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1. Introduction

In this paper we investigate the nonlinear Neumann problem

e B

—A’LL _ Pl(x)|u‘2*(t1)—2u+ PQ(J?) |u‘2*(t2)_2u 11’1 97 (1 1)
% =0 on 99, u>0 on |

where Q C RV is a bounded domain with a smooth boundary 9Q. It is
assumed that 0, € 09Q. 2*(t;) denote Hardy - Sobolev exponents given

by 2*(t;) = 2%:;7), 0 < t; < 2. In this paper we only consider the case
0<t; <2 Ift;=0for j =1,2, then 2*(¢;) = 2* = ]\2,—]}2 and this problem
has an extensive literature. We refer to papers [1], [2], [6], [7], [10], [26]. The
existence results in the case t; = 0 and 0 < t5 < 2 are given in [11]. If t; = 2
for j = 1,2, then 2*(t;) = 2, j = 1,2, and we have on the right hand side
of equation (1.1) a sum of two Hardy potentials. In this situation we can
look at (1.1) as an eigenvalue problem by replacing the right hand side of
the equation by

Pi(z) = Py(x) Ju

> |z =7

A(
where A € R is an eigenvalue parameter (see [12]). For elliptic problems
involving the Hardy potential we also refer to papers [5], [13], [14], [19], [20],
[21], [22], [23], [25], where further bibliographical references can be found.
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212 JAN CHABROWSKI

The coefficients P;, j = 1,2, are assumed to be continuous on Q. Further
assumptions on P; will be formulated later. We look for solutions of problem
(1.1) in a Sobolev space H'(2) equipped with norm

2 —/Q(\Vu]2+u2) da.

By H!(Q) we denote a Sobolev space obtained as the closure of the space
C$°(Q) with respect to the norm

Jullyy = | 190 o

Problems discussed in this paper are related to the optimal constant of the
Hardy - Sobolev type. The best Hardy - Sobolev constant for the domain
Q C RV is defined by

S5(Q) = __inf /Vu|2dx, (1.2)
I ‘““i‘f) dz=1,ucH1(Q) /2

where 2*(s) = 2025 0 < s < 2. If Q = RY, we write S5, instead of S5, ().
If s = 0, then S%(2) = S is the best Soblev constant which is independent of
2. In the case 0 < s < 2, S7,(Q2) depends on €2 (see [17], [18]). If 0 < s < 2,
then Sy, is attained by a family of functions
N-2
W)= — N s, (1.3)
(€ + [xf2~2) 2

where Cy is a normalizing positive constant depending on N and s. Obvi-
ously, W¢ satisfies the equation

2*(s)—1
NP i {0}.

|z[*

We also have

s)2%(s) s
/RN|VW5|2d:c:/RN(WE) do = (S) = .

From the definition of the Hardy - Sobolev constant S% () it follows

uf*)  \TE :
S%(Q)( d:c> < / |Vul|® dx
o |z° 0

for every u € HX(2). We need an extension of this inequality to the space
HY(Q) (see [10]).
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Lemma 1.1. Let 0 € Q. Then there exists a constant K > 0 such that

2*(s) O]
( [l da:)2 < K/(|Vu]2+u2) dx (1.4)
Q Q

|z[*

for every u € HY(Q).

A solution u € H() of (1.1) is understood in a distributional (or weak)
sense, that is,

P *(
/Vqudx—/ ‘1Tt1)| |27 (t)= 2uvda:+/‘ —5]'52‘ ul? 2 =2yy da

for every v € Hl(Q) If u € H'(Q) is a solution of (1.1) then

So if P; and P» are nonnegative and at least one of them not identically equal
to 0, then problem (1.1) does not have a solution. Therefore, we assume

(P) o Pl‘fi) dx < 0o, P, changes sign and Py(x) > 0 on .

We use the decomposition of the space H'()
HY(Q) =V OR, V={vecH(Q) / o(z) dz =
Q

This decomposition yields the following equivalent norm on H'(Q)

lull¥ = 1IVull +42, veV, teR.

We note that inequality (1.4) in the space V takes the form: there exists
a constant Ky > 0 such that

2% (s O]
< ]v| ) §K1/ |Vv|2dx
|z[5 Q

We frequently use in this paper the following qualitative property:

for every v € V.

