Annals of the University of Bucharest (mathematical series)
(Analele Universității Bucureşti. Matematică)
1 (LIX) (2010), 211–228

On the Neumann problem involving the Hardy -Sobolev potentials

JAN CHABROWSKI

Communicated by George Dinca

Abstract - We establish the existence of solutions for the Neumann problem involving two Hardy - Sobolev potentials with singularities at two distinct points.

Key words and phrases : the Neumann problem, the Hardy - Sobolev inequality.

Mathematics Subject Classification (2000): 35J35, 35J50, 35J67.

1. Introduction

In this paper we investigate the nonlinear Neumann problem

$$\begin{cases} -\Delta u &= \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)-2} u + \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)-2} u \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} &= 0 \text{ on } \partial\Omega, \ u > 0 \text{ on } \Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with a smooth boundary $\partial\Omega$. It is assumed that $0, \xi \in \partial\Omega$. $2^*(t_j)$ denote Hardy - Sobolev exponents given by $2^*(t_j) = \frac{2(N-t_j)}{N-2}$, $0 \leq t_j \leq 2$. In this paper we only consider the case $0 < t_j < 2$. If $t_j = 0$ for j = 1, 2, then $2^*(t_j) = 2^* = \frac{2N}{N-2}$ and this problem has an extensive literature. We refer to papers [1], [2], [6], [7], [10], [26]. The existence results in the case $t_1 = 0$ and $0 < t_2 < 2$ are given in [11]. If $t_j = 2$ for j = 1, 2, then $2^*(t_j) = 2, j = 1, 2$, and we have on the right hand side of equation (1.1) a sum of two Hardy potentials. In this situation we can look at (1.1) as an eigenvalue problem by replacing the right hand side of the equation by

$$\lambda \Big(\frac{P_1(x)}{|x|^2} + \frac{P_2(x)}{|x-\xi|^2}\Big)u$$

where $\lambda \in \mathbb{R}$ is an eigenvalue parameter (see [12]). For elliptic problems involving the Hardy potential we also refer to papers [5], [13], [14], [19], [20], [21], [22], [23], [25], where further bibliographical references can be found.

The coefficients P_j , j = 1, 2, are assumed to be continuous on $\overline{\Omega}$. Further assumptions on P_j will be formulated later. We look for solutions of problem (1.1) in a Sobolev space $H^1(\Omega)$ equipped with norm

$$||u||^2 = \int_{\Omega} (|\nabla u|^2 + u^2) \, dx.$$

By $H^1_{\circ}(\Omega)$ we denote a Sobolev space obtained as the closure of the space $C^{\infty}_{\circ}(\Omega)$ with respect to the norm

$$\|u\|_{H^1_\circ}^2 = \int_\Omega |\nabla u|^2 \, dx.$$

Problems discussed in this paper are related to the optimal constant of the Hardy - Sobolev type. The best Hardy - Sobolev constant for the domain $\Omega \subset \mathbb{R}^N$ is defined by

$$S_{H}^{s}(\Omega) = \inf_{\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} dx = 1, u \in H^{1}_{\circ}(\Omega)} \int_{\Omega} |\nabla u|^{2} dx,$$
(1.2)

where $2^*(s) = \frac{2(N-s)}{N-2}, 0 \le s \le 2$. If $\Omega = \mathbb{R}^N$, we write S_H^s instead of $S_H^s(\Omega)$. If s = 0, then $S_H^0(\Omega) = S$ is the best Soblev constant which is independent of Ω . In the case 0 < s < 2, $S_H^s(\Omega)$ depends on Ω (see [17], [18]). If $0 \le s < 2$, then S_H^s is attained by a family of functions

$$W^{s}_{\epsilon}(x) = \frac{C_{N}\epsilon^{\frac{N-2}{2-s}}}{\left(\epsilon^{2} + |x|^{2-s}\right)^{\frac{N-2}{2-s}}}, \ \epsilon > 0,$$
(1.3)

where C_N is a normalizing positive constant depending on N and s. Obviously, W^s_{ϵ} satisfies the equation

$$-\Delta u = \frac{|u|^{2^*(s)-1}}{|x|^s} \text{ in } \mathbb{R}^N - \{0\}.$$

We also have

$$\int_{\mathbb{R}^N} |\nabla W^s_{\epsilon}|^2 \, dx = \int_{\mathbb{R}^N} \frac{\left(W^s_{\epsilon}\right)^{2^*(s)}}{|x|^s} \, dx = \left(S^s_H\right)^{\frac{N-s}{2-s}}.$$

From the definition of the Hardy - Sobolev constant $S_H^s(\Omega)$ it follows

$$S_H^s(\Omega) \left(\int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s} \, dx \right)^{\frac{2}{2^*(s)}} \le \int_{\Omega} |\nabla u|^2 \, dx$$

for every $u \in H^1_{\circ}(\Omega)$. We need an extension of this inequality to the space $H^1(\Omega)$ (see [10]).

Lemma 1.1. Let $0 \in \overline{\Omega}$. Then there exists a constant K > 0 such that

$$\left(\int_{\Omega} \frac{|u|^{2^*(s)}}{|x|^s} dx\right)^{\frac{2^*(s)}{2^*(s)}} \le K \int_{\Omega} \left(|\nabla u|^2 + u^2\right) dx \tag{1.4}$$

for every $u \in H^1(\Omega)$.

A solution $u \in H^1(\Omega)$ of (1.1) is understood in a distributional (or weak) sense, that is,

$$\int_{\Omega} \nabla u \nabla v \, dx = \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)-2} uv \, dx + \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)-2} uv \, dx$$

for every $v \in H^1(\Omega)$. If $u \in H^1(\Omega)$ is a solution of (1.1) then

$$0 = \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)-1} dx + \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)-1} dx$$

So if P_1 and P_2 are nonnegative and at least one of them not identically equal to 0, then problem (1.1) does not have a solution. Therefore, we assume

(P) $\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} dx < \infty$, P_1 changes sign and $P_2(x) > 0$ on $\overline{\Omega}$.

