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Abstract - Solving exactly nonlinear systems of polynomial equations,
especially those involving parameters, is notoriously hard, in spite of the
availability of some general methods, like the generalized resultant method
or the Gröbner basis method. When a system presents symmetries, as most
systems naturally occurring in mathematical physics often do, an effective
use of substitutions involving the generators of the invariants of the system
may alleviate the problem. In this paper we reiterate this point of view in
the case of certain generic systems in three and four variables, with cyclic
symmetry, and then exemplify it for the Swift-Soward convection system
and the Noonburg neural network system.
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1. Introduction

Nonlinear systems of polynomial equations appear naturally in mathemati-
cal physics. Often their solutions represent equilibrium points of evolution
processes modeled by ordinary differential equations [2, 4, 5]. Such pro-
cesses usually depend on various parameters and often present symmetries.
In view of the fundamental theorem of algebra and basic Galois theory solv-
ing them exactly means in general reducing them to one single equation in
one variable. We proceed now to present the abstract set-up of our problem.

Let P (X1, X2, . . . , Xn) be an arbitrary polynomial of degree m ≥ 2 in
n ≥ 2 indeterminates (X1, X2, . . . , Xn) = X with generic complex coeffi-
cients. Here and in the future generic will mean that the coefficients belong
to the complement of some finite union of algebraic varieties of positive
co-dimension in the coefficient space. P can then be represented as

P (X1, X2, . . . , Xn) =
∑

I,|I|≤m

aIX
I , aI ∈ C, (1.1)
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where I = (i1, i2, . . . , in) runs through the set of all multi-indeces such that
i1 ≥ 0, i2 ≥ 0, . . . , in ≥ 0, |I| := i1 + i2 + · · · + in ≤ m, and XI stands
for Xi1

1 X
i2
2 . . . Xin

n . Then the ideal of C[X1, X2, . . . , Xn] generated by the n
polynomials P (X1, X2, . . . , Xn), P (X2, X3, . . . , X1), P (X3, . . . , X1, X2), . . . ,
P (Xn, X1, . . . , Xn−1) generates a 0-dimensional algebraic variety. As such,
the system of n equations in n complex variables (z1, z2, . . . , zn)=z,

P (z1, z2, . . . , zn) = 0
P (z2, . . . , zn, z1) = 0

...
P (zn, z1, . . . , zn−1) = 0

(1.2)

admits finitely many solutions. In fact, fundamental results in algebraic
geometry due to van der Waerden [6, 7] show that the system (1.2) admits
exactly mn solutions for generic values of the coefficients aI . Typically, only
the solutions (z1, z2, . . . , zn) of (1.2) with zi 6= zj for i 6= j present physical
interest. Such solutions will be called nontrivial. Any nontrivial solution
generates n such, by permuting circularly its components.

Notice that each polynomial system (1.2) has at least m trivial solutions,
in the generic case, all of whose components are equal, z1 = z2 = · · · = zn. In
fact, we conjecture (motivated by all our subsequent results and some simple
combinatorial arguments) that all the solutions of (1.2) could potentially be
obtained in the following manner: If d is a divisor of n, n = dq, then replac-
ing (z1, z2, . . . , zn) by (z1, z2, . . . , zd, z1, z2, . . . , zd, . . . , z1, z2, . . . , zd)︸ ︷︷ ︸

q times

reduces

the system (1.2) to a subsystem of d polynomial equations in d variables
(z1, z2, . . . , zd), and so all the solutions of (1.2) would eventually be obtained
from the nontrivial solutions of these associated d-subsystems.

Ideally, solving the system (1.2) will require finding a polynomial p ∈
C[x] in one indeterminate x whose roots supply all the components of all so-
lutions of (1.2), nontrivial or trivial, and eventually finding a factorization of
this polynomial in factors whose roots correspond to nontrivial, respectively
trivial, solutions. For instance, generically

m∑
k=0

 ∑
I,|I|=k

aI

xk (1.3)

will always be a factor of p(x) yielding trivial solutions with all components
equal.

If (z1, z2, . . . , zn) is a solution of (1.2) then (x− z1)(x− z2) . . . (x− zn) =
xn−σ1x

n−1+σ2x
n−2+· · ·+(−1)n−1σn−1x+(−1)nσn will certainly be a factor

of p(x), where σ1, σ2, . . . , σn are the elementary symmetric expressions
associated to z1, z2, . . . , zn, namely, σ1 = z1 + z2 + · · · + zn, σ2 = z1z2 +
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z1z3 + · · · + zn−1zn, . . . , σn = z1z2 . . . zn. Now, solving for (σ1, σ2, . . . , σn)
instead of (z1, z2, . . . , zn) represents a major simplification, as the symmetry
of the system will be increased from circular to permutational. The loss of
component order can be restored by considering secondary invariants [1], as
described below.

