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Abstract - We consider a Darboux problem associated to a nonconvex
impulsive hyperbolic differential inclusion and we prove a Filippov type
existence result. This result allows to obtain a relaxation theorem for the
problem considered.
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1. Introduction

In this paper we study hyperbolic impulsive differential inclusions of the
form

0%u
0xdy
Au(zg,y) = I(u(zg,y), k=1,...,m,
u(z,0) = ®(z), =€ Jy,

u(0,y) = ¥(y), yelo,

(flf,y) EF(.’L‘,y,U,(.’L’,y)) a.e. (xay) € J1 X J27x7é$kak: L...,m

(1.1)
where J; = [0,T1], Jo = [0,T2], F(.,.,.) : J1 X Ja x R" — P(R") is a set-
valued map with non-empty values, 0 = zg < 21 < ... < Ty < Tyl =
Ty, Iy € CRR"), k = 1,....,m and Aul,—y, = u(z],y) — u(zy,y),

where u(z,y) = limp_o4 y—y u(xg + h,v) is the right limit and u(zy ,y) =

limp, 04 p—y w(xp — h,v) is the left limit of u(x,y) at (xg,y).

Existence of solutions of problem (1.1) has been studied by many authors
using fixed point techniques (see [1,2,4,5], etc.). For a detailed discussion on
this topic with an exhaustive bibliography we refer to [2].

The aim of this note is to show that Filippov’s ideas (see [3]) can be
suitably adapted in order to obtain the existence of solutions of problem
(1.1). We recall that for a first order differential inclusion defined by a
lipschitzian set-valued map with nonconvex values Filippov’s theorem (see
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[3]) consists in proving the existence of a solution starting from a given
‘almost’ solution. Moreover, the result provides an estimate between the
starting ‘quasi’ solution and the solution of the differential inclusion.

As an application of our main result we obtain a relaxation theorem
for the problem considered. Namely, we prove that the solution set of the
problem (1.1) is dense in the set of the relaxed solutions; i.e. the set of
solutions of the differential inclusion whose right hand side is the convex
hull of the original set-valued map.

Our results are extensions of previous results of Tuan ([6,7]) obtained for
hyperbolic differential inclusions without impulses. In fact, in the proof of
our theorems we essentially use several technical results due to Tuan ([6,7]).

The paper is organized as follows: in Section 2 we briefly recall some
preliminary results that we will use in the sequel and in Section 3 we prove
the main results of the paper.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.

Let (X,d) be a metric space. The Pompeiu-Hausdorff distance of the
closed subsets A, B C X is defined by dy (A, B) = max{d*(A, B),d*(B, A)},
d*(A, B) = sup{d(a, B); a € A}, where d(x, B) = inf{d(z,y);y € B}. With
co(A) we denote the closed convex hull of a set A C X.

Consider J1 = {O,Tl], JQ = [O,TQ] and II = [O,Tl] X [O,TQ]

Let C(II,R™) be the Banach space of all continuous functions from II
to R™ with the norm ||u||oc = sup{||u(z,y)||; (z,y) € II} where || - | is the
Euclidian norm on R", and let L!(IT, R") be the Banach space of functions
u(+,-) : I — R™ which are integrable, normed by

Ty pTo
|mu=AA lu(z, y) | dedy.

We denote by AC(IT, R") the space of absolutely continous functions u(, -)
defined on IT with an integrable derivative gy (-, ). We recall that a function
u(-,-) is said to be absolutely continous on IT if there exist f(-,-) € L' (II, R"),
g(-) € LY(J1,R") and h(-) € L*(Jo, R™) such that

T ry T Yy
uey) = [ [ t@wdpzs [ g@azs [h@dzru.0) V) e
0J0 0 0
It is well known that the space of absolutely continous functions is a Banach
space endowed with the norm

T1 TQ Tl
me=A A\MMMMM®+AHw®ﬂWH
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Ts
T /0 ey (0, ) [y + (0, 0)].

A set-valued map F(-,-) : I x R — P(R") is called measurable if for any
w € R™ the function (x,y) — d(w, F(z,y,u)) = inf{||jw —v]|; v € F(z,y,u)}
is measurable.

In order to define the solution of (1.1) we consider the space

Q=A{u(-,-): I - R"|u(-,-) € C(T,,R"), k=0,1,...,m,
Ju(z,-), u(xz,-), k=1, ...,m with u(z,,-) = u(x,-)},

where ug(+,-) is the restriction of u(-,-) to I'y, I'x = (zk, zx41) X [0, T3],
k=0,1,...,m. Q is a Banach space with the norm

lullo = max{||uk||; k=0,1,...,m}.

