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1. Introduction

In this paper we study hyperbolic impulsive differential inclusions of the
form

∂2u

∂x∂y
(x, y) ∈ F (x, y, u(x, y)) a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m

∆u(xk, y) = Ik(u(xk, y)), k = 1, . . . ,m,
u(x, 0) = Φ(x), x ∈ J1,

u(0, y) = Ψ(y), y ∈ J2,
(1.1)

where J1 = [0, T1], J2 = [0, T2], F (., ., .) : J1 × J2 × Rn → P(Rn) is a set-
valued map with non-empty values, 0 = x0 < x1 < . . . < xm < xm+1 =
T1, Ik ∈ C(Rn,Rn), k = 1, . . . ,m and ∆u|x=xk

= u(x+
k , y) − u(x−k , y),

where u(x+
k , y) = limh→0+,v→y u(xk + h, v) is the right limit and u(x−k , y) =

limh→0+,v→y u(xk − h, v) is the left limit of u(x, y) at (xk, y).
Existence of solutions of problem (1.1) has been studied by many authors

using fixed point techniques (see [1,2,4,5], etc.). For a detailed discussion on
this topic with an exhaustive bibliography we refer to [2].

The aim of this note is to show that Filippov’s ideas (see [3]) can be
suitably adapted in order to obtain the existence of solutions of problem
(1.1). We recall that for a first order differential inclusion defined by a
lipschitzian set-valued map with nonconvex values Filippov’s theorem (see
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[3]) consists in proving the existence of a solution starting from a given
‘almost’ solution. Moreover, the result provides an estimate between the
starting ‘quasi’ solution and the solution of the differential inclusion.

As an application of our main result we obtain a relaxation theorem
for the problem considered. Namely, we prove that the solution set of the
problem (1.1) is dense in the set of the relaxed solutions; i.e. the set of
solutions of the differential inclusion whose right hand side is the convex
hull of the original set-valued map.

Our results are extensions of previous results of Tuan ([6,7]) obtained for
hyperbolic differential inclusions without impulses. In fact, in the proof of
our theorems we essentially use several technical results due to Tuan ([6,7]).

The paper is organized as follows: in Section 2 we briefly recall some
preliminary results that we will use in the sequel and in Section 3 we prove
the main results of the paper.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the

closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
d∗(A,B) = sup{d(a,B); a ∈ A}, where d(x,B) = inf{d(x, y); y ∈ B}. With
co(A) we denote the closed convex hull of a set A ⊂ X.

Consider J1 = [0, T1], J2 = [0, T2] and Π = [0, T1]× [0, T2].
Let C(Π,Rn) be the Banach space of all continuous functions from Π

to Rn with the norm ‖u‖∞ = sup{‖u(x, y)‖; (x, y) ∈ Π} where ‖ · ‖ is the
Euclidian norm on Rn, and let L1(Π,Rn) be the Banach space of functions
u(·, ·) : Π→ Rn which are integrable, normed by

‖u‖L1 =
∫ T1

0

∫ T2

0
‖u(x, y)‖dxdy.

We denote by AC1(Π,Rn) the space of absolutely continous functions u(·, ·)
defined on Π with an integrable derivative uxy(·, ·). We recall that a function
u(·, ·) is said to be absolutely continous on Π if there exist f(·, ·) ∈ L1(Π,Rn),
g(·) ∈ L1(J1,Rn) and h(·) ∈ L1(J2,Rn) such that

u(x, y) =
∫ x

0

∫ y

0
f(x, y)dydx+

∫ x

0
g(x)dx+

∫ y

0
h(y)dy+u(0, 0) ∀(x, y) ∈ Π.

It is well known that the space of absolutely continous functions is a Banach
space endowed with the norm

‖u‖AC =
∫ T1

0

∫ T2

0
‖uxy(x, y)‖dxdy +

∫ T1

0
‖ux(x, 0)‖dx+
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+
∫ T2

0
‖uy(0, y)‖dy + ‖u(0, 0)‖.

A set-valued map F (·, ·) : Π × Rn → P(Rn) is called measurable if for any
w ∈ Rn the function (x, y) 7→ d(w,F (x, y, u)) = inf{‖w−v‖; v ∈ F (x, y, u)}
is measurable.