The first step in passing from solutions (z1, z2, . . . , zn) to (σ1, σ2, . . . , σn)
is to replace the system (1.2) by the following more elaborate one:


z1P (z1, . . . , zn) + z2P (z2, . . . , zn, z1) + · · ·+ znP (zn, z1, . . . , zn−1) = 0
z2P (z1, . . . , zn) + z3P (z2, . . . , zn, z1) + · · ·+ z1P (zn, z1, . . . , zn−1) = 0

...
znP (z1, . . . , zn) + z1P (z2, . . . , zn, z1) + · · ·+ zn−1P (zn, . . . , zn−1) = 0

(1.4)
Notice that (0, 0, . . . , 0) is always a solution of (1.4), but generically not of
(1.2). It is obvious that all the solutions of (1.2) are also solutions of (1.4),
and that any solution (z1, z2, . . . , zn) of (1.4) with det(Z) 6= 0, where

Z =


z1 z2 . . . zn−1 zn
z2 z3 . . . zn z1
. . . . . . . . . . . . . . . . . . . .
zn z1 . . . zn−2 zn−1

 , (1.5)

is also solution of (1.2).
With the warning that a solution (z1, z2, . . . , zn) of (1.4) with det(Z) = 0

may not be solution of (1.2), as the case of (0, 0, . . . , 0) is, we shift our
analysis from system (1.2) to system (1.4).

In (1.4), unlike (1.2), cyclic permutations leave invariant each equation
of the system. Of course, there are other ways of associating to (1.2) systems
with this property, some involving the simpler equation P (z1, z2, . . . , zn) +
P (z2, z3, . . . , zn, z1) + · · ·+P (zn, z1, . . . , zn−1) = 0, but (1.4) has the benefit
of also preserving the degree of each equation.

At any rate, the use of (1.4) paves the way for the implementation of
some powerful polynomial invariant theory [1], which we proceed to explain.

The polynomial ring in n indeterminates C[X1, . . . , Xn] and its associ-
ated fraction field C(X1, . . . , Xn) are acted upon by the symmetric group Sn

and its subgroup Cn of cyclic permutations in the obvious way, by permuting
the indeterminates. The associated invariant rings/fields, C[X1, . . . , Xn]Sn/
C(X1, . . . , Xn)Sn and C[X1, . . . , Xn]Cn / C(X1, . . . , Xn)Cn , that is the ring
of polynomials/fractions left invariant by Sn/Cn obviously satisfy

C[X1, . . . , Xn]Sn ⊂C[X1, . . . , Xn]Cn ,

C(X1, . . . , Xn)Sn ⊂C(X1, . . . , Xn)Cn .
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By the fundamental theorem of symmetric polynomials, the elementary sym-
metric polynomials Σ1 = X1 +X2 + · · ·+Xn, Σ2 = X1X2 +X1X3 + · · ·+
Xn−1Xn, . . . ,Σn = X1X2 . . . Xn, are polynomially independent over C and,

C[X1, . . . , Xn]Sn = C[Σ1, . . . ,Σn],

C(X1, . . . , Xn)Sn = C(Σ1, . . . ,Σn).

Then the Hironaka decomposition [1] says that C[X1, . . . , Xn]Cn is a free
module of rank (n− 1)! over C[Σ1, . . . ,Σn], and if Θ is a primitive invariant
polynomial of Cn with respect to Sn in the sense that Θ is Cn-invariant and
the only elements in Sn leaving Θ invariant belong to Cn, then Θ is algebraic
over C[Σ1, . . . ,Σn] with minimal polynomial of degree (n− 1)! and,

C(X1, . . . , Xn)Cn =
(n−1)!−1⊕

i=0

C(Σ1, . . . ,Σn)Θi. (1.6)

The minimal (monic) polynomial in C[Σ1,Σ2, . . . ,Σn][T ] whose root Θ is,
equals

∏
ĝ∈Sn/Cn

(T − ĝ ·Θ).

The polynomials Σ1,Σ2, . . . ,Σn are then called primary invariants, and
those from a basis of C[X1, . . . , Xn]Cn as a free module over C[Σ1, . . . ,Σn],
or the relevant powers of Θ, secondary invariants.

An example of such a primitive element Θ is the polynomial X1X
2
2 +

X2X
2
3 + · · ·+Xn−1X

2
n +XnX

2
1 , which will be our standard Θ from now on.

When applying the Hironaka decomposition (1.6) to the system (1.4),
all of whose equations are derived from invariant polynomials belonging to
C(X1, . . . , Xn)Cn , we obtain a new nonlinear system of n + 1 polynomial
equations in the n + 1 variables σ1, σ2, . . . , σn, θ, corresponding to the pri-
mary and secondary invariants Σ1,Σ2, . . . , Σn,Θ. The first n equations of
this new system correspond directly to system (1.4) and can be viewed as
providing sets containing the components of solutions of (1.2), while the last
one is derived from the minimal polynomial of the secondary invariant Θ
and has the role of putting the solution components in the proper order.

This last system is itself formidable enough, in general, and the best
one can hope for is reducing it to a single equation in σ1, with the added
possibility of solving for σ2, σ3, . . . , σn, and θ in terms of σ1.

2. Systems in Three Variables

In this section we specialize the abstract discourse of Section 1 to systems in
three indeterminates z1, z2, z3, with a detailed analysis of those associated
to quadratic and cubic polynomials P (X1, X2, X3).

For starters, for n = 3, Σ1 = X1 +X2 +X3, Σ2 = X1X2 +X2X3 +X3X1,
Σ3 = X1X2X3, Θ = X1X

2
2 +X2X

2
3 +X3X

2
1 , and the Hironaka decomposition
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(1.6) reduces to

C[X1, X2, X3]C3 = C[Σ1,Σ2,Σ3]⊕ C[Σ1,Σ2,Σ3]Θ

The minimal polynomial of Θ gives then

Θ2 − (Σ1Σ2 − 3Σ3)Θ + (Σ3
1Σ3 + Σ3

2 + 9Σ2
3 − 6Σ1Σ2Σ3) = 0. (2.1)

Case A). P (X1, X2, X3) has degree m = 2. It is convenient to represent
P (X1, X2, X3) as

P (X) = a1X
2
1 + a2X

2
2 + a3X

2
3+

b1X2X3 + b2X3X1 + b3X1X2+
c1X1 + c2X2 + c3X3 + d,

(2.2)

where ai, bi, ci, i = 1, 2, 3, d, are arbitrary coefficients, packaged, excepting
d, as vectors a, b, and c in C3.