We use the decomposition of the space $H^1(\Omega)$

$$H^1(\Omega) = V \oplus \mathbb{R}, \quad V = \{ v \in H^1(\Omega) \mid \int_{\Omega} v(x) \, dx = 0 \}.$$

This decomposition yields the following equivalent norm on $H^1(\Omega)$

$$||u||_V^2 = ||\nabla u||_2^2 + t^2, \ v \in V, \ t \in \mathbb{R}.$$

We note that inequality (1.4) in the space V takes the form: there exists a constant $K_1>0$ such that

$$\left(\int_{\Omega} \frac{|v|^{2^*(s)}}{|x|^s} dx\right)^{\frac{2}{2^*(x)}} \le K_1 \int_{\Omega} |\nabla v|^2 dx$$

for every $v \in V$.

We frequently use in this paper the following qualitative property:

(S) there exists a constant $\eta > 0$ such that for every $t \in \mathbb{R}$ and $v \in V$ the inequality

$$\left(\int_{\Omega} |\nabla v|^2 \, dx\right)^{\frac{1}{2}} \le \eta |t|$$

yields

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |v+t|^{2^*(t_1)} \, dx \le \frac{|t|^{2^*(t_1)}}{2} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx$$

This follows from the continuity of the embedding of $H^1(\Omega)$ into the space $L^{2^*(t_1)}\left(\Omega, \frac{1}{|x|^{t_1}}\right)$ (see also [3]). Solutions of problem (1.1) will be obtained as critical points of the variational functional

$$\begin{aligned} J(u) &= \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{1}{2^*(t_1)} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} \, dx \\ &- \frac{1}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x|^{t_2}} |u|^{2^*(t_2)} \, dx. \end{aligned}$$

To study problem (1.1) we distinguish three cases: (i) $2^*(t_1) < 2^*(t_2)$, (ii) $2^*(t_1) = 2^*(t_2)$ and (iii) $2^*(t_1) > 2^*(t_2)$. In the cases (i) and (ii) solutions are obtained via the mountain - pass principle. In the case (iii) we use a local minimization.

The paper is organized as follows. Sections 2 and 3 are devoted to the study of Palais - Smale sequences. In the final Section 4 we present the existence theorems for problem (1.1).

Throughout this paper, in a given Banach space we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". The norms in the Lebesgue spaces $L^p(\Omega)$, $1 \leq p \leq \infty$, are denoted by $\|\cdot\|_p$.

2. The mountain-pass geometry and (PS) sequences of J

We recall that a C^1 functional $\phi : X \to \mathbb{R}$ on a Banach space X satisfies the Palais - Smale condition at level c $((PS)_c$ condition for short), if each sequence $\{x_n\} \subset X$ such that $(*) \phi(x_n) \to c$ and $(**) \phi'(x_n) \to 0$ in X^* is relatively compact in X. Finally, any sequence $\{x_n\}$ satisfying (*) and (**)is called a Palais - Smale sequence at level c (a $(PS)_c$ sequence for short).

We distinguish three cases: (i) $2^*(t_1) < 2^*(t_2)$, (ii) $2^*(t_1) = 2^*(t_2)$ and (iii) $2^*(t_1) > 2^*(t_2)$.

We begin with the case $2^*(t_1) < 2^*(t_2)$.

Proposition 2.1. Suppose that (**P**) and $2^*(t_1) < 2^*(t_2)$ hold. Then every $(PS)_c$ sequence is bounded.

Proof. Let $\{u_n\} \subset H^1(\Omega)$ be a $(PS)_c$ sequence. We have

$$J(u_n) - \frac{1}{2^*(t_1)} \langle J'(u_n), u_n \rangle = \left(\frac{1}{2} - \frac{1}{2^*(t_1)}\right) \int_{\Omega} |\nabla u_n|^2 dx + \left(\frac{1}{2^*(t_1)} - \frac{1}{2^*(t_2)}\right) \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_2}} |u_n|^{2^*(t_2)} dx = c + o(1) + \epsilon_n ||u_n||,$$

where $\epsilon_n \to 0$. From this we deduce that there exists a constant C > 0 such that

$$\int_{\Omega} |\nabla u_n|^2 \, dx, \ \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_2}} |u_n|^{2^*(t_2)} \, dx \le C \left(1 + \|u_n\| \right) \tag{2.1}$$

for every *n*. Let $d = \operatorname{diam} \Omega$ and $\overline{m} = \min_{x \in \overline{\Omega}} P_2(x)$. Then

$$\frac{\bar{m}}{d} \int_{\Omega} |u_n|^{2^*(t_2)} dx \le \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u_n|^{2^*(t_2)} dx \le C (1+||u_n||).$$

By the Hölder inequality we deduce from this

$$\int_{\Omega} u_n^2 dx \le |\Omega|^{1 - \frac{2}{2^*(t_2)}} \left(\int_{\Omega} |u_n|^{2^*(t_2)} dx \right)^{\frac{2}{2^*(t_2)}} \le \tilde{C} |\Omega|^{1 - \frac{2}{2^*(t_2)}} \left(1 + \|u_n\|^{\frac{2}{2^*(t_2)}} \right),$$
(2.2)

where $\tilde{C} >$ is a constant independent of n. Inequalities (2.1) and (2.2) yield the boundedness of $\{u_n\}$ in $H^1(\Omega)$.

Proposition 2.2. Suppose that (**P**) and $2^*(t_1) < 2^*(t_2)$ hold. Then there exist constants $\kappa > 0$ and $\rho > 0$ such that

$$J(u) \ge \kappa \quad for \quad ||u|| = \rho.$$

Proof. We use property (**S**). We distinguish two cases (i) $\|\nabla v\|_2 \leq \eta |t|$ and (ii) $\|\nabla v\|_2 > \eta |t|$, where $\eta > 0$ is a constant from property (**S**) and u = v + t, $v \in V, t \in \mathbb{R}$. If (i) holds and $\|\nabla v\|_2^2 + t^2 = \rho^2$, then $t^2 \geq \frac{\rho^2}{1+\eta^2}$. By (**S**) we get

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} \, dx \le \frac{|t|^{2^*(t_1)}}{2} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx = -|t|^{2^*(t_1)} \alpha,$$

where $\alpha = -\frac{1}{2} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} dx > 0$. From this we derive the estimate of J from below

$$J(u) \ge \frac{\alpha \rho^{2^*(t_1)}}{2^*(t_1) (1+\eta^2)^{\frac{2^*(t_1)}{2}}} - \frac{1}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)} dx.$$
(2.3)