In order to define the solution of (1.1) we consider the space

Ω = {u(·, ·) : Π→ Rn |uk(·, ·) ∈ C(Γk,Rn), k = 0, 1, . . . ,m,
∃u(x−k , ·), u(x+

k , ·), k = 1, . . . ,m with u(x−k , ·) = u(xk, ·)},

where uk(·, ·) is the restriction of u(·, ·) to Γk, Γk = (xk, xk+1) × [0, T2],
k = 0, 1, . . . ,m. Ω is a Banach space with the norm

‖u‖Ω = max{‖uk‖∞; k = 0, 1, . . . ,m}.

Definition 2.1. (see [2]) A function u(·, ·) ∈ Ω∩AC(Γk,Rn), k = 1, . . . ,m
is said to be a solution of (1.1) if there exists v(·, ·) ∈ L1(Π,Rn) such that
v(x, y) ∈ F (x, y, u(x, y)) a.e (Π) and

u(x, y) = z(x, y) +
∫ x

0

∫ y

0
v(x, y)dydx+

∑
0<xk<x

Ik(u(xk, y)),

where z(x, y) = Φ(x) + Ψ(y)− Φ(0).

We recall now some results that we are going to use in the next section.

Lemma 2.1. (see [6]) Let H(·, ·) : Π → P(Rn) be a compact valued mea-
surable multifunction and v(·, ·) : Π→ Rn a measurable function.

Then there exists a measurable selection h(·, ·) of H(·, ·) such that

‖v(x, y)− h(x, y)‖ = d(v(x, y), H(x, y)), a.e. (Π).

Lemma 2.2. (see [7]) Let F (·, ·) : Π → P(Rn) be a compact valued mea-
surable multifunction such that there exists a constant M ≥ 0 which verifies
the condition

d(0, F (x, y, 0)) ≤M < +∞.

Then for every ε > 0, and every measurable function v(·, ·) : Π → Rn

which satisfies v(x, y) ∈ coF (x, y) a.e. (Π), there exists a measurable func-
tion v(·, ·) : Π→ Rn such that v(x, y) ∈ F (x, y) a.e. (Π) and

sup
(x,y)∈Π

||
∫ x

0

∫ y

0
(v(x, y)− v(x, y))dydx|| ≤ ε.
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3. The main results

Consider next Φ(·) ∈ C(J1,Rn), Ψ(·) ∈ C(J2,Rn). In order to prove our
main result one needs the following assumption.

Hypothesis 3.1. Let F (., ., .) : Π×Rn → P(Rn) be a set-valued map with
non-empty, compact values that verifies the following conditions.

(i) For all u ∈ Rn, F (·, ·, u) is measurable.
(ii) There exists L(·, ·) ∈ L1(Π,R+) such that for almost all (x, y) ∈ Π,
F (x, y, ·) is L(x, y) - Lipschitz in the sense that

dH(F (x, y, u1), F (x, y, u2)) ≤ L(x, y)‖u1 − u2‖, ∀u1, u2 ∈ Rn.

(iii) There exist constants ck ≥ 0 such that

‖Ik(x)− Ik(y)‖ ≤ ck‖x− y‖, ∀x, y ∈ Rn.

In what follows g(·, ·) ∈ L1(Π,Rn) is given such that there exists λ(·, ·) ∈
L1(Π,R+) which satisfies

d(g(x, y), F (x, y, w(x, y))) ≤ λ(x, y),

where w(·, ·) is a solution of the hyperbolic impulsive differential equation

∂2w

∂x∂y
(x, y) = g(x, y), a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m

∆w(xk, y) = Ik(w(xk, y)), k = 1, . . . ,m,
w(x, 0) = Φ(x), x ∈ J1,

w(0, y) = Ψ(y), y ∈ J2.

(3.1)

Theorem 3.1. Assume that Hypothesis 3.1 is satisfied and consider g(·, ·),
λ(·, ·), w(·, ·) as above.

If ‖L‖1 +
∑m

k=1 ck < 1, then the differential inclusion (1.1) has at least
one solution u(·, ·) which satisfies

‖u− w‖Ω ≤
‖λ‖1

1−
∑m

k=1 ck − ‖L‖1
. (3.2)

Proof. We set v0(x, y) = g(x, y), u0(x, y) = w(x, y). It follows from Lemma
2.1 and Hypothesis 3.1 that there exists a measurable function v1(·, ·) such
that v1(x, y) ∈ F (x, y, u0(x, y)) a.e. (Π) and for almost all (x, y) ∈ Π

‖g(x, y)− v1(x, y)‖ = d(g(x, y), F (x, y, u0(x, y))) ≤ λ(x, y).
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Consider u1(·, ·) the solution of the problem

∂2u1

∂x∂y
(x, y) = v1(x, y) a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m,

∆u1(xk, y) = Ik(u1(xk, y)), k = 1, . . . ,m,
u1(x, 0) = Φ(x), x ∈ J1,

u1(0, y) = Ψ(y), y ∈ J2.