The system (1.2) associated to this P (X1, X2, X3) must have eight solu-
tions in the generic case, of whose two are trivial with identical components
and six nontrivial, in two sets of three distinct components. This predicts
that the desired polynomial equation in σ1 resulting from solving the as-
sociated system (1.4) should have the factor (a + b)σ2

1 + 3cσ1 + 9d, and a
more complicated factor, quadratic in σ1, corresponding to the nontrivial
solutions. (Here and in what follows in this section, a := a1 + a2 + a3,
b := b1 + b2 + b3, and c := c1 + c2 + c3).

A simple analysis based on degree consideration shows that the Hironaka
representation of the polynomials building up system (1.4),

XiP (X1, X2, X3) +Xi+1P (X2, X3, X1) +Xi+2P (X1, X2, X3),

i = 1, 2, 3, X4 = X1, X5 = X2, must have the type

AΣ3
1 +BΣ2

1 + CΣ1 + (DΣ1 + E)Σ2 + FΣ3 +GΘ,

where A,B, . . . , F,G are suitable coefficients, depending on the coefficients
of P (X1, X2, X3). Actually, the system (1.4) to which we add the equation
generated by (2.1), becomes in this case

a1σ
3
1 + c1σ

2
1 + dσ1 + [(e3 − 3a1)σ1 + c− 3c1]σ2+

3(e1 − e3)σ3 + (e2 − e3)θ = 0

a2σ
3
1 + c2σ

2
1 + dσ1 + [(e1 − 3a2)σ1 + c− 3c2]σ2+

3(e2 − e1)σ3 + (e3 − e1)θ = 0

a3σ
3
1 + c3σ

2
1 + dσ1 + [(e2 − 3a3)σ1 + c− 3c3]σ2+

3(e3 − e2)σ3 + (e1 − e2)θ = 0

θ2 − (σ1σ2 − 3σ3)θ + (σ3
1σ3 + σ3

2 + 9σ2
3 − 6σ1σ2σ3) = 0,

(2.3)
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where ei := ai + bi, i = 1, 2, 3, or e=a+b.
The first three equations of (2.3) constitute a linear system in σ2, σ3,

and θ. Its solution naturally reflects the symmetries of this system, albeit
in complicated ways, so in order to express it in some reasonable fashion we
need additional notation. If u= (u1, u2, u3), v= (v1, v2, v3), w= (w1, w2, w3)
are vectors in C3 we will denote the vectors obtained from u by circularly
permuting its components by u+1 and u+2, namely u+1:=(u2, u3, u1) and
u+2:=(u3, u1, u2). Also, u · v will mean the expression u1v1 + u2v2 + u3v3,
while

∣∣∣ u
v
w

∣∣∣ will stand for the determinant of the 3× 3-matrix whose rows are
u, v, and w, in this order. Finally, the elementary symmetric expressions
in the components of u will be denoted by u := u1 + u2 + u3, as before,
s2(u):=u1u2 + u2u3 + u3u1, and s3(u):=u1u2u3.

With the above notations we have, in the generic case,

σ2 =
aσ2

1 + cσ1 + 3d
3a− e

σ3 =
1

3(3a− e) (s2(e)− e · e)

[∣∣∣ a
e+1

e+2

∣∣∣σ3
1 +

(∣∣∣ c
e+1

e+2

∣∣∣+ ace− 3ca · e
)
σ2

1+(
3
∣∣∣ e

c+1

c+2

∣∣∣− 3es2(c) + c2e+ d
(
3s2(e)− e2

)
− 9da · e+ 3dae

)
σ1+

3d(ce− 3c · e)]

θ =
1

(3a− e) (s2(e)− e · e)

[∣∣∣ a
e+2

e

∣∣∣σ3
1 +

(∣∣∣ c
e+2

e

∣∣∣+ ace− 3ca · e+1
)
σ2

1+(
d
(
3s2(e)− e2

)
+ 3d

(
ae− 3a · e+1

)
+ c2e− 3cc · e+1

)
σ1+

3d(ce− 3c · e+1)
]

(2.4)
With the values (2.4) of σ2, σ3, and θ, the fourth equation of (2.3) becomes,
after factoring,

−1
3(3a− e)3 (s2(e)− e · e)

(eσ2
1 + 3cσ1 + 9d)2×[(

3
∣∣∣ e

a+1

a+2

∣∣∣− ∣∣∣ a
e+1

e+2

∣∣∣+ 3a3 − 9as2(a)
)
σ2

1+(
3
∣∣∣ a

c+1

e+2

∣∣∣+ 3
∣∣∣ a

e+1

c+2

∣∣∣− ∣∣∣ c
e+1

e+2

∣∣∣+ 3ca · e− ace+ 9aa · c− 3a2c
)
σ1+

d(e2 − 3s2(e)) + (3a− e)(c2 − 3s2(c))
]

= 0

So generically, either eσ2
1 + 3cσ1 + 9d = 0, or(

3
∣∣∣ e

a+1

a+2

∣∣∣− ∣∣∣ a
e+1

e+2

∣∣∣+ 3a3 − 9as2(a)
)
σ2

1+(
3
∣∣∣ a

c+1

e+2

∣∣∣+ 3
∣∣∣ a

e+1

c+2

∣∣∣− ∣∣∣ c
e+1

e+2

∣∣∣+ 3ca · e− ace
)
σ1 + 9aa · c− 3a2c+

d(e2 − 3s2(e)) + (3a− e)(c2 − 3s2(c)) = 0,

(2.5)
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as predicted.
For either one of the two expressions of σ1 given by (2.5) the triple

(σ1, σ2, σ3) with σ2 and σ3 as in (2.4) yields the unordered components of
a nontrivial solution (z1, z2, z3) of system (1.2) and the value of θ given by
(2.4) puts them in the proper order, since θ = z1z

2
2 + z2z

2
3 + z3z

2
1 .

