On the Neumann problem involving the Hardy Sobolev potentials

Jan Chabrowski

Communicated by George Dinca

Abstract

We establish the existence of solutions for the Neumann problem involving two Hardy - Sobolev potentials with singularities at two distinct points.

Key words and phrases : the Neumann problem, the Hardy - Sobolev inequality.

Mathematics Subject Classification (2000) : 35J35, 35J50, 35J67.

1. Introduction

In this paper we investigate the nonlinear Neumann problem

$$
\begin{cases}-\Delta u & =\frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)-2} u+\frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)-2} u \text { in } \Omega, \tag{1.1}\\ \frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega, u>0 \text { on } \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with a smooth boundary $\partial \Omega$. It is assumed that $0, \xi \in \partial \Omega .2^{*}\left(t_{j}\right)$ denote Hardy - Sobolev exponents given by $2^{*}\left(t_{j}\right)=\frac{2\left(N-t_{j}\right)}{N-2}, 0 \leq t_{j} \leq 2$. In this paper we only consider the case $0<t_{j}<2$. If $t_{j}=0$ for $j=1,2$, then $2^{*}\left(t_{j}\right)=2^{*}=\frac{2 N}{N-2}$ and this problem has an extensive literature. We refer to papers [1], [2], [6], [7], [10], [26]. The existence results in the case $t_{1}=0$ and $0<t_{2}<2$ are given in [11]. If $t_{j}=2$ for $j=1,2$, then $2^{*}\left(t_{j}\right)=2, j=1,2$, and we have on the right hand side of equation (1.1) a sum of two Hardy potentials. In this situation we can look at (1.1) as an eigenvalue problem by replacing the right hand side of the equation by

$$
\lambda\left(\frac{P_{1}(x)}{|x|^{2}}+\frac{P_{2}(x)}{|x-\xi|^{2}}\right) u
$$

where $\lambda \in \mathbb{R}$ is an eigenvalue parameter (see [12]). For elliptic problems involving the Hardy potential we also refer to papers [5], [13], [14], [19], [20], [21], [22], [23], [25], where further bibliographical references can be found.

The coefficients $P_{j}, j=1,2$, are assumed to be continuous on $\bar{\Omega}$. Further assumptions on P_{j} will be formulated later. We look for solutions of problem (1.1) in a Sobolev space $H^{1}(\Omega)$ equipped with norm

$$
\|u\|^{2}=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

By $H_{\circ}^{1}(\Omega)$ we denote a Sobolev space obtained as the closure of the space $C_{\circ}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{H_{\circ}^{1}}^{2}=\int_{\Omega}|\nabla u|^{2} d x .
$$

Problems discussed in this paper are related to the optimal constant of the Hardy - Sobolev type. The best Hardy - Sobolev constant for the domain $\Omega \subset \mathbb{R}^{N}$ is defined by

$$
\begin{equation*}
S_{H}^{s}(\Omega)=\inf _{\int_{\Omega} \frac{|u|^{* *}(s)}{|x|^{s}} d x=1, u \in H_{0}^{1}(\Omega)} \int_{\Omega}|\nabla u|^{2} d x \tag{1.2}
\end{equation*}
$$

where $2^{*}(s)=\frac{2(N-s)}{N-2}, 0 \leq s \leq 2$. If $\Omega=\mathbb{R}^{N}$, we write S_{H}^{s} instead of $S_{H}^{s}(\Omega)$. If $s=0$, then $S_{H}^{0}(\Omega)=S$ is the best Soblev constant which is independent of Ω. In the case $0<s<2, S_{H}^{s}(\Omega)$ depends on Ω (see [17], [18]). If $0 \leq s<2$, then S_{H}^{s} is attained by a family of functions

$$
\begin{equation*}
W_{\epsilon}^{s}(x)=\frac{C_{N} \epsilon^{\frac{N-2}{2-s}}}{\left(\epsilon^{2}+|x|^{2-s}\right)^{\frac{N-2}{2-s}}}, \epsilon>0 \tag{1.3}
\end{equation*}
$$

where C_{N} is a normalizing positive constant depending on N and s. Obviously, W_{ϵ}^{s} satisfies the equation

$$
-\Delta u=\frac{|u|^{2^{*}(s)-1}}{|x|^{s}} \text { in } \mathbb{R}^{N}-\{0\} .
$$

We also have

$$
\int_{\mathbb{R}^{N}}\left|\nabla W_{\epsilon}^{s}\right|^{2} d x=\int_{\mathbb{R}^{N}} \frac{\left(W_{\epsilon}^{s}\right)^{2^{*}(s)}}{|x|^{s}} d x=\left(S_{H}^{s}\right)^{\frac{N-s}{2-s}}
$$

From the definition of the Hardy - Sobolev constant $S_{H}^{s}(\Omega)$ it follows

$$
S_{H}^{s}(\Omega)\left(\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2^{*}(s)}} \leq \int_{\Omega}|\nabla u|^{2} d x
$$

for every $u \in H_{\circ}^{1}(\Omega)$. We need an extension of this inequality to the space $H^{1}(\Omega)$ (see [10]).