In the case (ii) we have

$$\|u\|_{V} \le \|\nabla v\|_{2} \left(1 + \frac{1}{\eta^{2}}\right)^{\frac{1}{2}}.$$
(2.4)

It follows from Lemma 1.1 that

$$\left| \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} \, dx \right| \le C_1 \|u\|_V^{2^*(t_1)} \le C_1 \|\nabla v\|_2^{2^*(t_1)} \left(1 + \frac{1}{\eta^2}\right)^{\frac{2^*(t_1)}{2}}$$

for some constant $C_1 > 0$. Thus

$$J(u) \ge \frac{1}{2} \|\nabla v\|_2^2 - C_1 \|\nabla v\|_2^{2^*(t_1)} \left(1 + \frac{1}{\eta^2}\right)^{\frac{2^*(t_1)}{2}} - \frac{1}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_2}} |u|^{2^*(t_2)} dx.$$

Taking $\|\nabla v\|_2^2 \leq \rho^2$ small enough we derive from the above inequality that

$$J(u) \ge \frac{1}{4} \|\nabla v\|_2^2 - \frac{1}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_2}} |u|^{2^*(t_2)} dx.$$

If $||u||_V = \rho$, then combining (2.4) with the last inequality we get

$$J(u) \ge \frac{\rho^2 \eta^2}{4(1+\eta^2)} - \frac{1}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)} \, dx.$$
(2.5)

Estimates (2.3) and (2.5) yield

$$J(u) \ge \min\left(\frac{\rho^2 \eta^2}{4(1+\eta^2)}, \frac{\alpha \rho^{2^*(t_1)}}{2^*(t_1)(1+\eta^2)^{\frac{2^*(t_1)}{2}}}\right) - \frac{1}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)} \, dx.$$

Applying Lemma 1.1 to the integral on the right hand side gives

$$J(u) \ge \min\left(\frac{\rho^2 \eta^2}{4(1+\eta^2)}, \frac{\alpha \rho^{2^*(t_1)}}{2^*(t_1)(1+\eta^2)^{\frac{2^*(t_1)}{2}}}\right) - C_2 \rho^{2^*(t_2)}$$

for some constant $C_2 > 0$. Since $2 < 2^*(t_1) < 2^*(t_2)$, taking $\rho > 0$ sufficiently small we can find a constant $\kappa > 0$ such that

$$J(u) \ge \kappa$$
 for $||u||_V = \rho$

which completes the proof.

We now turn our attention to the case $2^*(t_1) = 2^*(t_2)$.

Proposition 2.3. Suppose that (**P**) and $2^*(t_1) = 2^*(t_2)$ hold. Moreover, assume that

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx + \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} \, dx \neq 0.$$

Then $(PS)_c$ sequences of J are bounded in $H^1(\Omega)$.

Proof. Let $\{u_n\} \subset H^1(\Omega)$ be a $(PS)_c$ sequence. We use the decomposition $u_n = v_n + t_n, v_n \in V$ and $t_n \in \mathbb{R}$. First we show that $\{t_n\}$ is bounded. Arguing by contradiction, assume $t_n \to \infty$ (the case $t_n \to -\infty$ can be treated in a similar way). We have

$$c + o(1) + \epsilon_n ||u_n|| = J(u_n) - \frac{1}{2^*(t_1)} \langle J'(u_n), u_n \rangle = \left(\frac{1}{2} - \frac{1}{2^*(t_1)}\right) \int_{\Omega} |\nabla v_n|^2 \, dx,$$

with $\epsilon_n \to 0$. This shows that

$$\|\nabla v_n\|_2^2 \le C \left(1 + \|u_n\|_V\right) \tag{2.6}$$

for some constant C > 0 independent of n. Inequality (2.6) can be rewritten in the following form

$$\|\nabla\left(\frac{v_n}{t_n}\right)\|_2^2 \le \frac{C}{t_n} \left(\frac{1}{t_n} + \left[\int_{\Omega} |\nabla\left(\frac{v_n}{t_n}\right)|^2 \, dx + 1\right]^{\frac{1}{2}}\right).$$

Hence $\|\nabla(\frac{v_n}{t_n})\|_2^2 \to 0$ and consequently $\frac{v_n}{t_n} \to 0$ in $L^{2^*(t_1)}(\Omega, \frac{1}{|x|^{t_1}})$ and $L^{2^*(t_1)}(\Omega, \frac{1}{|x-\xi|^{t_1}})$. On the other hand we have

$$c + o(1) + \epsilon_n ||u_n||_V = J(u_n) - \frac{1}{2} \langle J'(u_n), u_n \rangle$$

= $(\frac{1}{2} - \frac{1}{2^*(t_1)}) \left(\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u_n|^{2^*(t_1)} dx + \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_1}} |u_n|^{2^*(t_1)} dx \right).$

Dividing this equality by $t_n^{2^*(t_1)}$ we get

$$\frac{1}{t_n^{2^*(t_1)}} \begin{pmatrix} c & + & o(1) + \epsilon_n \|u_n\|_V \end{pmatrix}$$

= $\left(\frac{1}{2} - \frac{1}{2^*(t_1)}\right) \left(\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |\frac{v_n}{t_n} + 1|^{2^*(t_1)} dx + \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_1}} |\frac{v_n}{t_n} + 1|^{2^*(t_1)} dx \right).$

Letting $n \to \infty$ we obtain

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx + \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} \, dx = 0$$

and we have arrived at a contradiction. Since $\{t_n\}$ is bounded, it follows from (2.6) that $\{\|\nabla v_n\|_2\}$ is also bounded and the result follows. \Box

In the case $2^*(t_1) = 2^*(t_2)$ we can obtain the mountain-pass geometry for a modified variational functional

$$J_{\mu}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{2^*(t_1)} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} dx$$
$$- \frac{\mu}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x|^{t_2}} |u|^{2^*(t_2)} dx,$$

where $0 < \mu < \mu_{\circ}$ is a parameter and $\mu_{\circ} > 0$ is sufficiently small. The variational functional J_{μ} corresponds to the following Neumann problem

$$\begin{cases} -\Delta u &= \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1) - 2} u + \mu \frac{P_2(x)}{|x - \xi|^{t_1}} |u|^{2^*(t_1) - 2} u \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} &= 0 \text{ on } \partial\Omega, \ u > 0 \text{ on } \Omega. \end{cases}$$
(2.7)