(3.3)

Therefore,

u1(x, y) = z(x, y) +
∫ x

0

∫ y

0
v1(x, y)dydx+

∑
0<xk<x

Ik(u1(xk, y)).

For all (x, y) ∈ Π we have

‖u1(x, y)− u0(x, y)‖ ≤ ‖
∫ x

0

∫ y

0
v1(x, y)dydx+

∑
0<xk<x

Ik(u1(xk, y))−

−
∫ x

0

∫ y

0
v0(x, y)dydx−

∑
0<xk<x

Ik(u0(xk, y))‖ ≤

≤
∫ x

0

∫ y

0
‖v1(x, y)− v0(x, y)‖dydx+

m∑
k=1

‖Ik(u1(xk, y))− Ik(u0(xk, y))‖ ≤

≤
∫ x

0

∫ y

0
λ(x, y)dxdy +

m∑
k=1

ck‖u1(xk, y)− u0(xk, y)‖ ≤

≤
∫ x

0

∫ y

0
λ(x, y)dxdy +

m∑
k=1

ck‖u1 − u0‖Ω ≤

≤
∫ T1

0

∫ T2

0
λ(x, y)dxdy +

m∑
k=1

ck‖u1 − u0‖Ω.

Thus,

‖u1 − u0‖Ω ≤
∫ T1

0

∫ T2

0
λ(x, y) +

m∑
k=1

ck‖u1 − u0‖Ω.

Therefore,

‖u1 − u0‖Ω ≤
‖λ‖1

1−
∑m

k=1 ck
. (3.4)

From Lemma 2.1 and Hypothesis 3.1 we deduce the existence of a mea-
surable function v2(·, ·) such that v2(x, y) ∈ F (x, y, u0(x, y)) a.e. (Π) and
for almost all (x, y) ∈ Π

‖v2(x, y)− v1(x, y)‖ ≤ d(v1(x, y), F (x, y, u1(x, y))) ≤
≤ dH(F (x, y, u0(x, y)), F (x, y, u1(x, y))) ≤ L(x, y)‖u1(x, y)− u0(x, y)‖.
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Consider u2(·, ·) the solution of the problem

∂2u2

∂x∂y
(x, y) = v2(x, y) a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m,

∆u2(xk, y) = Ik(u2(xk, y)), k = 1, . . . ,m,
u2(x, 0) = Φ(x), x ∈ J1,

u2(0, y) = Ψ(y), y ∈ J2.

(3.5)

It follows

u2(x, y) = z(x, y) +
∫ x

0

∫ y

0
v2(x, y)dydx+

∑
0<xk<x

Ik(u2(xk, y)).

For all (x, y) ∈ Π we have

‖u2(x, y)− u1(x, y)‖ ≤ ‖
∫ x

0

∫ y

0
v2(x, y)dydx+

∑
0<xk<x

Ik(u2(xk, y))−

−
∫ x

0

∫ y

0
v1(x, y)dydx−

∑
0<xk<x

Ik(u1(xk, y))‖ ≤

≤
∫ x

0

∫ y

0
‖v2(x, y)− v1(x, y)‖dydx+

m∑
k=1

‖Ik(u2(xk, y))− Ik(u1(xk, y))‖ ≤

≤
∫ x

0

∫ y

0
L(x, y)‖u1(x, y)− u0(x, y)‖dydx+

m∑
k=1

ck‖u2(xk, y)− u1(xk, y)‖.

From (3.4) we have

‖u2 − u1‖Ω ≤
∫ T1

0

∫ T2

0
L(x, y)

‖λ‖1
1−

∑m
k=1 ck

dydx+
m∑

k=1

ck‖u2 − u1‖Ω.

Hence,

‖u2 − u1‖Ω ≤
‖λ‖1 · ‖L‖1

(1−
∑m

k=1 ck)2 . (3.6)

Assume that for some p ≥ 1 we have constructed (ui)
p
i=1 with up satisfying

‖up − up−1‖Ω ≤
‖L‖p−1

1 · ‖λ‖1
(1−

∑m
k=1 ck)p .