Definition 2.1. (see [2]) A function u(-,-) € QNAC(Ty,R"), k=1,...,m
is said to be a solution of (1.1) if there exists v(-,-) € L*(II,R™) such that
v(z,y) € F(z,y,u(z,y)) a.e (1) and

wa) =ste)+ [ [o@mini s ¥ i),

O<zp<z
where z(x,y) = ®(x) + ¥(y) — ¢(0).

We recall now some results that we are going to use in the next section.

Lemma 2.1. (see [6]) Let H(-,-) : I — P(R™) be a compact valued mea-
surable multifunction and v(-,-) : Il — R™ a measurable function.
Then there erxists a measurable selection h(-,-) of H(-,+) such that

[o(z,y) = bz, y)l| = d(v(z,y), H(z,y)), a.e. (II).

Lemma 2.2. (see [7]) Let F(-,-) : I — P(R™) be a compact valued mea-
surable multifunction such that there exists a constant M > 0 which verifies
the condition

(0, F(2,y,0)) < M < +00.

Then for every € > 0, and every measurable function v(-,-) : II — R”
which satisfies v(x,y) € coF (z,y) a.e. (II), there exists a measurable func-
tion v(-,-) : Il = R™ such that v(z,y) € F(z,y) a.e. (II) and

sup || [ f(vu, 7) — v(z7))dgdz]| <=.

(z,y)ell
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3. The main results

Consider next ®(-) € C(J1,R"), ¥(-) € C(J2,R™). In order to prove our
main result one needs the following assumption.

Hypothesis 3.1. Let F(.,.,.) : Il x R" — P(R") be a set-valued map with
non-empty, compact values that verifies the following conditions.

(i) For all u € R™, F(+,-,u) is measurable.
(ii) There exists L(-,-) € L'(II,Ry) such that for almost all (z,y) € II,
F(z,y,-) is L(x,y) - Lipschitz in the sense that
dH(F(:E7 Y, ul)a F('T’ Y, Ug)) < L($a y)”ul - u2H7 VU1, Uz € R™.
(iii) There exist constants ¢ > 0 such that
Hk(x) = k()| < cllz —yll, Yo,y e R™
In what follows g(-,-) € L*(II,R™) is given such that there exists A(-,-) €

LY(II, Ry) which satisfies

d(g(z,y), F(z,y,w(z,9))) < Mz,y),

where w(-,-) is a solution of the hyperbolic impulsive differential equation

2
f?xguy(m’ y) =g(z,y), ae (v,y)€J1 X Jp,xFap,k=1,....,m
A’(U(xkvy) = Ik;(w(xkay))y k= 1, e, m, (31)

w(z,0) =d(x), z€J,
w(0,y) = ¥(y), yeJa

Theorem 3.1. Assume that Hypothesis 3.1 is satisfied and consider g(-,-),
A, ), w(- ) as above.

If||L|li 4+ > ey ek < 1, then the differential inclusion (1.1) has at least
one solution u(-,-) which satisfies

[All2
=37k e — 1L
Proof. We set vo(x,y) = g(x,y), up(z,y) = w(x,y). It follows from Lemma

2.1 and Hypothesis 3.1 that there exists a measurable function v (-, -) such
that v1(x,y) € F(z,y,uo(x,y)) a.e. (II) and for almost all (z,y) € 11

[u—wllo < (3.2)

lg(z,y) — vi(x, y)l| = d(g(z,y), F(x,y,uo(z,y))) < Az, y).
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Consider u;(+,-) the solution of the problem

0%u
Wa;(ﬂf, y) =vi(z,y) ae. (r,y) €1 X Jo,x #xp,k=1,...,m,

Aur (e y) = Tl (o y)), E=1,..om, (3.3)
ui(z,0) = ®(x), =z € Jy,
ul(O,y) :\Ij(y)a @IGJ2~

Therefore,

wlew) =wn)+ [ [To@ i+ 3 L),

O<zp<z

For all (z,y) € II we have

et () — w0z, )| < | / / @ DT+ Y Tl (o0 0))~

O<zp<z

_ /O”“’/Oyvo(m,ymydz_ S Luuo(ar,y)l| <

O<zr<z

T Ly m
< / / lon(@,9) — vo(@ ) ldgdz + 3 el (1 9)) — T (o 1) | <
0J0 k=1
T Ly m
< [ x@mimag+ Y- alu ey - vy <
0J0 k=1
T ry m
< [ A mdndg + 3 culr ~ uola <
0J0 k=1