Remark 2.1. Equation (2.5) allows one to express σ2, σ3, and θ given by
(2.4) linearly in σ1, in the generic case, but the resulting formulas are too
complicated to present interest, in general. However, in particular situations
this will bring about considerable simplification, as it will be seen in the
Applications section.

Case B). P (X1, X2, X3) has degree m = 3. It is now desirable to repre-
sent P (X1, X2, X3) as

P (X) = α1X
3
1 + α2X

3
2 + α3X

3
3+

β1X2X
2
3 + β2X3X

2
1 + β3X1X

2
2+

γ1X
2
2X3 + γ2X

2
3X1 + γ3X

2
1X2 + δX1X2X3+

a1X
2
1 + a2X

2
2 + a3X

2
3 + b1X2X3 + b2X3X1 + b3X1X2+

c1X1 + c2X2 + c3X3 + d,

(2.6)

where αi, βi, γi, ai, bi, ci, i = 1, 2, 3, δ, d, are arbitrary coefficients, packaged,
excepting δ and d, as vectors α, β, γ, a, b, and c in C3.

The system (1.2) associated to this P (X1, X2, X3) must have twenty
seven solutions in the generic case, of whose three are trivial with identi-
cal components and twenty four nontrivial, in eight sets of three distinct
components. This predicts that the desired polynomial equation in σ1

resulting from solving the associated system (1.4) should have the factor
(α + β + γ + δ)σ3

1 + 3(a + b)σ2
1 + 9cσ1 + 27d, and a complicated factor of

degree eight in σ1, corresponding to the nontrivial solutions. (As before, we
use the notations α := α1 + α2 + α3, β := β1 + β2 + β3, γ := γ1 + γ2 + γ3,
a := a1 + a2 + a3, b := b1 + b2 + b3, and c := c1 + c2 + c3).

A degree analysis shows that the Hironaka representation of the polyno-
mials building up system (1.4) has typical form

AΣ4
1 +BΣ3

1 + CΣ2
1 +DΣ1 + EΣ2

2 + (FΣ2
1 +GΣ1 +H)Σ2+

(IΣ1 + J)Σ3 + (KΣ1 + L)Θ,

where A,B, . . . ,K, L are suitable coefficients, depending on the coefficients
of P (X1, X2, X3).
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The actual system in σ1, σ2, σ3, and θ is

α1σ
4
1 + a1σ

3
1 + c1σ

2
1 + dσ1 + (3α1 − α+ β3 − β2 + γ2 − γ3)σ2

2+
[(α3 − 4α1 + γ3)σ2

1 + (e3 − 3a1)σ1 + c− 3c1]σ2 + [(α+ 3(α1 − α3)+
β − 3β3 + 3γ1 − 2γ + δ)σ1 + 3(e1 − e3)]σ3 + [(α2 − α3 + β2 − γ3)σ1+
e2 − e3]θ = 0

α2σ
4
1 + a2σ

3
1 + c2σ

2
1 + dσ1 + (3α2 − α+ β1 − β3 + γ3 − γ1)σ2

2+
[(α1 − 4α2 + γ1)σ2

1 + (e1 − 3a2)σ1 + c− 3c2]σ2 + [(α+ 3(α2 − α1)+
β − 3β1 + 3γ2 − 2γ + δ)σ1 + 3(e2 − e1)]σ3 + [(α3 − α1 + β3 − γ1)σ1+
e3 − e1]θ = 0

α3σ
4
1 + a3σ

3
1 + c3σ

2
1 + dσ1 + (3α3 − α+ β2 − β1 + γ1 − γ2)σ2

2+
[(α2 − 4α3 + γ2)σ2

1 + (e2 − 3a3)σ1 + c− 3c3]σ2 + [(α+ 3(α3 − α2)+
β − 3β2 + 3γ3 − 2γ + δ)σ1 + 3(e3 − e2)]σ3 + [(α1 − α2 + β1 − γ2)σ1+
e1 − e2]θ = 0

θ2 − (σ1σ2 − 3σ3)θ + (σ3
1σ3 + σ3

2 + 9σ2
3 − 6σ1σ2σ3) = 0

(2.7)
where, as before, e=a+b.

By adding up the first three equations of system (2.7) we obtain a simpler
equation satisfied by σ1, σ2, σ3, and θ, namely

ασ3
1 + aσ2

1 + cσ1 + 3d+ [(γ − 3α)σ1 + (b− 2a)]σ2+
3(α− γ + δ)σ3 + (β − γ)θ = 0.