Proposition 2.4. Suppose that (**P**) and $2^*(t_1) = 2^*(t_2)$ hold. Then there exist constants $\mu_o > 0$, $\kappa > 0$ and $\rho > 0$ such that

$$J_{\mu}(u) \ge \kappa \quad for \quad ||u|| = \rho$$

and $0 < \mu < \mu_{\circ}$

Proof. As in the proof of Proposition 2.2 we get

$$J_{\mu}(u) \ge \min\left(\frac{\rho^2 \eta^2}{4(1+\eta^2)}, \frac{\alpha \rho^{2^*(t_1)}}{2^*(t_1)(1+\eta^2)^{\frac{2^*(t_1)}{2}}}\right) - \frac{\mu}{2^*(t_1)} \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_1}} |u|^{2^*(t_1)} \, dx.$$

It then follows from Lemma 1.1 that

$$J_{\mu}(u) \ge \min\left(\frac{\rho^2 \eta^2}{4(1+\eta^2)}, \frac{\alpha \rho^{2^*(t_1)}}{2^*(t_1)(1+\eta^2)^{\frac{2^*(t_1)}{2}}}\right) - \mu C_2 \rho^{2^*(t_1)},$$

for some positive constant $C_2 > 0$. The result follows by taking μ_{\circ} sufficiently small.

Problem (2.7) does not have a solution for μ large.

Proposition 2.5. Suppose that assumptions of Proposition 2.4 hold. Then problem (2.7) does not admit a solution for

$$\mu > \frac{-\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx}{\int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_1}} \, dx}.$$
(2.8)

Proof. Suppose that u is a solution of problem (2.7). Let $\epsilon > 0$. Testing (2.7) with $\phi(x) = (u^2 + \epsilon^2)^{-\frac{2^*(t_1)-1}{2}}$ we get

$$\begin{array}{lcl} 0 &> & -\left(2^{*}(t_{1})-1\right)\int_{\Omega}|\nabla u|^{2}u\left(u^{2}+\epsilon^{2}\right)^{-\frac{2^{*}(t_{1})+1}{2}}dx\\ &= & \int_{\Omega}\frac{P_{1}(x)}{|x|^{t_{1}}}\frac{|u|^{2^{*}(t_{1})-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}(t_{1})-1}{2}}}dx\\ &+ & \mu\int_{\Omega}\frac{P_{2}(x)}{|x-\xi|^{t_{1}}}\frac{|u|^{2^{*}(t_{1})-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}(t_{1})-1}{2}}}dx. \end{array}$$

Hence

$$\mu \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_1}} \frac{u^{2^*(t_1)-1}}{(u^2+\epsilon^2)^{\frac{2^*(t_1)-1}{2}}} \, dx < -\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \frac{u^{2^*(t_1)-1}}{(u^2+\epsilon^2)^{\frac{2^*(t_1)-1}{2}}} \, dx.$$

Letting $\epsilon \to 0$ we obtain

$$\mu \le \frac{-\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx}{\int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_1}} \, dx}$$

and the result follows.

Remark 2.1. It is clear that problem (2.7) has no solution if

$$\frac{P_1(x)}{|x|^{t_1}} + \mu \frac{P_2(x)}{|x-\xi|^{t_1}} > 0 \quad \text{on} \quad \Omega.$$
(2.9)

Obviously inequality (2.9) yields (2.8).

Finally, we consider the case $2^*(t_1) > 2^*(t_2)$. As in the case $2^*(t_1) = 2^*(t_2)$ we consider the nonlinear Neumann problem involving a parameter $\mu > 0$

$$\begin{cases} -\Delta u &= \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)-2} u + \mu \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)-2} u \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} &= 0 \text{ on } \partial\Omega, \ u > 0 \text{ on } \Omega, \end{cases}$$
(2.10)

where $0 < \mu < \mu_*$ with $\mu_* > 0$ small. Let

$$I_{\mu}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{1}{2^*(t_1)} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} \, dx$$
$$- \frac{\mu}{2^*(t_2)} \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)} \, dx.$$

Proposition 2.6. Suppose (**P**) and $2^*(t_1) > 2^*(t_2)$ hold. Then there exist constants $\mu_* > 0$, $\kappa > 0$ and $\rho > 0$ such that

$$I_{\mu}(u) \ge \kappa \quad for \quad \|u\| = \rho \tag{2.11}$$

and $0 < \mu < \mu_*$. Moreover,

$$\inf_{\|u\| \le \rho} I_{\mu}(u) < 0 \ \text{ for } \ 0 < \mu < \mu_*.$$

Proof. The proof of the first part is similar to that of Proposition 2.2. To show the second part observe that for a constant t > 0 we have

$$I_{\mu}(t) = -\frac{t^{2^{*}(t_{1})}}{2^{*}(t_{1})} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} dx - \mu \frac{t^{2^{*}(t_{2})}}{2^{*}(t_{2})} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} dx.$$

Since $2^*(t_1) > 2^*(t_2)$, $I_{\mu}(t) < 0$ for t > 0 sufficiently small.

3. Palais - Smale condition

We commence with the case $2^*(t_1) < 2^*(t_2)$.

Proposition 3.1. Let $0, \xi \in \partial \Omega$. Suppose that (**P**) and $2^*(t_1) < 2^*(t_2)$ hold. Moreover assume that $P_1(0) > 0$. Then $(PS)_c$ condition is satisfied for

$$c < c^* := \min\left(\frac{(2-t_1)}{4(N-t_1)} \frac{\left(S_H^{t_1}\right)^{\frac{N-t_1}{2-t_1}}}{P_1(0)^{\frac{N-2}{2-t_1}}}, \frac{(2-t_2)}{4(N-t_2)} \frac{\left(S_H^{t_2}\right)^{\frac{N-t_2}{2-t_2}}}{P_1(\xi)^{\frac{N-2}{2-t_2}}}\right)$$
(3.1)