Ty r12 m
S/ / A@, §)dzdy + Y _ cxllur — ugllo.
0 0 k=1

Thus,
Ty pTs m
=l < [ [ 2@+ Y alun - wl.
0 0 k=1

Therefore,
A2

— < —c——. 3.4
e e i (3.4)

From Lemma 2.1 and Hypothesis 3.1 we deduce the existence of a mea-
surable function wva(-,-) such that ve(z,y) € F(x,y,uo(x,y)) a.e. (II) and
for almost all (z,y) € I

HUQ(xay) - Ul(%,y)H < d(vl(m,y),F(x,y,ul(:(:,y))) <
< dH(F(:L‘,y,uo(az,y)),F(x,y,ul(x,y))) < L(aj,y)Hul(a:,y) - U’O(xhy)H



280 SORIN NEDELCU AND AURELIAN CERNEA

Consider ug(+, ) the solution of the problem

52
Wg?/(xﬂJ) = UQ(xay) a.e. (xay) € J1 X J27x 7& l’k,k‘ = 1> sy,

AUQ(xkay) :Ik(UQ(:Ek?y))a k= 1,...,m, (35)
ug(z,0) = ®(x), x € Jy,
’LLQ(O,Z/) = \Ij(y)a RS JQ-

It follows

wlo) = o)+ [ [Cw@pise 3 L),

O<zp<z

For all (z,y) € II we have

o) =)l <1 [ [ va@midnn+ 3 Rfuaton )~

x py O<zp<z
—// v () dydz — Y Ip(ui(zg,y)|| <
070 O<zr<z
z ry m
g/o/o [v2(2,7) — 01(Z, P)l|dydz + > [ Te(uz(z, y)) — In(ur (2, )| <

k=1

X y m
S/o/o L(E,?)HM(E,?)—uo(f,?)”dydfnLchHw(m,y)—Ul(xkay)”-
k=1

From (3.4) we have

oz~ il < [ Tl/TQ Y L LRy < DAY
U2 —UL||Q > T, Y)——=m __ayaxr CkllU2 — Ul||Q-
0 Jo 1300 e Pt

Hence,

Al || L
s — 1 [l < [All - 1211 (3.6)

- a)”

Assume that for some p > 1 we have constructed (u;)?_; with u, satisfying

HL”Il)_1 ) H/\Hl
Up — Up_1|lQ < — =
H P g H (1- ZZL:1 Ck)p

Using Lemma 2.1 and Hypothesis 3.1 we obtain that there exists a measur-
able function vpy1(z,y) € F(x,y,up(z,y)) a.e. (II) such that for almost all
(x,y) € II holds

va+1(a:,y) - vp(:r;,y)H < d(Up+1($,y),F(Z’,y,Up_l(H?,y))) <
S dH(F(:c,y,up(x,y)),F(a:,y,up_l(x,y))) S L(xﬂy)”up(xvy) - up_1(:c,y)|].
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We consider up41(+, ) the solution of the problem

O*up i1
dxdy
Aupii(zr,y) = Ig(upt1(2k,y)), k=1,...,m,

up+1(z,0) = ®(x), =€ Ji,

up+1(0,y)::‘y(y), y € Ja.

(x,y) =vpt1(z,y) ae (z,y) €1 X Jo,z #xp,k=1,...,m,

(3.7)
Therefore

upt1(x,y) = z(z,y) // Up+1(T, Y)dydT + Z I (upt1(zx, v)). (3.8)

O0<zp<z

We have
z ry
g () — up(a )] < | / / vy (7, ) AT+

Y L (o w) // @ Ddgdz— 3 T(up(ay ) <

O<zp<z O<zp<z
x ry
/ / 01 () — 0o (E DIATEE + 3 [ tpa () — T )| <
k=1
/ / E5) 1 @) — g BT 450E + 3. el (200 ) — (o)
k=1
So,
S Y
[up+1 —upll (1_Zk )’ L(z,y) dm—l—(z 1) [[upt1 = upllo-
We obtain
ILIE - A

Vp > 1. (3.9)

”“erl - upHQ >

(1- Z?:l Ck)p+17

Therefore (u,(-,-))p>0 is a Cauchy sequence in the Banach space 2, so it
converges to u(-,-) € Q. Since, for almost all (z,y) € II one has

[vp41(2, y)—vp(2, y)|| < Lz, y)llup(x, y)—up-1(z, y)|| < Lz, y)up—up-1lle;

it follows that (v,(-,-)), is a Cauchy sequence in the Banach space L!(II, R™)
and thus it converges to v(-,-) € L'(II,R"). Passing to the limit in (3.8)
and using Lebesgue dominated convergence theorem we get

u(z, 2(z,y) // v(Z,7) dm+2[k u(zk, y
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Moreover, since the values of F(.,.,.) are compact and since one has
vpti1(z,y) € F(z,y,up(x,y)) ae. (II) for any p > 0, passing to the limit
with p — oo we obtain v(z,y) € F(z,y,u(z,y)) a.e. (II) and u(.,.) is a
solution for the problem (1.1).