(2.8)

Now system (2.7) is too complex even for the most potent computer al-
gebra systems (CAS). Maple 13 produced the outcome ‘too large to handle’ !
One way of obtaining, in principle, the desired equation in σ1 is the follow-
ing: After solving for σ3 and θ (in terms of σ1 and σ2) the linear system
obtained from the first two equations of (2.7), substituting these values in
(2.8) and the fourth equation of (2.7) produces two complicated polynomial
equations in σ1 and σ2. The resultant of these two equations with respect
to σ2 is the desired equation in σ1.

This plan will work for particular systems of cubic equations, as it will
be seen in the Applications section.

3. Systems in Four Variables

When n = 4, Σ1 = X1 + X2 + X3 + X4, Σ2 = X1X2 + X1X3 + X1X4 +
X2X3 + X2X4 + X3X4, Σ3 = X1X2X3 + X1X2X4 + X1X3X4 + X2X3X4,
Σ4 = X1X2X3X4, and Θ = X1X

2
2 +X2X

2
3 +X3X

2
4 +X4X

2
1 . Since (n−1)! =

6, the Hironaka decomposition (1.6) contains a direct sum of six terms, or
equivalently the minimal polynomial in Θ over C[Σ1,Σ2,Σ3,Σ4] has degree
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six. Rather than calculating it we prefer to work, in addition, with another
secondary invariant, namely Ω := X1X3 +X2X4, which is better suited for
the purpose of solving system (1.2).

The following two equations involving Θ and Ω hold over C[Σ1,Σ2,Σ3,Σ4],

Ω3 − Σ2Ω2 + (Σ1Σ3 − 4Σ4)Ω− (Σ2
1Σ4 + Σ2

3 − 4Σ2Σ4) = 0,

Θ2 − (Σ1Σ2 − 2Σ3 − Σ1Ω)Θ + [Ω3 + (Σ2
1 − 3Σ2)Ω2+

(Σ2
2 − Σ2

1Σ2 + 3Σ1Σ3 − 8Σ4)Ω+

(Σ3
1Σ3 + Σ3

2 + 3Σ2
3 − 2Σ2

1Σ4 + 8Σ2Σ4 − 5Σ1Σ2Σ3)] = 0.

(3.1)

Case C ). P (X1, X2, X3, X4) has degree m = 2. It is convenient to represent
now P (X1, X2, X3, X4) as

P (X) = a1X
2
1 + a2X

2
2 + a3X

2
3 + a4X

2
4+

b1X2X3 + b2X3X4 + b3X4X1+
b4X1X2 + b5X1X3 + b6X2X4+
c1X1 + c2X2 + c3X3 + c4X4 + d,

(3.2)

where ai, ci, i = 1, 2, 3, 4, bi, i = 1, 2, . . . , 6, d, are arbitrary coefficients, now
conveniently packaged, excepting d, b5, and b6, as vectors a, b, and c in C4.

The system (1.2) associated to this P (X1, X2, X3, X4) must have sixteen
solutions in the generic case, of whose four are trivial, two with identical
components (z, z, z, z) where (a + b + b5 + b6)σ2

1 + 4cσ1 + 16d, σ1 = 4z,
and two with components (z1, z2, z1, z2), z1 6= z2 with (a1 + a3 + b5 − a2 −
a4 − b6)σ1 + 2(c1 + c3 − c2 − c4) = 0, where σ1 = 2(z1 + z2). This last
equation is a particular instance of what one obtains when treating the
much simpler case n = 2,m = 2. The remaining twelve solutions belong to
three sets with four distinct components. (Here and in what follows in Case
C), a := a1 + a2 + a3 + a4, b := b1 + b2 + b3 + b4, and c := c1 + c2 + c3 + c4).

A degree consideration shows that the Hironaka representation of the
polynomials building up system (1.4), must have the type

AΣ3
1 +BΣ2

1 + CΣ1 + (DΣ1 + E)Σ2 + FΣ3+
(GΣ1 +H)Ω + IΘ

where A,B, . . . ,H, I are suitable coefficients, depending on the coefficients
of P (X1, X2, X3, X4). Actually, the system (1.4) to which we add the two
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equations generated by (3.1), becomes in this case

a1σ
3
1 + c1σ

2
1 + dσ1 + [(e4 − 3a1)σ1 + c− 3c1 − c3]σ2+

(2a1 − a3 + b2 + b6 − b5 + e1 − 2e4)σ3 + [(a3 + b5 − e4)σ1+
c1 + 3c3 − c]ω + (a2 + b3 − e4)θ = 0

a2σ
3
1 + c2σ

2
1 + dσ1 + [(e1 − 3a2)σ1 + c− 3c2 − c4]σ2+

(2a2 − a4 + b3 + b5 − b6 + e2 − 2e1)σ3 + [(a4 + b6 − e1)σ1+
c2 + 3c4 − c]ω + (a3 + b4 − e1)θ = 0

a3σ
3
1 + c3σ

2
1 + dσ1 + [(e2 − 3a3)σ1 + c− 3c3 − c1]σ2+

(2a3 − a1 + b4 + b6 − b5 + e3 − 2e2)σ3 + [(a1 + b5 − e2)σ1+
c3 + 3c1 − c]ω + (a4 + b1 − e2)θ = 0

a4σ
3
1 + c4σ

2
1 + dσ1 + [(e3 − 3a4)σ1 + c− 3c4 − c2]σ2+

(2a4 − a2 + b1 + b5 − b6 + e4 − 2e3)σ3 + [(a2 + b6 − e3)σ1+
c4 + 3c2 − c]ω + (a1 − a2 + e2 − e3)θ = 0