(S) there exists a constant 1 > 0 such that for every ¢t € R and v € V' the

inequality
1

(/Q |Vv|2 dx) ’ < nlt|

P . ) rop
/ 1(1‘)‘U+t|2 ) gy < |t] . / 1(z) da.
Q

q [zt [

yields
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This follows from the continuity of the embedding of H'(2) into the space
JRUCY (Q, =) (see also [3]). Solutions of problem (1.1) will be obtained as

e
critical points of the variational functional

1 P1 (.1‘)
(t1) Jo [z

2°(t2) 1.

|u\2*(t1)d1:

1
Jw) = 2/Q|Vu|2d:n—2*
2%(t2) Jo x|

To study problem (1.1) we distinguish three cases: (i) 2*(t1) < 2*(t2),
(ii) 2*(t1) = 2*(t2) and (iii) 2*(¢1) > 2*(t2). In the cases (i) and (ii) solutions
are obtained via the mountain - pass principle. In the case (iii) we use a
local minimization.

The paper is organized as follows. Sections 2 and 3 are devoted to the
study of Palais - Smale sequences. In the final Section 4 we present the
existence theorems for problem (1.1).

Throughout this paper, in a given Banach space we denote strong con-
vergence by ” — ” and weak convergence by 7 — ”. The norms in the
Lebesgue spaces LP(€2), 1 < p < oo, are denoted by || - ||,

2. The mountain-pass geometry and (PS) sequences of J

We recall that a C! functional ¢ : X — R on a Banach space X satisfies
the Palais - Smale condition at level ¢ ((PS). condition for short), if each
sequence {z,} C X such that (*) ¢(z,) — c and (**) ¢/(z,) — 0 in X* is
relatively compact in X. Finally, any sequence {x,} satisfying (*) and (**)
is called a Palais - Smale sequence at level ¢ (a (PS). sequence for short).

We distinguish three cases: (i) 2*(t1) < 2*(t2), (ii) 2*(t1) = 2*(t2) and
(iii) 2*(t1) > 2*(t2).

We begin with the case 2*(t1) < 2*(t2).

Proposition 2.1. Suppose that (P) and 2*(t1) < 2*(t2) hold. Then every
(PS). sequence is bounded.

Proof. Let {u,} C H'(Q2) be a (PS). sequence. We have

! ' = 1_ 17 U 2 Xz
5y ) = (5 = 3egy) [ 1V

1 _ 1 ) PQ(LU)
2(tr)  25(t2)” Jo lo —&|*

J(un) —

+ ( |un|2*(t2) dr = c+o(1) + en||unl|,
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where ¢,, — 0. From this we deduce that there exists a constant C' > 0 such
that

Py(x *
/QIVunIQda:, /Qmi(gfmmnﬁ (t2) 4z < C'(1 + ||un]]) (2.1)

for every n. Let d = diam Q and m = min g P>(x). Then

m * P X *
d/Q |2 t2) dz < /Q p:i(ﬂ)m,unp (t2) g < C(1+ ||lunll)-

By the Holder inequality we deduce from this

2
2 . 2% (t) - 2 2
/uidaggmyl = </ 2 <t2>dm> 7 < 10T (1w ),
Q Q

(2.2)
where C' > is a constant independent of n. Inequalities (2.1) and (2.2) yield
the boundedness of {u,} in H(Q). O

Proposition 2.2. Suppose that (P) and 2*(t1) < 2*(t2) hold. Then there
exist constants kK > 0 and p > 0 such that

J(u) =k for |lull = p.

