛMΓ and ΓNΛ is said to induce
a stable equivalence of Morita type between Λ and Γ if we have the following
isomorphisms of bimodules:

ΛM ⊗Γ NΛ ' ΛΛΛ ⊕ ΛPΛ and ΓN ⊗Λ MΓ ' ΓΓΓ ⊕ ΓQΓ

where ΛPΛ and ΓQΓ are projective bimodules (see [2]).
We begin by stating the result of Dugas and Mart́ınez-Villa mentioned

in the abstract:

Theorem 1.1. (see [4, Corollary 5.1]) Let Λ and Γ be finite dimensional
k-algebras whose semisimple quotients are separable. If at least one of them
is indecomposable, then the following are equivalent:
(1) There exists a stable equivalence of Morita type between Λ and Γ.
(2) There exists a k-algebra ∆, Morita equivalent to Λ, and an injective ring
homomorphism Γ ↪→ ∆ such that the restriction and induction functors are
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exact and induce inverse stable equivalences.
(3) There exists a k-algebra ∆, Morita equivalent to Λ, and an injective ring
homomorphism Γ ↪→ ∆ such that

Γ∆Γ = ΓΓΓ ⊕ ΓPΓ and ∆∆⊗Γ ∆∆ ' ∆∆∆ ⊕ ∆Q∆

for projective bimodules ΓPΓ and ∆Q∆.

We recall now the definition of Frobenius extension, and its dual notion,
Frobenius coring.

Definition 1.1. (see [5]) Let i : R −→ S be a ring homomorphism. Then
S/R is called a Frobenius extension if one of the following equivalent condi-
tions is satisfied:

1. S is finitely generated and projective as a right R-module and
HomR(S,R) and S are isomorphic as (R,S)-bimodules.

2. There exists a Frobenius system (e, ε), consisting of

e = e1⊗e2 ∈ (S⊗RS)S = {e1⊗e2 ∈ S⊗RS | se1⊗e2 = e1⊗e2s, ∀s ∈ S}

and ε : S → R an R-bimodule map such that ε(e1)e2 = e1ε(e2) = 1.

For the proof of the equivalence of the two conditions, see for example
[3, Theorem 28].

Definition 1.2. (see [7]) If R is a ring, a coring is a comonoid in the
monoidal category of R-bimodules. So a coring consists of an R-bimodule
C, together with a coassociative comultiplication C −→ C ⊗R C and counit
C −→ R which are both R-bimodule maps.
C is called a Frobenius R-coring if there exists a Frobenius system (θ, 1),
consisting of an element 1 ∈ C and an R-bimodule map θ : C ⊗R C → R
satisfying the conditions

c(1)θ(c(2) ⊗ d) = θ(c⊗ d(1))d(2) and θ(c⊗ 1) = θ(1⊗ c) = ε(c).

Let (S,m, 1, e, ε) be a Frobenius extension of R, and consider ∆ : S →
S⊗RS, ∆(s) = se = es. An easy verification shows that (S,∆, ε, θ = ε◦m, 1)
is a Frobenius coring.
Conversely, if (C,∆, ε, θ, 1) is a Frobenius R-coring, then (C,m, 1,∆(1), ε) is
a Frobenius extension. Here m : C ⊗R C → C, m(c⊗ d) = c(1)θ(c(2)⊗ d) =
θ(c⊗ d(1))d(2).
These two assertions basically tell us that Frobenius extension structures on
an R-bimodule M correspond bijectively to Frobenius R-coring structures
on M .
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Let S be a Frobenius extension. Then the categories MS and MS are iso-
morphic: on a right S-module, we define a right S-coaction by ρ(m) = me1⊗
e2. On a right S-comodule, we define a right S-action ms = m[0]ε(m[1]s).
The restriction functor G : MS → MR has a left adjoint, the induction
functor F ; the forgetful functor MS → MR has a right adjoint. These
functors are compatible with the above isomorphism. This implies that G
is at the same time a left and a right adjoint of F .

Definition 1.3. (see [6] or [3, p.91]) Let F : C −→ D be a covariant functor.
If there exists a functor G : D −→ C which is at the same time a right and a
left adjoint of F , then we call F a Frobenius functor, and we say that (F,G)
is a Frobenius pair for C and D.

Remark 1.1. (see [5] or [3, Theorem 28, p.103]) Let i : R −→ S be a
ring homomorphism, F the induction functor and G the restriction functor.
If S/R is a Frobenius extension, then we have seen above that (F,G) is a
Frobenius pair; in fact, it can be shown that the converse also holds: (F,G)
is a Frobenius pair if and only if S/R is a Frobenius extension.

We can now state and prove our result. Assertion (3) gives an affirmative
answer to a question asked by Alex Dugas.

Theorem 1.2. Let Λ and Γ be finite dimensional k-algebras whose semisim-
ple quotients are separable. Assume that at least one of them is indecom-
posable, and that there exists a stable equivalence of Morita type between Λ
and Γ. Then the following assertions hold:
(1) There exists a k-algebra ∆, Morita equivalent to Λ, and an injective ring
homomorphism Γ ↪→ ∆ such that the restriction and induction functors are
a Frobenius pair.
(2) There exists a k-algebra ∆, Morita equivalent to Λ, and an injective ring
homomorphism Γ ↪→ ∆ such that ∆/Γ is a Frobenius extension.
(3) There exists a k-algebra ∆, Morita equivalent to Λ, and an injective ring
homomorphism Γ ↪→ ∆ such that

Γ∆Γ = ΓΓΓ ⊕ ΓPΓ and ∆∆⊗Γ ∆∆ ' ∆∆∆ ⊕ ∆Q∆

for projective bimodules ΓPΓ and ∆Q∆, and ∆ is a Frobenius Γ-coring with
comultiplication given by the injection of ∆∆∆ into ∆∆⊗Γ ∆∆, and counit
given by the projection of Γ∆Γ onto ΓΓΓ.

Proof. (1) Suppose ΛMΓ and ΓN∆ are indecomposable bimodules that
induce a stable equivalence of Morita type. Let ∆ = EndΛ(M). By the
proof of (1)⇒(2) of [4, Corollary 5.1], we have that

Res∆
Γ ' (−⊗Λ MΓ) ◦Hom∆(M,−)
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and
Ind∆

Γ ' (−⊗Λ M∆) ◦ (−⊗Γ NΛ).

Now −⊗ΛMΓ is a right and left adjoint of −⊗ΓNΛ by [4, Corollary 3.1,(2)],
and Hom∆(M,−) is a right and left adjoint of − ⊗Λ M∆ because they are
inverse equivalences, so Res∆

Γ is a right and left adjoint of Ind∆
Γ .

(2) follows from (1) and Remark 1.1.
(3) follows immediately from the above observation that a Frobenius exten-
sion is also a Frobenius coring. ut
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