ω3 − σ2ω
2 + (σ1σ3 − 4σ4)ω − (σ2

1σ4 + σ2
3 − 4σ2σ4) = 0

θ2 − (σ1σ2 − 2σ3 − σ1ω)θ + [ω3 + (σ2
1 − 3σ2)ω2+

(σ2
2 − σ2

1σ2 + 3σ1σ3 − 8σ4)ω+
(σ3

1σ3 + σ3
2 + 3σ2

3 − 2σ2
1σ4 + 8σ2σ4 − 5σ1σ2σ3] = 0,

(3.3)

where ei := ai + bi, i = 1, 2, 3, 4, or e=a+b.
By adding up the first three equations of system (3.3) we obtain a simpler

equation satisfied by σ1, σ2, σ3, σ4, ω, and θ, namely

aσ2
1 + cσ1 + 4d+ (e− 3a)σ2 + [2(b5 + b6)− b]ω = 0. (3.4)

Notice also that σ4 can be eliminated between the last two equations of (3.3)
to yield

θ2 + (σ1ω − σ1σ2 + 2σ3)θ + [−ω3 + (σ2
1 − σ2)ω2+

(−σ2
1σ2 + σ1σ3 + σ2

2)ω + σ3
1σ3 + σ3

2 + 5σ2
3 − 5σ1σ2σ3] = 0.

(3.5)

Again, there is a definite path of reducing system (3.3) to one single
equation in σ1, but the calculations are too involved even for the most
potent machines: The first four equations of (3.3) form a linear system in
σ2, σ3, ω, and θ, which allows one to express these quantities in terms of σ1.
Then the equation (3.5) yields the desired polynomial equation in σ1 alone,
after substituting in it the σ1-values of σ2, σ3, ω, and θ.
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4. Applications

In the previous two sections we treated in some degree of detail certain fully
generic systems of polynomial equations with cyclic symmetry. However, it
is clear, by a continuity argument of the solutions with respect to the param-
eters [7], that one can study this way any system of polynomial equations,
by assigning specific values to some of the parameters. The only difference is
that certain divisions by zero have to be interpreted properly as yielding so-
lutions of higher multiplicity or solutions at infinity [7]. In particular, many
partly generic systems continue to behave as if they were fully generic.

In this section we present (three) applications to systems relevant to
mathematical physics, the Swift-Soward convection system [5, 4] and the
Noonburg neural network system [2]. They all are partly generic cubic sys-
tems which can be embedded in a quadratic system framework via suitable
substitutions. This is also in line with the general philosophy that any non-
linear polynomial system can be treated as a (larger) quadratic system by
means of adequate substitutions.

Example 1. The Swift-Soward convection system. The solutions of this
polynomial system describe the stationary points of a system of three ordi-
nary differential equations associated to the motion of a fluid layer, rotating
about a vertical axis and being heated from below, at the thermal convection
onset [3, 4, 5].

In our terminology, the Swift-Soward system is the cyclic system of three
cubic equations associated to the polynomial P (X1, X2, X3) = X1(γX2

1 +
αX2

2 + βX2
3 ) − εX2X3 − λX1, where α, β, γ, ε, and λ are real parameters.

It is easy to see that in addition to the circular symmetry its solution set is
also symmetric with respect to transformations of type

Xi → −Xi, Xi+1 → −Xi+1, Xi+2 → Xi+2, i = 1, 2, 3, X4 = X1, X5 = X2,

which should make for a better understanding of the solution, which is
actually the case [3].

For the length of this example we will denote by s1, s2, and s3 the
elementary symmetric expressions associated to α, β, and γ. It is rather

easy to describe the trivial solutions of system (1.2) in this case:
(
λ

γ
, 0, 0

)
and its symmetries (a total of six), and (z, z, z), z root of s1z3−εz2−λz = 0,
and its symmetries (a total of nine). The remaining twelve solutions are
nontrivial, and due to the symmetries it suffices to find one of them, or even
the fundamental symmetric expressions of the squares of its components, and
then the proper ordering of these components. Replacing P (X1, X2, X3)
by X1P (X1, X2, X3) will not change the nontrivial solutions. Notice now
that each equation of the cyclic system (1.2)associated to X1P (X1, X2, X3)
contains the invariant monomial −εX1X2X3, so making the substitutions
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X1X2X3 = ∆, and X2
1 → X1, X2

2 → X2, X2
3 → X3 leads to a cyclic system

associated to a new (quadratic) polynomial

P (X1, X2, X3) = X1(γX1 + αX2 + βX3)− λX1 − δε, (4.1)

where δ is an extra parameter corresponding to ∆. So, when solving for σ1,
σ2, σ3, and θ the system (2.3) associated to (4.1) we just have to remember
that for (z1, z2, z3) to be a (nontrivial) solution of the Swift-Soward system
we must have σ1 = z2

1 + z2
2 + z2

3 , σ2 = z2
1z

2
2 + z2

2z
2
3 + z2

3z
2
1 , σ3 = z2

1z
2
2z

2
3 ,

θ = z2
1z

4
2 + z2

2z
4
3 + z2

3z
4
1 , and in addition σ3 = δ2.