Proof. We use property (S). We distinguish two cases (i) ||Vv|]2 < n|t| and
(ii) [[Vv|l2 > n|t|, where n > 0 is a constant from property (S) and u = v+,

v eV, teR. If (i) holds and ||[Vo|2 + ¢2 = p2, then 2 > 2. By (S) we

1+n2°
get
2% (t
/ Pl(x)‘u 2*(t1) d.’ES |t| (t2) Pl(fl:) dl':—|t 2*(t1)0é,
o |z o |z
where o = —% Q ]r;‘(tf) dx > 0. From this we derive the estimate of J from
below
) L[ PG
ap 2(x *
J(u) > TG T 2(1y) Jo [z — EF |u|?" ) dg. (2.3)
2*(t1)(1 + 772) 2 2) JQ
In the case (ii) we have
1.1
[ully < [Voll2(1 + ﬁ) : (2.4)
It follows from Lemma 1.1 that
1 .27
2

' Py(z)

2*(t1) 2*(t1) 2" (t1) =
o Tolf ul” " dz| < Culully, ™ < Cif[Volly (1+n2)
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for some constant C7 > 0. Thus

J(u) > = ¢ Vi4+5) 2 - (t2) g,
(w) = SIVullz=Cal[Voll; ™ ( +n2) > () Q’x_§|t2|u| x

Taking ||Vv||3 < p? small enough we derive from the above inequality that

1 Py(x)
(t2) Jo |z —&[*

If ||u|ly = p, then combining (2.4) with the last inequality we get

2°(t2) 1,

|u

1
J(w) = 7190l - 5

2,2
PN 1 Py(@) | or(ay)
J > — 2) dx. 2.5
= 4(14n2)  2%(t2) Jo lz — €| 4 ! (25)

Estimates (2.3) and (2.5) yield

2,2 2% (t1) X
Jw>2rm“< T+ o >_2: /il%hﬂiuﬁ“ﬂdx
Q

AP ey (142) 75/ 20 Jalo =gl

Applying Lemma 1.1 to the integral on the right hand side gives

2,2
p°n ap ) o2
) * 2P

4(1 + 772) 2*(t1)(1 + 772) : (2t1)

2% (t1)

) > min

for some constant Cy > 0. Since 2 < 2*(t1) < 2*(t2), taking p > 0 sufficiently
small we can find a constant £ > 0 such that

J(u) >k for Jlully = p

which completes the proof. O

We now turn our attention to the case 2*(t1) = 2*(¢2).

Proposition 2.3. Suppose that (P) and 2*(t1) = 2*(t2) hold. Moreover,

assume that Py (x) Pya)
1\T 20T
dx + / ————dx # 0.
/Q |z [t Qv — ¢

Then (PS). sequences of J are bounded in H'(Q).

Proof. Let {u,} C H'(2) be a (PS). sequence. We use the decomposition
Up = Up + by, v, € V and t, € R. First we show that {¢,} is bounded.
Arguing by contradiction, assume t, — oo (the case t, — —oo can be
treated in a similar way). We have

1

c+o(1) +eplunll = J(un) — (J (un), un) = (% - 2*(t1)) /Q |an|2d$,

2*(t1)
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with ¢, — 0. This shows that
Vo3 < C(1+ Jlunllv) (2.6)

for some constant C' > 0 independent of n. Inequality (2.6) can be rewritten
in the following form

IPEB< £ (5 + | [ 1962 |2dx+1}1).

Hence ||V(L")H% — 0 and consequently * — 0 in L¥®)(Q, L) and

|[*1
L¥t(Q, W) On the other hand we have
]‘ !
ct+o(l) +epllunlly = J(up) — §<J (un), un)
1 1 Pl(.’l:) 2% (t1)
= —_ — n d
(5 o) (], Tl
Py () 2*(t1) )
+ ———|uy,|* " dx ).
lz—¢n find

2% (t1)

Dividing this equality by t5, we get

1
(t1) ( + 0(1) + enHun”V)

o1 Pi(2) vn | ov) g,
= b~ gy ([ o

Py(z) v, ) daz)
Letting n — oo we obtain

ol —&n'e,
P P
1) dﬂc+/2(x)tdﬂc:0
o |z" o |z =gl

ty

_'_

and we have arrived at a contradiction. Since {¢,} is bounded, it follows
from (2.6) that {||Vuvy,l||2} is also bounded and the result follows. O

In the case 2*(t1) = 2*(t2) we can obtain the mountain-pass geometry
for a modified variational functional