Proof. Let $\{u_n\} \subset H^1(\Omega)$ be a $(PS)_c$ sequence with c satisfying (3.1). By Proposition 2.1 $\{u_n\}$ is bounded in $H^1(\Omega)$. We may assume that $u_n \rightharpoonup u$ in $H^1(\Omega)$, $L^{2^*(t_1)}(\Omega, \frac{1}{|x|^{t_1}})$ and $L^{2^*(t_2)}(\Omega, \frac{1}{|x-\xi|^{t_2}})$. It follows from P.L. Lions' concentration - compactness principle (see [24]) that

$$\nabla u_n|^2 \rightharpoonup \mu \ge |\nabla u|^2 + b_0 \delta_0 + b_\xi \delta_\xi;$$
$$\frac{|u_n|^{2^*(t_1)}}{|x|^{t_1}} \rightharpoonup \frac{|u|^{2^*(t_1)}}{|x|^{t_1}} + a_0 \delta_0,$$

and

$$\frac{|u_n|^{2^*(t_2)}}{|x-\xi|^{t_2}} \rightharpoonup \frac{|u|^{2^*(t_2)}}{|x-\xi|^{t_2}} + a_\xi \delta_\xi,$$

in the sense of measure, where $b_{\circ}, b_{\xi}, a_{\circ}, a_{\xi}$ are nonnegative constants and δ_0 and δ_{ξ} denote the Dirac measures assigned to 0 and ξ , respectively. The constants $b_{\circ}, b_{\xi}, a_{\circ}, a_{\xi}$ satisfy inequalities

$$\frac{a_{\circ}^{\frac{2}{2^{*}(t_{1})}}S_{H}^{t_{1}}}{2^{\frac{2-t_{1}}{N-t_{1}}}} \le b_{\circ} \text{ and } \frac{a_{\xi}^{\frac{2}{2^{*}(t_{2})}}S_{H}^{t_{2}}}{2^{\frac{2-t_{2}}{N-t_{2}}}} \le b_{\xi}.$$
(3.2)

We have

$$c = \lim_{n \to \infty} \left(J(u_n) - \frac{1}{2} \langle J'(u_n), u_n \rangle \right)$$

$$= \left(\frac{1}{2} - \frac{1}{2^*(t_1)} \right) \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} dx$$

$$+ \left(\frac{1}{2} - \frac{1}{2^*(t_2)} \right) \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_2}} |u|^{2^*(t_2)} dx$$

$$+ \left(\frac{1}{2} - \frac{1}{2^*(t_1)} \right) a_\circ P_1(0) + \left(\frac{1}{2} - \frac{1}{2^*(t_2)} \right) a_\xi P_2(\xi).$$
(3.3)

We now observe that

$$0 \le \int_{\Omega} |\nabla u|^2 \, dx = \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} \, dx + \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} |u|^{2^*(t_2)} \, dx.$$

Hence we derive from (3.3) that

$$c \geq \left(\frac{1}{2} - \frac{1}{2^{*}(t_{1})}\right) \left(\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} |u|^{2^{*}(t_{1})} dx$$

$$+ \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} |u|^{2^{*}(t_{2})} dx\right)$$

$$+ \left(\frac{1}{2} - \frac{1}{2^{*}(t_{1})}\right) a_{\circ} P_{1}(0) + \left(\frac{1}{2} - \frac{1}{2^{*}(t_{2})}\right) a_{\xi} P_{2}(\xi)$$

$$\geq \left(\frac{1}{2} - \frac{1}{2^{*}(t_{1})}\right) a_{\circ} P_{1}(0) + \left(\frac{1}{2} - \frac{1}{2^{*}(t_{2})}\right) a_{\xi} P_{2}(\xi).$$
(3.4)

Let $\varphi_{\delta}, \delta > 0$, be a family of C^1 -functions concentrating at 0 as $\delta \to 0$. We derive from $\langle J'(u_n), u_n \varphi_{\delta}^2 \rangle \to 0$ that

$$b_{\circ} \le P_1(0)a_{\circ} \text{ and } b_{\xi} \le P_2(\xi)a_{\xi}.$$
 (3.5)

To complete the proof it is sufficient to show that $a_{\circ} = a_{\xi} = 0$. Assume that $a_{\circ} > 0$, then (3.2) and (3.5) imply that

$$a_{\circ} \ge \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{2P_{1}(0)^{\frac{N-t_{1}}{2-t_{1}}}}.$$

It then follows from (3.4) that

$$c \geq \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2^{*}(t_{1})} \right) \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}},$$

which is impossible. So $a_{\circ} = 0$. In a similar manner we show that one has $a_{\xi} = 0$.

Remark 3.1. Inspection of the proof of Proposition 3.1 shows that if $P(0) \leq 0$, the $(PS)_c$ sequence cannot concentrate at 0. In this case (3.1) takes the form $N-t_2$

$$c < c^* = \frac{(2 - t_2)}{4(N - t_2)} \frac{\left(S_H^{t_2}\right)^{\frac{N - c_2}{2 - t_2}}}{P_1(\xi)^{\frac{N - c_2}{2 - t_2}}}.$$

We now consider the case $2^*(t_1) = 2^*(t_2)$.

Proposition 3.2. Let $0, \xi \in \partial \Omega$. Let (\mathbf{P}) and $2^*(t_1) = 2^*(t_2)$ hold. Suppose that $P_1(0) > 0, 0 < \mu$ and

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx + \mu \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_1}} \, dx \neq 0.$$

Then J_{μ} satisfies the $(PS)_c$ condition for

$$c < \tilde{c} := \min\left(\frac{(2-t_1)}{4(N-t_1)} \frac{\left(S_H^{t_1}\right)^{\frac{N-t_1}{2-t_1}}}{P_1(0)^{\frac{N-2}{2-t_1}}}, \frac{(2-t_2)}{4(N-t_2)} \frac{\left(S_H^{t_1}\right)^{\frac{N-t_2}{2-t_2}}}{\left(\mu P_2(\xi)\right)^{\frac{N-2}{2-t_1}}}\right)$$

Proof. We argue as in the proof of Proposition 3.1. Let $\{u_n\} \subset H^1(\Omega)$ be a $(PS)_c$ sequence for J. By Proposition 2.3 $\{u_n\}$ is bounded in $H^1(\Omega)$. So we may assume that $u_n \rightharpoonup u$ in $H^1(\Omega)$ and $L^{2^*(t_1)}(\Omega, \frac{1}{|x|^{2^*(t_1)}})$. We have

$$c = \lim_{n \to \infty} \left(J(u_n) - \frac{1}{2} \langle J'(u_n), u_n \rangle \right) = \left(\frac{1}{2} - \frac{1}{2^*(t_1)} \right) \left(\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} dx \right)$$

+ $\mu \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_1}} |u|^{2^*(t_1)} dx \right)$
+ $\left(\frac{1}{2} - \frac{1}{2^*(t_1)} \right) (a_{\circ} P_1(0) + \mu a_{\xi} P_2(\xi)),$

where b_{\circ} , b_{ξ} , a_{\circ} and a_{ξ} satisfy

$$b_{\circ} \leq P_1(0)a_{\circ}$$
 and $b_{\xi} \leq \mu P_2(\xi)a_{\xi}$.