Using Lemma 2.1 and Hypothesis 3.1 we obtain that there exists a measur-
able function vp+1(x, y) ∈ F (x, y, up(x, y)) a.e. (Π) such that for almost all
(x, y) ∈ Π holds

‖vp+1(x, y)− vp(x, y)‖ ≤ d(vp+1(x, y), F (x, y, up−1(x, y))) ≤
≤ dH(F (x, y, up(x, y)), F (x, y, up−1(x, y))) ≤ L(x, y)‖up(x, y)− up−1(x, y)‖.
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We consider up+1(·, ·) the solution of the problem

∂2up+1

∂x∂y
(x, y) = vp+1(x, y) a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m,

∆up+1(xk, y) = Ik(up+1(xk, y)), k = 1, . . . ,m,
up+1(x, 0) = Φ(x), x ∈ J1,

up+1(0, y) = Ψ(y), y ∈ J2.
(3.7)

Therefore

up+1(x, y) = z(x, y) +
∫ x

0

∫ y

0
vp+1(x, y)dydx+

∑
0<xk<x

Ik(up+1(xk, y)). (3.8)

We have

‖up+1(x, y)− up(x, y)‖ ≤ ‖
∫ x

0

∫ y

0
vp+1(x, y)dydx+

+
∑

0<xk<x

Ik(up+1(xk, y))−
∫ x

0

∫ y

0
vp(x, y)dydx−

∑
0<xk<x

Ik(up(xk, y))‖ ≤∫ x

0

∫ y

0
‖vp+1(x, y)− vp(x, y)‖dydx+

m∑
k=1

‖Ik(up+1(xk, y))− Ik(up(xk, y))‖ ≤∫ x

0

∫ y

0
L(x, y)‖up(x, y)− up−1(x, y)‖dydx+

m∑
k=1

ck‖up+1(xk, y)− up(xk, y)‖.

So,

‖up+1−up‖Ω ≤
‖L‖p−1

1 · ‖λ‖1
(1−

∑m
k=1 ck)p

∫ T1

0

∫ T2

0
L(x, y)dydx+(

m∑
k=1

ck)‖up+1−up‖Ω.

We obtain

‖up+1 − up‖Ω ≤
‖L‖p1 · ‖λ‖1

(1−
∑m

k=1 ck)p+1 , ∀p ≥ 1. (3.9)

Therefore (up(·, ·))p≥0 is a Cauchy sequence in the Banach space Ω, so it
converges to u(·, ·) ∈ Ω. Since, for almost all (x, y) ∈ Π one has

‖vp+1(x, y)−vp(x, y)‖ ≤ L(x, y)‖up(x, y)−up−1(x, y)‖ ≤ L(x, y)‖up−up−1‖Ω,

it follows that (vp(·, ·))p is a Cauchy sequence in the Banach space L1(Π,Rn)
and thus it converges to v(·, ·) ∈ L1(Π,Rn). Passing to the limit in (3.8)
and using Lebesgue dominated convergence theorem we get

u(x, y) = z(x, y) +
∫ x

0

∫ y

0
v(x, y)dydx+

∑
0<xk<x

Ik(u(xk, y)).
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Moreover, since the values of F (., ., .) are compact and since one has
vp+1(x, y) ∈ F (x, y, up(x, y)) a.e. (Π) for any p ≥ 0, passing to the limit
with p → ∞ we obtain v(x, y) ∈ F (x, y, u(x, y)) a.e. (Π) and u(., .) is a
solution for the problem (1.1).

It remains to prove the estimation (3.2). It holds

‖up − u0‖Ω ≤ ‖up − up−1‖Ω + . . .+ ‖u2 − u1‖Ω + ‖u1 − u0‖Ω

≤ ‖L‖p−1
1 · ‖λ‖1

(1−
∑m

k=1 ck)p
+ · · ·+ ‖L‖1 · ‖λ‖1

(1−
∑m

k=1 ck)2
+

‖λ‖1
1−

∑m
k=1 ck

=
‖λ‖1

1−
∑m

k=1 ck
·

1−
(

‖L‖1
1−

Pm
k=1 ck

)p

1− ‖L‖1
1−

Pm
k=1 ck

≤ ‖λ‖1
1−

∑m
k=1 ck − ‖L‖1

and the proof is complete. 2

Remark 3.1. If in Theorem 3.1 one takes g = 0, w = 0 and λ = L, then
Theorem 3.1 yields Theorem 10.5 in [2].

Moreover, in this case our result provides an a priori estimation for the
solution of problem (1.1) of the form

‖u‖Ω ≤
‖L‖1

1−
∑m

k=1 ck − ‖L‖1
.