/ Vul b~ gy,

_ PQ( ) 2*( tz)d
* t | | )
2 (tz) o |zl

) dx




218 JAN CHABROWSKI

where 0 < pu < u, is a parameter and p, > 0 is sufficiently small. The
variational functional .J,, corresponds to the following Neumann problem

lz—¢[™

—AU - Tl | |2*(t1) QU"_H Pu(z) ’ |2*(t1)_2u in 97 (2 7)
du 0 on 99 u>0 on Q. '

Proposition 2.4. Suppose that (P) and 2*(t1) = 2*(t2) hold. Then there
exist constants py, > 0, K > 0 and p > 0 such that

Ju(w) = & for |ull=p
and 0 < p < pg

Proof. As in the proof of Proposition 2.2 we get

2,2 2% (t1) *
Ju(u) 2min< P - ap MI))_ - / Pz(x)tl 2 () dg.
4(1 +n ) 2*(t1)(1 +n2) 2 2 (tl) Q |$ _£|

It then follows from Lemma 1.1 that

ap2*(t1)

2

. p°n .

J/,L(u) > m1n<4(1 i 2), 2% (1) ) - /’LCQPQ (tl)’
) 2% () (1 4+ n2) 2

for some positive constant Cy > 0. The result follows by taking pu, suffi-
ciently small. O

Problem (2.7) does not have a solution for u large.

Proposition 2.5. Suppose that assumptions of Proposition 2.4 hold. Then
problem (2.7) does not admit a solution for

- fQ |z\t1
P
fQ ‘xQ(E‘Ttl

Proof. Suppose that u is a solution of problem (2.7). Let ¢ > 0. Testing

2%(t1)—1

(2.7) with ¢(z) = (u* +€*)7 2 we get

(2.8)

2% (t1)+1

0 > —(2*(t1)—1)/\Vu]QU(u2+e2) > dx
Q
_ /Pl(a:) u -t

Q |:c‘t1 (u2+€2)2*(t1)—1

Py(z) Juf> ()1
+ 'u/ _ £t 2%(t1)—-1 dz.
Q ‘37 f\ (u2 + 62)#
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Hence
P. 2*(151)71 P 2*(151)71
M/ Q(x) - 2% (t1)—1 dz < _/ l(x) - 2% (t1)—1 dx.
Qlr—¢&f o o) F Q lzlft o gy T
(u?+€2) 2 (u?+€2) 2
Letting ¢ — 0 we obtain
7]' Py (z) dx
Q |;c|t1
Tt e d
and the result follows. O

Remark 2.1. It is clear that problem (2.7) has no solution if
D () Py(x)
i e =g

Obviously inequality (2.9) yields (2.8).

>0 on Q. (2.9)

Finally, we consider the case 2*(t;) > 2*(t2). As in the case 2*(¢;) =
2*(t2) we consider the nonlinear Neumann problem involving a parameter
pw>0

|z["1

—Au = PR P 4 g | D0 in 0, (2.10)
% =0 on 09, u>0 on Q, .

where 0 < p < p, with p, > 0 small. Let

1 Pi(z x
/|Vu\ dx — 0 )/Q |91;t1) 2 g

_ P2( ) 2*(t2)
2*<t2>/9|x—5|t2' 7 do.

Proposition 2.6. Suppose (P) and 2*(t1) > 2*(t2) hold. Then there exist
constants p, >0, K > 0 and p > 0 such that

L=k for Jull=p (2.11)

and 0 < p < p,. Moreover,

inf I,(u) <0 for 0<p<p,.
l[ull<p

Proof. The proof of the first part is similar to that of Proposition 2.2. To
show the second part observe that for a constant ¢ > 0 we have

tQ*(tl) Pl(:L') t2*(t2) PQ(I‘)
1,(t) = — — dz.
WO =5 Jo ol @ “2*<t2>/9|x—s|t2 v

Since 2*(t1) > 2*(t2), I.(t) < 0 for ¢ > 0 sufficiently small. O
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3. Palais - Smale condition

We commence with the case 2*(t1) < 2*(t2).

Proposition 3.1. Let 0, € 0. Suppose that (P) and 2*(t1) < 2*(t2)
hold. Moreover assume that P1(0) > 0. Then (PS). condition is satisfied

for

N—ty
2—1;

2-t) (S%) !