We now observe that

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |u|^{2^*(t_1)} \, dx + \mu \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_1}} |u|^{2^*(t_1)} \, dx \ge 0.$$

If $a_{\circ} > 0$, then

$$c > \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2^{*}(t_{1})}\right) \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}},$$

which is impossible. Similarly, if $a_{\xi} > 0$, then

$$c > \frac{1}{2} \Big(\frac{1}{2} - \frac{1}{2^*(t_1)} \Big) \frac{\left(S_H^{t_1}\right)^{\frac{N-t_1}{2-t_1}}}{\left(\mu P_2(\xi)\right)^{\frac{N-2}{2-t_1}}},$$

which again gives a contradiction and the result follows.

We now consider the case $2^*(t_1) > 2^*(t_2)$.

Proposition 3.3. Let $0, \xi \in \partial \Omega$. Suppose that (**P**) and $2^*(t_1) > 2^*(t_2)$ hold. Moreover, assume that $P_1(0) > 0$ and $0 < \mu < \mu_*$. If $\{u_n\}$ is a bounded in $H^1(\Omega)$ a (PS)_c sequence for the functional I_{μ} with

$$c < \min\left(\frac{(2-t_1)}{4(N-t_1)} \frac{\left(S_H^{t_1}\right)^{\frac{N-t_1}{2-t_1}}}{P_1(0)^{\frac{N-2}{2-t_1}}}, \frac{(2-t_2)}{4(N-t_2)} \frac{\left(S_H^{t_2}\right)^{\frac{N-t_2}{2-t_2}}}{\left(\mu P_2(\xi)\right)^{\frac{N-2}{2-t_2}}}\right),$$
(3.6)

then $\{u_n\}$ contains a subsequence converging weakly to nonzero solution of (2.10).

Proof. Since $\{u_n\}$ is a bounded sequence in $H^1(\Omega)$, we may assume that $u_n \rightharpoonup u$ in $H^1(\Omega)$, $L^{2^*(t_1)}(\Omega, \frac{1}{|x|^{t_1}})$ and $L^{2^*(t_2)}(\Omega, \frac{1}{|x-\xi|^{t_2}})$. Applying the P.L. Lions' concentration - compactness principle we get (3.4). If $u \equiv 0$ we derive a contradiction with (3.6).

4. Existence of solutions

We commence with the case $2^*(t_1) < 2^*(t_2)$. Let $0, \xi \in \partial \Omega$. Assume that

$$c^* = \frac{(2-t_1)}{4(N-t_1)} \frac{\left(S_H^{t_1}\right)^{\frac{N-t_1}{2-t_1}}}{P_1(0)^{\frac{N-2}{2-t_1}}} \quad \text{and} \quad P_1(0) > 0.$$
(4.1)

We choose $r_{\circ} > 0$ so that $P_1(x) > 0$ on $B(0, 2r_{\circ}) \subset \Omega$. Let ϕ be a C^1 function such that $\phi(x) = 1$ on $B(0, r_{\circ}), \ \phi(x) = 0$ on $\mathbb{R}^N - B(0, 2r_{\circ})$ and $0 \leq \phi(x) \leq 1$ on \mathbb{R}^N . To estimate the mountain-pass level of the functional J we use the function given by (1.3) with $s = t_1$. Let $w_{\epsilon,t_1}(x) = \phi(x)W_{\epsilon}^{t_1}(x)$ and define a function I on $H^1(\Omega)$ by

$$I(u) = \frac{\int_{\Omega} |\nabla u|^2 \, dx}{\left(\int_{\Omega} \frac{|u|^{2^*(t_1)}}{|x|^{t_1}} \, dx\right)^{\frac{N-2}{N-t_1}}}.$$

Denoting by H(0) a mean curvature of $\partial\Omega$ at 0, we have the following asymptotic estimate for $I(w_{\epsilon,t_1})$ (see [11], [17]):

$$I(w_{\epsilon,t_1}) = \begin{cases} \frac{S_{t_1}^{t_1}}{\frac{2-t_1}{2N-t_1}} - H(0)a_N \epsilon^{\frac{2}{2-t_1}} + o\left(\epsilon^{\frac{2}{2-t_1}}\right) &, N \ge 4\\ \frac{S_{t_1}^{t_1}}{\frac{2-t_1}{2N-t_1}} - H(0)b_N \epsilon^{\frac{2}{2-t_1}} |\ln \epsilon| + o\left(\epsilon^{\frac{2}{2-t_1}}\right) &, N = 3, \end{cases}$$
(4.2)

where a_N and b_N are positive constants.

Theorem 4.1. Let $0, \xi \in \partial \Omega$ and H(0) > 0. Suppose (**P**), $2^*(t_1) < 2^*(t_2)$ and (4.1) hold. If

$$|P_1(x) - P_1(0)| = o\left(|x|^{\frac{2}{2-t_1}}\right)$$

for x close to 0, then problem (1.1) admits a solution.