As we already pointed out, Theorem 3.1 allows to obtain a relaxation
theorem for problem (1.1). In what follows, we are concerned also with the
convexified (relaxed) impulsive hyperbolic differential inclusion

∂2u

∂x∂y
(x, y) ∈ coF (x, y, u(x, y)) a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m,

∆u(xk, y) = Ik(u(xk, y)) k = 1, . . . ,m,
u(x, 0) = Φ(x), x ∈ J1,

u(0, y) = Ψ(y), y ∈ J2.
(3.10)

Hypothesis 3.2. We assume that Hypothesis 3.1 is satisfied and there ex-
ists M ≥ 0 such that d(0, F (x, y, 0)) ≤M < +∞ a.e. (Π).

Theorem 3.2. We assume that Hypothesis 3.2 is satisfied and let u(·, ·) be
a solution of the convexified problem (3.10).

If ‖L‖1 +
∑m

k=1 ck < 1, then, for all ε > 0, there exists a solution u(·, ·)
of the problem (1.1) such that

‖u− u‖Ω ≤ ε.
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Proof. Let u(·, ·) be a solution of the convexified problem. Then there exists
v(·, ·) ∈ L1(Π,Rn), v(x, y) ∈ coF (x, y, u(x, y)) a.e. (Π) such that

u(x, y) = z(x, y) +
∫ x

0

∫ y

0
v(x, y)dydx+

∑
0<xk<x

Ik(u(xk, y)).

From Lemma 2.2, for all δ > 0, there exists ṽ(x, y) ∈ F (x, y, u(x, y)) a.e.
(Π) such that

sup
(x,y)∈Π

∥∥∥∥∫ x

0

∫ y

0
(ṽ(x, y)− v(x, y))dydx

∥∥∥∥ ≤ δ.
Consider ũ(·, ·) the solution of the problem

∂2ũ

∂x∂y
(x, y) = ṽ(x, y) a.e. (x, y) ∈ J1 × J2, x 6= xk, k = 1, . . . ,m,

∆ũ(xk, y) = Ik(ũ(xk, y)), k = 1, . . . ,m,
ũ(x, 0) = Φ(x), x ∈ J1,

ũ(0, y) = Ψ(y), y ∈ J2.

(3.11)

Therefore,

ũ(x, y) = z(x, y) +
∫ x

0

∫ y

0
ṽ(x, y)dydx+

∑
0<xk<x

Ik(ũ(xk, y)).

We have

‖ũ(x, y)− u(x, y)‖ = ‖
∫ x

0

∫ y

0
ṽ(x, y)dydx+

∑
0<xk<x

Ik(ũ(xk, y))−∫ x

0

∫ y

0
v(x, y)dydx−

∑
0<xk<x

Ik(u(xk, y))‖ ≤

≤ ||
∫ x

0

∫ y

0
ṽ(x, y)− v(x, y)dydx||+

m∑
k=1

‖Ik(ũ(xk, y))− Ik(u(xk, y))‖ ≤

≤ δ +
m∑

k=1

ck‖ũ(xk, y)− u(xk, y)‖ ≤ δ +
m∑

k=1

ck‖ũ− u‖Ω.

Hence

‖ũ− u‖Ω ≤ δ +
m∑

k=1

ck‖ũ− u‖Ω

and then

‖ũ− u‖Ω ≤
δ

1−
∑m

k=1 ck
. (3.12)
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We now apply Theorem 3.1 for the ‘quasi’ solution ũ(·, ·). One has

λ(x, y) = d(ṽ(x, y), F (x, y, ũ(x, y))) ≤ dH(F (x, y, u(x, y)), F (x, y, ũ(x, y)))

≤ L(x, y)‖ũ(x, y)− u(x, y)‖ ≤ L(x, y) · δ

1−
∑m

k=1 ck
,

which shows that λ(·, ·) ∈ L1(Π,Rn).
From Theorem 3.1 there exists a solution u(·, ·) of (1.1) such that

‖u− ũ‖Ω ≤
‖L‖1

1−
∑m

k=1 ck − ‖L‖1
· δ

1−
∑m

k=1 ck
. (3.13)

From (3.12) and (3.13) it follows that

‖u− u‖Ω ≤ ‖u− ũ‖Ω + ‖ũ− u‖Ω ≤

≤ ‖L‖1
1−

∑m
k=1 ck − ‖L‖1

· δ

1−
∑m

k=1 ck
+

δ

1−
∑m

k=1 ck
=

δ

1−
∑m

k=1 ck − ‖L‖1
.

Since δ > 0 is arbitrary, it is enough to take

δ = (1−
m∑

k=1

ck − ‖L‖1) · ε

in order to obtain the conclusion of the theorem. 2
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