(2 —ta) (Sg)ﬁ%f;
(N —t) Pl(())% "4(N —ta) P (&) ) (3.1)

¢ < c®:=min
(5

Proof. Let {u,} C H*(Q) be a (PS). sequence with ¢ satisfying (3.1). By
Proposition 2.1 {u,} is bounded in H'(£2). We may assume that u, — u
in H(Q), L¥®)(Q, 1) and L¥*2)(Q, ﬁ) It follows from P.L. Lions’

et —¢|"2
concentration - compactness principle (see [24]) that

Vg | = p > [Vul? + bodo + bede,

’un|2*(t1) N |u|2*(t1)

|$‘t1 |x|t1 + a0507

and
") ")

¢ i
=&l o g
in the sense of measure, where b, b¢, ao, as are nonnegative constants and

0o and d¢ denote the Dirac measures assigned to 0 and &, respectively. The
constants bo, bg, a., a¢ satisfy inequalities

+ a§5€,

2 _2
o st g
s <by and —p T < b (3.2)
QN-i1 ON—13
We have
1
c = lim (J(up) — §<J/(un),un>) (3.3)
1 1 Pl(.ﬁlf) 2*(t1)
= (= d
G~ @) Jy Topp 1
1 1 Pg(l’) 2*(t )
4+ (== ul® ‘" dx
G~ 5w ol —an
+ (1 - ;)aopl(o) + (1 — 5 )acPa(8).
2 2%(ty) 2 2%(to)

We now observe that

P, . P .
Og/ IVu|2da::/ o) p (tl)dx+/ Do@) e g
@ o |zt alz—¢"
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Hence we derive from (3.3) that

c 1_ 1 Pl(l') uQ*(tl) -
= (2 2*(t1))< o |zt [ ! 34
M wl? @) 14
* Q|:L‘—f\t2| o d)
by g P O+ (g g aea(©
> (% - 2*(11&1))%131(0) + (% — 2*(1752))&5&(5).

Let g, 0 > 0, be a family of C!-functions concentrating at 0 as § — 0. We
derive from (J'(uy), unp?) — 0 that

bo S Pl(O)ao and bg S Pg(f)ag. (35)

To complete the proof it is sufficient to show that a, = a¢ = 0. Assume that
a, > 0, then (3.2) and (3.5) imply that

s Nt
S 2—t
P i
2P1 (0) -t
It then follows from (3.4) that
N—t]
1 (1 1 )(s;;) 2=
C=Z5\5 ~ 5% N—2
2 2 2 (tl) Pl(o) 2—t

which is impossible. So a, = 0. In a similar manner we show that one has
ag = 0. O

Remark 3.1. Inspection of the proof of Proposition 3.1 shows that if P(0) <
0, the (PS). sequence cannot concentrate at 0. In this case (3.1) takes the
form

We now consider the case 2*(t1) = 2*(t2).

Proposition 3.2. Let0,£ € 0Q. Let (P) and 2*(t1) = 2*(t2) hold. Suppose
that P1(0) >0, 0 < p and

Pl(.l') PQ(ZL')
d —= - d .
/Q|a:|t1 "’“"“‘/mx—svl 770
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Then J, satisfies the (PS). condition for

2-n) () @-n) (S%);v;;>
AN =h) oy AN =0 (upy(e) T

C<E::min<

Proof. We argue as in the proof of Proposition 3.1. Let {u,} C H'(2) be
a (PS). sequence for J. By Proposition 2.3 {u,} is bounded in H'(Q). So

we may assume that u, — u in H'(Q) and L¥ (1)(Q, HQTI) We have
o 1, 11 Pi(2), o)
Py(@) | or(en) )
+ YVdx
lz—¢h |
1 1
S V(a.P Py(€)),

where bo, b¢, ao and ag¢ satisfy
bo < Pi(0)a. and be < pPo(§)ag

We now observe that

/Q |;(t1)’ ‘2 (t1) dm—i—,u/ " §‘t1| ’2 (1) gz > 0.

If ao > 0, then

Nty
L)
N-2

(1) p (o)
which is impossible. Similarly, if ag > 0, then

c>

1.1
3G =

N—t]
1,1 1 (S4) =
°>3G " 7@ =g
V™ (nPa(€)) >
which again gives a contradiction and the result follows. O

We now consider the case 2*(t1) > 2*(t2).