Proof. By Proposition 2.2, the functional J has a mountain-pass structure. Since $2^*(t_1) < 2^*(t_2)$ there exists a function $v \in H^1(\Omega)$ such that $||v|| > \rho$ and J(v) < 0. Let c be a mountain-pass level for J, that is,

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0,1], H^1(\Omega)), \, \gamma(0) = 0, \, \gamma(1) = v \},\$$

where $v = tw_{\epsilon,t_1}$ with t > 0 sufficiently large. It is clear that

$$c \leq \max_{t \geq 0} J(tw_{\epsilon,t_1}) \leq \max_{t \geq 0} \left(\frac{t^2}{2} \int_{\Omega} |\nabla w_{\epsilon,t_1}|^2 dx \right)$$

$$- \frac{t^{2^*(t_1)}}{2^*(t_1)} \int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |w_{\epsilon,t_1}|^{2^*(t_1)} dx$$

$$= \frac{(2-t_1)}{2(N-t_1)} \frac{\left(\int_{\Omega} |\nabla w_{\epsilon,t_1}|^2 dx \right)^{\frac{N-t_1}{2-t_1}}}{\left(\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |w_{\epsilon,t_1}|^{2^*(t_1)} dx \right)^{\frac{N-2}{2-t_1}}}.$$
(4.3)

Obviously, the curve $\gamma(s) = stw_{\epsilon,t_1}, 0 \leq s \leq 1$, with t sufficiently large, belongs to Γ . We now observe that

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} |w_{\epsilon,t_1}|^{2^*(t_1)} dx = P_1(0) \int_{\Omega} \frac{|w_{\epsilon,t_1}|^{2^*(t_1)}}{|x|^{t_1}} dx + o\left(e^{\frac{2}{2-t_1}}\right).$$
(4.4)

Combining (4.2), (4.3) and (4.4) we derive $c < c_*$. Thus by Proposition 3.1 the functional J satisfies the (PS) condition at the level c. The existence of a solution $u \neq 0$ of (1.1) follows from the mountain-pass principle. By Theorem 10 in [3] we may assume that $u \geq 0$ on Ω . The fact that u > 0 on Ω follows from Harnack inequality (see [16]).

Similarly, we have

Theorem 4.2. Let $0, \xi \in \partial \Omega$, $H(\xi) > 0$. Suppose that (**P**), $2^*(t_1) < 2^*(t_2)$ and

$$c^* = \frac{(2-t_2)}{4(N-t_2)} \frac{\left(S_H^{t_2}\right)^{\frac{N-t_2}{2-t_2}}}{P_2(\xi)^{\frac{N-2}{2-t_2}}} \quad and \quad P_1(0) > 0.$$

If

$$|P_2(\xi) - P_2(x)| = o\left(|x|^{\frac{2}{2-t_2}}\right)$$

for x close to ξ , then problem (1.1) admits a solution.

We now consider the case $2^*(t_1) = 2^*(t_2)$. We can always assume that $0 < \mu < \mu_{\circ} < \frac{P_1(0)}{P_2(\xi)}$ by taking μ_{\circ} smaller if necessary. Then

$$\tilde{c} = \frac{(2-t_1)}{4(N-t_1)} \frac{\left(S_H^{t_1}\right)^{\frac{N-t_1}{2-t_1}}}{P_1(0)^{\frac{N-2}{2-t_1}}}$$

Propositions 2.3, 2.4, 3.2 and Remark 2.1 lead to the following existence theorem in the case $2^*(t_1) = 2^*(t_2)$.

Theorem 4.3. Let $0, \xi \in \partial \Omega$. Let $P_1(0) > 0$, $2^*(t_1) = 2^*(t_2)$, H(0) > 0, $0 < \mu < \mu_{\circ}$ and

$$\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} \, dx + \mu \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_1}} \, dx < 0.$$

Moreover assume that (\mathbf{P}) holds and that

$$|P_1(x) - P_1(0)| = o\left(|x|^{\frac{2}{2-t_1}}\right)$$

for x close to 0, then problem (2.7) admits a solution.

Finally, in the case $2^*(t_1) > 2^*(t_2)$, by Proposition 2.6, the functional I_{μ} satisfies (2.11) and $\inf_{\|u\|_{\rho}} I_{\mu}(u) < 0$. Therefore we can apply the Ekeland variational principle and obtain the $(PS)_c$ sequence with $c = \inf_{\|u\|_{\rho}} I_{\mu}(u) < 0$ for $0 < \mu < \mu^*$. This sequence, according to Proposition 3.3, contains a subsequence weakly converging to nonzero solution of (2.10). This allows us to formulate the following existence result for problem (2.10):

Theorem 4.4. Let $0, \xi \in \partial \Omega$. Suppose (**P**), $2^*(t_1) > 2^*(t_2)$ and $P_1(0) > 0$ hold. Then problem (2.10) admits a solution.

Theorems 4.3 and 4.4 continue to hold for $\mu = 0$, that is, for the following problem

$$\begin{cases} -\Delta u &= \frac{P(x)}{|x|^s} |u|^{2^*(s)-2} u \text{ in } \Omega, \\ \frac{\partial u}{\partial \nu} &= 0 \text{ on } \partial\Omega, u > 0 \text{ on } \Omega, \end{cases}$$
(4.5)

where 0 < s < 2 and P(x) is a continuous function on $\overline{\Omega}$. Moreover, we assume that

(**R**) The function P(x) changes sign and $\int_{\Omega} \frac{P(x)}{|x|^s} dx < 0$.

The corresponding variational functional is given by

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{1}{2^*(s)} \int_{\Omega} \frac{P(x)}{|x|^2} |u|^{2^*(s)} \, dx.$$

Repeating the arguments from Sections 2 and 3 we can show that I has a mountain - pass geometry. If P(0) > 0, then the $(PS)_c$ condition holds for

$$c < \frac{(2-s)}{4(N-s)} \frac{\left(S_H^s\right)^{\frac{N-s}{2-s}}}{P(0)}$$

If $P(0) \leq 0$, the $(PS)_c$ condition holds for every $c \in \mathbb{R}$. We can now state the following existence result for problem (4.5)

Theorem 4.5. Let $0 \in \partial \Omega$, 0 < s < 2, P(0) > 0 and H(0) > 0. Moreover, assume that (**R**) holds and

$$|P(x) - P(0)| = o(|x|^{\frac{2}{2-s}})$$

for x close to 0. Then problem (4.5) admits a solution.

The proof is similar to that of Theorem 4.1 and is omitted.