For our new system Equation (2.5) becomes, in the generic case,

γ(αβ − γ2)σ2
1 − λ(s2 − 3γ2)σ1 + [λ2(s1 − 3γ) + δε(s21 − 3s2)] = 0. (4.2)

Now, in the presence of (4.2) the formulae (2.4), excepting θ which is too
complicated to warrant inclusion here, become (see also the Remark follow-
ing (2.5))

σ2 =
λ2 + δεs1 − γλσ1

αβ − γ2

σ3 = −(γσ1 − λ)δε
s21 − 3s2

(4.3)

Since σ3 = δ2, the expression of σ3 in (4.3) yields

δ = −(γσ1 − λ)ε
s21 − 3s2

. (4.4)

When substituting the expression (4.4) of δ in (4.2) this factors to give

(γσ1 − λ)[(αβ − γ2)σ1 − λ(s1 − 3γ)− ε2] = 0. (4.5)

Since γσ1−λ = 0 corresponds to trivial solutions it follows that for nontrivial
solutions,

σ1 =
λ(s1 − 3γ) + ε2

αβ − γ2
(4.6)

With the value (4.6) of σ1 the other elementary symmetric expressions (4.3)
become, finally,

σ2 =
[s1ε2 + λ(s21 − 3s2)][λ(γ2 + 2αβ − s2)− γε2]

(αβ − γ2)2(s21 − 3s2)

σ3 =
ε2[λ(γ2 + 2αβ − s2)− γε2]2

(αβ − γ2)2(s21 − 3s2)2

(4.7)

Formulae (4.6) and (4.7) are what we were looking for. As before, recall that
the expression of θ, however complicated, allows one to put the components
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of a nontrivial solution of the Swift-Soward system in proper order. When
γ = 1, we recover the result of [3].

The Swift-Soward system could also have been treated directly as a de-
gree m = 3 system, via Case B) of Section 2, but the computations would
have been substantially more involved, as a result of ignoring part of the
available symmetries.

Example 2. The Noonburg neural network system with three neurons.
The solutions of this polynomial system describe the stationary points of
a Lotka-Volterra system of ordinary differential equations measuring the
activity levels at each cell for three interconnecting neurons [2]. It is the
cyclic system of cubic polynomial equations associated to the polynomial
P (X1, X2, X3) = X1(γX2

1 + αX2
2 + βX2

3 )− λX1 + ε, where α, β, γ, ε, and λ
are real parameters.

Although we could treat, as in Example 1, this system as quadratic,
by replacing P (X1, X2, X3) with X2X3P (X1, X2, X3), then with δ(γX2

1 +
αX2

2 + βX2
3 ) + εX2X3 − δλ, via the substitution ∆ = X1X2X3, we choose

to exemplify instead the machinery set up in Case B) of Section 2. The
associated system (2.7) and equation (2.8) become in this case


γσ4

1 − λσ2
1 + εσ1 + (s1 + γ)σ2

2 + 2(−2γσ2
1 + λ)σ2 + 2(3γ − s1)σ1σ3 = 0

εσ1 − (α+ γ)σ2
2 + (γσ2

1 − λ)σ2 + (s1 − 3γ)σ1σ3 + (α− γ)σ1θ = 0
εσ1 − (β + γ)σ2

2 + (βσ2
1 − λ)σ2 + (s1 − 3β)σ1σ3 + (γ − β)σ1θ = 0

θ2 − (σ1σ2 − 3σ3)θ + (σ3
1σ3 + σ3

2 + 9σ2
3 − 6σ1σ2σ3) = 0

(4.8)
and

γσ3
1 − λσ1 + 3ε+ (β − 3γ)σ1σ2 + 3(γ − β)σ3 + (α− β)θ = 0. (4.9)

(Throughout this example s1, s2, and s3 will denote the elementary sym-
metric expressions associated to α, β, and γ.)

The linear system in σ3 and θ formed by the first two equations in (4.8)
has in the generic case the solution (depending of σ1 and σ2),

σ3 =
γσ4

1 − λσ2
1 + εσ1 + (s1 + γ)σ2

2 + 2(−2γσ2
1 + λ)σ2

2(s1 − 3γ)σ1

θ =
γσ4

1 − λσ2
1 + 3εσ1 + (β − α)σ2

2 − 2γσ2
1σ2

2(γ − α)σ1
.

(4.10)

Substituting (4.10) in Equation (4.9) and the fourth equation of (4.8) pro-
duces two equations in σ1 and σ2. A necessary and sufficient condition for
these latter equations to hold is the vanishing of their resultant with respect
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to σ2. The resultant in question factors to give

2(s1 − 3γ)(α− γ)(s21 − 5s2 + 2γ2 + 4αβ)
σ1

×

(s1σ3
1 − 9λσ1 + 27ε)2(E0σ

8
1 + E1σ

7
1 + · · ·+ E7σ1 + E8),

(4.11)

where,

E0 = γ(αβ − γ2)2s1(s21 − 3s2)

E1 = 0

E2 = λ(αβ − γ2)(s21 − 3s2)[7s1γ2 − (s21 + s2)γ − s1s2]

E3 = ε(αβ − γ2)[8s21γ
3 + s1(−13s21 + 23s2)γ2+

(5s41 − s22 − 12s21s2)γ + s1s2(s21 − 3s2)]

E4 = λ2(s21 − 3s2)[3s1γ3 + (7s21 − 6s2)γ2 − s1(s21 + 10s2)γ + s2(2s21 + s2)]

E5 = − 2λε[12s21γ
4 − s1(11s21 + 15s2)γ3+

(s41 + 12s22 + 17s21s2)γ2−
s1(2s41 − s21s2 + s22)γ + s2(3s41 − 2s22)]

E6 = (6γ2 − 4s1γ + s21 − s2)(2s1γ + s21 − s2)2ε2+

(s21 − 3s2)[3γ3 − 5s1γ2 − (s21 − 10s2)γ − s1(s21 − 2s2)]λ3

E7 = − ελ2(α− β)2[(7s21 + 3s2)γ − s1(s21 + 5s2)]

E8 = λ4(α− β)2(s21 − 3s2).