Proposition 3.3. Let 0, € 9. Suppose that (P) and 2*(t1) > 2*(t2)
hold. Moreover, assume that Pi(0) > 0 and 0 < p < p,. If {up} is a
bounded in H'(Q) a (PS). sequence for the functional I, with

C-t) (S50 (-t (557
c<min< L H 2 it >7

(3.6)

N—-2

AN =h) oy AN R (upy(e)

then {u,} contains a subsequence converging weakly to nonzero solution of
(2.10).
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Proof. Since {u,} is a bounded sequence in H!(f2), we may assume that
u, — uin HY(Q), L¥ ) (Q L ) and L2 (t2) (Q, W) Applying the P.L.

9 |$|t1
Lions’ concentration - compactness principle we get (3.4). If u = 0 we derive
a contradiction with (3.6). O

4. Existence of solutions

We commence with the case 2*(t1) < 2*(¢2). Let 0,& € 9. Assume that

N—ty

2—t1) (SH)z

¢ = 4(N_1t> (S5) — and Py(0) > 0. (4.1)
( 1) P(0)z 0

We choose 7o > 0 so that Pi(x) > 0 on B(0,2r,) C Q. Let ¢ be a C-
function such that ¢(x) = 1 on B(0,7,), ¢(x) = 0 on RY — B(0,2r,) and
0 < ¢(x) <1 on RY. To estimate the mountain-pass level of the functional
J we use the function given by (1.3) with s = t1. Let wey, (z) = ¢(x) Wi ()
and define a function I on H'(Q) by

Jo IVul? dz

N—-2 °
|u‘2*(t1) N—ty
<fsz [z[fT dx

Denoting by H(0) a mean curvature of 92 at 0, we have the following
asymptotic estimate for I(w.;,) (see [11], [17]):

I(u) =

t1 _2 _2
% — H(0)ane> 1 4+ o(e? 1) , N>4
I(we,h) = 2N;1t1 2 2 (4'2)
ot — H(0)bye™ " |Ine| +o(e>1) , N =3,
2 N=i1

where an and by are positive constants.

Theorem 4.1. Let 0,£ € 02 and H(0) > 0. Suppose (P), 2*(t1) < 2*(t2)
and (4.1) hold. If

2
|P1(z) — Pi(0)] = of|z|>1)
for x close to 0, then problem (1.1) admits a solution.

Proof. By Proposition 2.2, the functional J has a mountain-pass structure.
Since 2*(t1) < 2*(t2) there exists a function v € H'(Q) such that ||v]| > p
and J(v) < 0. Let ¢ be a mountain-pass level for J, that is,

— inf J(y(t
¢ = Inf max (v(t)),
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where
I ={yeC([0,1], H(Q)), 7(0) = 0, v(1) = v},
where v = twe, with ¢t > 0 sufficiently large. It is clear that

2
c < Igmg{J(tweytl) §T§§<2/§2|Vwe,t1]2dm (4.3)

tQ*(tl) Pl(x) 2*
_ (t1) d
2+(t1) /Q s Vet )

2-t) (fg Ve, [2 dm)

2(N —t1) =2
<fQ ﬁﬁ? |We 1, ’2*(“) dm) )

N—tg
2—1;

Obviously, the curve v(s) = stwey,, 0 < s < 1, with t sufficiently large,
belongs to I'. We now observe that

2*(t1
Mh’%,tl 25(t1) g — Py(0) |w€7t1 ()
o lz|" o ="

Combining (4.2), (4.3) and (4.4) we derive ¢ < ¢,. Thus by Proposition 3.1
the functional J satisfies the (PS) condition at the level c¢. The existence
of a solution u # 0 of (1.1) follows from the mountain-pass principle. By
Theorem 10 in [3] we may assume that v > 0 on 2. The fact that v > 0 on
2 follows from Harnack inequality (see [16]). O

da:+0(eﬁ). (4.4)

Similarly, we have

Theorem 4.2. Let 0,£ € 092, H(§) > 0. Suppose that (P), 2*(t1) < 2*(t2)

and
N—ty

2—ty) (S7)>
oo 2=t2) (54) — and P(0) > 0.