It remains to prove the estimation (3.2). It holds

lup —uolle < lup —up-illo+ ... + llug —urflo + [lur — wolle
—1
B 1 R | O I\
T = ) (=20t ) 1= o
1— ( L1 )P
Al DYV [ Al
-y L] — 1= —
1= k1 G 1——T:§jziz; 1=k e — LI
and the proof is complete. O

Remark 3.1. If in Theorem 3.1 one takes g = 0, w = 0 and A = L, then
Theorem 3.1 yields Theorem 10.5 in [2].

Moreover, in this case our result provides an a priori estimation for the
solution of problem (1.1) of the form

[1Z]]1
1=k ek — 1Ll
As we already pointed out, Theorem 3.1 allows to obtain a relaxation

theorem for problem (1.1). In what follows, we are concerned also with the
convexified (relaxed) impulsive hyperbolic differential inclusion

lulla <

0%u
—_— coF .e. =1....
amay(xay) € co (w,y,u(w,y)) a.e ($,y) eJl XJ2ax5‘éwk7k 5 , 1,
Au(zk,y) = I(u(zg,y)) k=1,...,m,
u(z,0) = ®(z), z€J,
U(O,y) = \Il(y)7 (TS JQ'
(3.10)

Hypothesis 3.2. We assume that Hypothesis 3.1 is satisfied and there ex-
ists M > 0 such that d(0, F(z,y,0)) < M < +oo a.e. (II).

Theorem 3.2. We assume that Hypothesis 3.2 is satisfied and let u(-,-) be
a solution of the convezified problem (3.10).

If|[Lll + Y py ek < 1, then, for all e > 0, there exists a solution u(-,)
of the problem (1.1) such that

lu—a|o <e.
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Proof. Let u(-, -) be a solution of the convexified problem. Then there exists
o(-,-) € LY(IL,R"Y), v(z,y) € coF (z,y,u(z,y)) a.e. (II) such that

u(xz,y) = z(z,y) + // (T, 7) da:—i—ZIk u(xg,y

O<zp<z

From Lemma 2.2, for all § > 0, there exists 0(x,y) € F(z,y,u(x,y)) a.

(IT) such that
[ [ et

Consider a(-, -) the solution of the problem

sup < 4.

(z,y)€ll

2~
%(x, y) =0(x,y) ae. (z,y) €1 X Jo,x #xp,k=1,...,m,
Au(zg,y) = In(u(zg,y), k=1,....m, (3.11)

u(z,0) = ®(z), =z € Jy,
a(ovy) = \Il(y)v Yy € JQ.

Therefore,
u(x,y) = z(z,y) + // (T, 7) dl‘—l—ZIk w(xg,y
O<zp<z
We have
fiw) ~atwll = | [ [ o@minar+ 3 Rty
O<zp<z
// (T, 7) d:z:—ZIk u(zg,y))| <

0<xk<x

<|// 5(F,7) — B(E.7) dxu+2ufk () — Te(@ae v))| <

<o+ chHu ok,y) — U(@g, y)l| <0+ chHﬁ — tllo-
k=1 k=1

Hence
m
Ja -l <6+ el —wlo
k=1
and then

2 —7ullo < (3.12)

0
1- Z?:l Ck‘
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We now apply Theorem 3.1 for the ‘quasi’ solution (-,-). One has
)‘(:U) y) = d(f](l‘, y)7 F(:E, Y, ’l](:E, y))) < dH(F($7 Y, ﬂ($7 y))a F(:Ua Y, ﬂ(:[j, y)))

< Lz, y)li(z,y) — alz,y)|| < L(z,y) 1—26,;’116 ’

which shows that A(-,-) € L' (II,R™).
From Theorem 3.1 there exists a solution u(-,-) of (1.1) such that
I
L=l e =Ll 1=300
From (3.12) and (3.13) it follows that

lu —aflo <

(3.13)

lu —allo < flu—allo + [[a —ullo <
L1 ) 8 )

L=>0tiee =L 1= e 1=30" e 1= e —|ILlh

Since § > 0 is arbitrary, it is enough to take
m
§=(1=Y cx—|Llh)-e
k=1
in order to obtain the conclusion of the theorem. O
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