So generically, either s1σ3
1 − 9λσ1 + 27ε = 0, or E0σ

8
1 + E1σ

7
1 + · · · +

E7σ1 + E8 = 0, as predicted. In the particular case α = β = 1, γ = 0,
ε = −1, we recover the answer to an example treated in [1].

Example 3. A Swift-Soward convection-type system in four variables.
This system is the adaptation of the system in Example 1 to four variables.
Here P (X1, X2, X3, X4) = X1(δX2

1 +αX2
2 +βX2

3 +γX2
4 )− εX2X3X4−λX1,

where α, β, γ, δ, ε and λ are complex parameters. Just as in Example
1 we can associate to it a quadratic system generated by the polynomial
P (X1, X2, X3, X4) = δX2

1 + αX1X2 + βX1X3 + γX1X4 − λX1 − µ, where
µ is another complex parameter. For this latter polynomial the system in
σ1, σ2, σ3, σ4, ω, and θ made up from the first four equations of (3.3), and
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(3.5), becomes

δσ3
1 − λσ2

1 − µσ1 + [(α− 3δ)σ1 + 2λ]σ2 + (3δ − 2α− β)σ3+
(−α+ β)σ1ω + (−α+ γ)θ = 0

−µσ1 + (δσ1 − l)σ2 + (β + γ − 2δ)σ3 + (−δσ1 + λ)ω + (α− δ)θ = 0

−µσ1 + (α+ γ − β − δ)σ3 + ((β + δ)σ1 − 2λ)ω = 0

−µσ1 + (γσ1 − λ)σ2 + (α+ β − 2γ)σ3 + (−γσ1 + λ)ω + (δ − γ)θ = 0

θ2 + (σ1ω − σ1σ2 + 2σ3) + [−ω3 + (σ2
1 − σ2)ω2+

(−σ2
1σ2 + σ1σ3 + σ2

2)ω + (σ3
1σ3 + σ3

2 + 5σ2
3 − 5σ1σ2σ3)] = 0

(4.12)
The linear system in σ2, σ3, ω, and θ generated by the first four equations
of (4.12) has a solution complicated enough not to warrant insertion here,
however, after substituting its components into the last equation of (4.12)
we get, after factoring

(2δ2 − 2δs1 + s21 − 2s2)((α+ β + γ + δ)σ2
1 − 4λσ1 − 16µ)2

(G0σ1 +G1)3
×

((β + δ)σ1 − 2λ)2(F0σ
3
1 + F1σ

2
1 + F2σ1 + F3),

(4.13)

where,

F0 = δ(−δ2 + s2)[δ3 − (β2 + 2s2)δ + (s21 − 2s2)β]

F1 = λ{6δ5 − (2β + 3s1)δ4 + [2β(−2β + s1) + s21 − 14s2]δ3+

[(s1β + 3s21 − 4s2)β + 4s1s2]δ2+

[(2s2β − s31)β + 6s22 − s21s2]δ − s2(s21 − 2s2)β}

F2 = 4µδ5 − [4(β + s1)µ+ 11λ2]δ4+

[4(s1β + s21 − 4s2)µ+ 2(3β + 5s1)λ2]δ3+

[2s1(−s21 + 6s2)µ+
(
(5β − 8s1)β − 5s21 + 19s2

)
λ2]δ2+

[
(
2s1(2s2 − s21)β + s41 + 12s22 − 8s21s2

)
µ+ (2(−s1β + s2)β +

s1(s21 − 8s2)
)
λ2]δ + (s41 − 4s21s2 + 4s22)βµ+

[(−s2β + s31)β + s2(s21 − 4s2)]λ2

F3 = − λ{8µδ4 − 2[2(2β + 3s1)µ+ 3λ2]δ3+

[12(s1β + s21 − 2s2)µ+ (4β + 7s1)λ2]δ2+

[
(
8(−s21 + s2)β + 2s1(10s2 − 3s21)

)
µ+(

2(β − 3s1)β + 4(2s2 − s21)
)
λ2]δ+

[2s1(s21 − 2s2)β + 2(s41 − 6s21s2 + 8s22)]µ+

[s1(−β + 2s1)β + s1(s21 − 4s2)]λ2}
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G0 = − 6δ4 + 6s1δ3 + [2(3β − s1)β + 10s2 − 3s21]δ2+

[2(−2s1β + 4s2 − s21)β + s1(s21 − 6s2)]δ + (s21 − 2s2)(β + s1)β

G1 = 2λ(2δ − s1)[3δ2 − 2(β + s1)δ + (−β + 2s1)β + s21 − 4s2]

(In the formulae above s1 and s2 stand for the elementary symmetric ex-
pressions in α and γ only, namely, s1 = α+ γ and s2 = αγ.)

So generically, (α+β+γ+δ)σ2
1−4λσ1−16µ = 0 and (β+δ)σ1−2λ = 0

generate the trivial solutions of the system (1.2) associated to

P (X1, X2, X3, X4) = αX2
1 + βX1X2 + γX1X3 + δX1X4 − λX1 − µ,

as predicted, and F0σ
3
1 + F1σ

2
1 + F2σ1 + F3 = 0 yields the three sets of

nontrivial solutions.
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