Remark 4.1. In the case $2^*(t_1) < 2^*(t_2)$, that is $t_1 > t_2$, a solution u of problem (1.1) satisfies the following estimate

$$\frac{\bar{m}}{d^{t_1}} \int_{\Omega} u^{\frac{2(t_1 - t_2)}{N - 2}} dx \le \bar{m} \int_{\Omega} \frac{u^{\frac{2(t_1 - t_2)}{N - 2}}}{|x - \xi|^{t_2}} dx \le \int_{\Omega} \frac{P_2(x)}{|x - \xi|^{t_2}} u^{\frac{2(t_1 - t_2)}{N - 2}} dx \le -\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} dx$$

where, $\bar{m} = \min_{x \in \bar{\Omega}} P_2(x)$. Indeed, taking as a test function $\phi(x) = (u^2 + \epsilon^2)^{-\frac{2^*(t_1)-1}{2}}$ (see the proof of Proposition 2.5) we get

$$0 > -(2^{*}(t_{1}) - 1) \int_{\Omega} |\nabla u|^{2} u (u^{2} + \epsilon^{2})^{-\frac{2^{*}(t_{1}) + 1}{2}} dx = = \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} \frac{u^{2^{*}(t_{1}) - 1}}{(u^{2} + \epsilon^{2})^{\frac{2^{*}(t_{1}) - 1}{2}}} dx + \int_{\Omega} \frac{P_{2}(x)}{|x - \xi|^{t_{2}}} \frac{u^{2^{*}(t_{2}) - 1}}{(u^{2} + \epsilon^{2})^{\frac{2^{*}(t_{1}) - 1}{2}}} dx.$$

Letting $\epsilon \to 0$ the estimate follows. In a similar, way one can show that a solution u of problem (2.10) (with $2^*(t_1) > 2^*(t_2)$) satisfies the following estimate

$$\begin{aligned} \frac{\bar{m}}{d^{t_1}} \int_{\Omega} u^{-\frac{2(t_1-t_2)}{N-2}} dx &\leq \bar{m}\mu \int_{\Omega} \frac{u^{-\frac{2(t_1-t_2)}{N-2}}}{|x-\xi|^{t_2}} dx \leq \int_{\Omega} \frac{P_2(x)}{|x-\xi|^{t_2}} u^{-\frac{2(t_1-t_2)}{N-2}} dx \\ &\leq -\int_{\Omega} \frac{P_1(x)}{|x|^{t_1}} dx. \end{aligned}$$

References

- [1] ADIMURTHI and G. MANCINI, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., **456** (1994), 1-18.
- [2] ADIMURTHI and G. MANCINI, The Neumann problem for ellipic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, (1991), 9-25.
- [3] H. BERESTYCKI, I. CAPUZZO DOLCETTA and L. NIRENBERG, Variational methods for indefinite superlinear homogeneous elliptic problems, *Nonlinear Differ. Equ. Appl.* (NoDEA), 2 (1995), 553-572.

- [4] L. CAFFARELLI, R. KOHN and L. NIRENBERG, First order interpolation inequalities with weights, *Compositio Math.*, 53 (1984), 259-275.
- [5] D. CAO and J. CHABROWSKI, Critical Neumann problem with competing Hardy potentials, *Rev. Mat. Complut.*, **20** (2007), 309-338.
- [6] J. CHABROWSKI and W. WILLEM, Least energy solutions of a critical Neumann problem with weight, *Calc. Var.*, 15 (2002), 421-431.
- [7] J. CHABROWSKI, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (2002), 69-79.
- [8] J. CHABROWSKI, On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential, *Rev. Mat. Complut.*, **17** (2004), 195-227.
- [9] J. CHABROWSKI, On the Neumann problem with the Hardy Sobolev potential, Ann. Mat. Pura Appl., 186 (2007), 703-719.
- [10] J. CHABROWSKI, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent, Milan J. Mathematics, 75 (2007), 197-224.
- [11] J. CHABROWSKI, On the Neumann problem with multiple critical nonlinearities, Complex variables and elliptic equations, 55 (2010), 501-524.
- [12] J. CHABROWSKI, The Hardy potential and eigenvalue problems, Opuscula Math., 31(2) (2011), 173-194.
- [13] J. CHEN, Exact behavior of positive solutions for semilinear elliptic equations with Hardy term, Proc. Am. Math. Soc., 132 (2004), 3225-3229.
- [14] YINBIN DENG and LINGYU JIN, Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents, *Nonlin. Anal.*, 67 (2007), 3261-3275.
- [15] I. EKELAND, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
- [16] D. GILBARG and N.S. TRUDINGER, Elliptic partial differential equations of second order, Springer-Verlag, second edition, 1983.
- [17] N. GHOUSSOUB and X.S. KANG, Hardy Sobolev critical elliptic equations with boundary singularities, Ann. de l'Institute H. Poincaré, Analyse nonlinéaire, 21 (2004), 767-793.
- [18] N. GHOUSSOUB and C. YUAN, Multiple solutions for quasilinear PDEs involving the critical Sobolev exponents, Trans. Am. Math. Soc., 88 (2000), 5703-5743.
- [19] E. JANELLI, The role played by space dimension in elliptic critical problems, J. Diff. Equations, 156 (1999), 407-426.
- [20] PIGONG HAN, Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential, Proc. Am. Math. Soc., 135 (2007), 365-372.
- [21] PIGONG HAN and ZHAOXIA LIU, A solution to nonlinear Neumann problem with an inverse square potential, *Calc. Var.*, **30** (2007), 315-352.
- [22] DONGSHENG KANG and SHUANGJIE PENG, Existence of solutions for elliptic problems with critial Sobolev - Hardy exponents, *Israel J. Math.*, **143** (2004), 291-297.
- [23] DONGSHENG KANG and YINBIN DENG, Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev - Hardy exponents, *Nonlin. Anal.*, **60** (2005), 729-753.

- [24] P.L. LIONS, The concentration-compactness principle in the calculus of variations. The limit case, *Revista Math. Iberoamericana*, **1**, 1 and 2 (1985), 145-201 and 45-120.
- [25] S. TERRACINI, On positive solutions to a class of equations with a singular coefficient and critical exponent, Adv. in Diff. Equations, 1 (1996), 241-264.
- [26] X.J. WANG, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equations, 93 (1993), 247-281.

 $Jan \ Chabrowski$

Department of Mathematics, The University of Queensland St. Lucia 4072, Qld, Australia E-mail: jhc@maths.uq.edu.au