AN —12) p(g)2

If 2
[Py(&) — Pa(x)] = of|z[>%)

for x close to &, then problem (1.1) admits a solution.

We now consider the case 2*(t1) = 2*(t2). We can always assume that

O<p<p, < ];;8 by taking p, smaller if necessary. Then

Noty
(2—t) (SH)>™
AN —1) p oy

¢ =

Propositions 2.3, 2.4, 3.2 and Remark 2.1 lead to the following existence
theorem in the case 2*(t1) = 2*(t2).
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Theorem 4.3. Let 0,£ € 9Q. Let Pi(0) > 0, 2*(t1) = 2*(t2), H(0) > 0,

0<p<p, and
Py (x) / Py(x)
dr +p | ————dx <0.
/Q |z alz—¢"

Moreover assume that (P) holds and that
2
|Pi(x) — P1(0)| = of|z|>7)
for x close to 0, then problem (2.7) admits a solution.

Finally, in the case 2*(t1) > 2*(t2), by Proposition 2.6, the functional I,
satisfies (2.11) and infy,, I,(u) < 0. Therefore we can apply the Ekeland
variational principle and obtain the (PS). sequence with ¢ = infy,, I, (u) <
0 for 0 < pu < p*. This sequence, according to Proposition 3.3, contains a
subsequence weakly converging to nonzero solution of (2.10). This allows us
to formulate the following existence result for problem (2.10):

Theorem 4.4. Let 0,& € 052 Suppose (P), 2*(t1) > 2*(t2) and P1(0) >0
hold. Then problem (2.10) admits a solution.

Theorems 4.3 and 4.4 continue to hold for 4 = 0, that is, for the following
problem

|]®

“Au = P($)|u|2*(5)*2u in £, (4.5)
% =0 on 09, u>0 on €, .

where 0 < s < 2 and P(x) is a continuous function on Q. Moreover, we
assume that

(R) The function P(z) changes sign and [, % dz < 0.

The corresponding variational functional is given by

1 1 P(x
I(u) :2/Q|Vu|2dx— 2*(5)/9 |a§|2)|u

Repeating the arguments from Sections 2 and 3 we can show that I has a
mountain - pass geometry. If P(0) > 0, then the (PS). condition holds for

2°(s) .

29 (S
AN —s) P(0)

If P(0) <0, the (PS). condition holds for every ¢ € R. We can now state
the following existence result for problem (4.5)
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Theorem 4.5. Let 0 € 99, 0 < s <2, P(0) >0 and H(0) > 0. Moreover,
assume that (R) holds and

2
|P(z) = P(0)| = o(|z]>~)
for x close to 0. Then problem (4.5) admits a solution.

The proof is similar to that of Theorem 4.1 and is omitted.

Remark 4.1. In the case 2*(t1) < 2*(t2), that is t; > to, a solution u of
problem (1.1) satisfies the following estimate
2(t1—t2)
m 2(t1—t9) u N-2

— [ u N2 de<mm [ ———dr <
d Jo o |lr—¢|"

(t=t5)
g/PZ(”J)tJ%_? de—/Pl(;C)dm,
alz =& o |z|"

where, m = min,cq P2(x). Indeed, taking as a test function ¢(z) = (u? +
_2%(tp—1

62) 2 (see the proof of Proposition 2.5) we get

_2%()+1

0 > —(2*(t1)—1)/Qwu|2u(u2+e2) T dr =

P 2*(t1)—1 P 2% (t2)—1
= 1(2) v o do + 2(2) Y s d.
R N

u? +€2) " 2 u?+e2) 2

Letting ¢ — 0 the estimate follows. In a similar, way one can show that
a solution u of problem (2.10) (with 2*(¢;) > 2*(t2)) satisfies the following
estimate

_2(t1—t2)

m _20t1=ta) u  N-2 Py (x _2(t1—t9)
u N2 dr < T?Lu/ dmﬁ/Q()u N=2 dx
Q Q

d J v — ¢ v — ¢l
< - h(z) dz.
o |z|"
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