Lemma 1.1. Let $0 \in \bar{\Omega}$. Then there exists a constant $K>0$ such that

$$
\begin{equation*}
\left(\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2^{*}(s)}} \leq K \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x \tag{1.4}
\end{equation*}
$$

for every $u \in H^{1}(\Omega)$.
A solution $u \in H^{1}(\Omega)$ of (1.1) is understood in a distributional (or weak) sense, that is,

$$
\int_{\Omega} \nabla u \nabla v d x=\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)-2} u v d x+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)-2} u v d x
$$

for every $v \in H^{1}(\Omega)$. If $u \in H^{1}(\Omega)$ is a solution of (1.1) then

$$
0=\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)-1} d x+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)-1} d x
$$

So if P_{1} and P_{2} are nonnegative and at least one of them not identically equal to 0 , then problem (1.1) does not have a solution. Therefore, we assume
(P) $\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x<\infty, P_{1}$ changes sign and $P_{2}(x)>0$ on $\bar{\Omega}$.

We use the decomposition of the space $H^{1}(\Omega)$

$$
H^{1}(\Omega)=V \oplus \mathbb{R}, \quad V=\left\{v \in H^{1}(\Omega) \mid \int_{\Omega} v(x) d x=0\right\}
$$

This decomposition yields the following equivalent norm on $H^{1}(\Omega)$

$$
\|u\|_{V}^{2}=\||\nabla u|\|_{2}^{2}+t^{2}, v \in V, \quad t \in \mathbb{R}
$$

We note that inequality (1.4) in the space V takes the form: there exists a constant $K_{1}>0$ such that

$$
\left(\int_{\Omega} \frac{|v|^{2^{*}(s)}}{|x|^{s}} d x\right)^{\frac{2}{2^{*}(x)}} \leq K_{1} \int_{\Omega}|\nabla v|^{2} d x
$$

for every $v \in V$.
We frequently use in this paper the following qualitative property:
(S) there exists a constant $\eta>0$ such that for every $t \in \mathbb{R}$ and $v \in V$ the inequality

$$
\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{\frac{1}{2}} \leq \eta|t|
$$

yields

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|v+t|^{2^{*}\left(t_{1}\right)} d x \leq \frac{|t|^{2^{*}\left(t_{1}\right)}}{2} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x
$$

This follows from the continuity of the embedding of $H^{1}(\Omega)$ into the space $L^{2^{*}}\left(t_{1}\right)\left(\Omega, \frac{1}{|x|^{t_{1}}}\right)$ (see also [3]). Solutions of problem (1.1) will be obtained as critical points of the variational functional

$$
\begin{aligned}
J(u) & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2^{*}\left(t_{1}\right)} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x \\
& -\frac{1}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x .
\end{aligned}
$$

To study problem (1.1) we distinguish three cases: (i) $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$, (ii) $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$ and (iii) $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$. In the cases (i) and (ii) solutions are obtained via the mountain - pass principle. In the case (iii) we use a local minimization.

The paper is organized as follows. Sections 2 and 3 are devoted to the study of Palais - Smale sequences. In the final Section 4 we present the existence theorems for problem (1.1).

Throughout this paper, in a given Banach space we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". The norms in the Lebesgue spaces $L^{p}(\Omega), 1 \leq p \leq \infty$, are denoted by $\|\cdot\|_{p}$.

2. The mountain-pass geometry and (PS) sequences of J

We recall that a C^{1} functional $\phi: X \rightarrow \mathbb{R}$ on a Banach space X satisfies the Palais - Smale condition at level $c\left((P S)_{c}\right.$ condition for short), if each sequence $\left\{x_{n}\right\} \subset X$ such that $\left(^{*}\right) \phi\left(x_{n}\right) \rightarrow c$ and $\left(^{* *}\right) \phi^{\prime}\left(x_{n}\right) \rightarrow 0$ in X^{*} is relatively compact in X. Finally, any sequence $\left\{x_{n}\right\}$ satisfying $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ is called a Palais - Smale sequence at level $c\left(\mathrm{a}(P S)_{c}\right.$ sequence for short).

We distinguish three cases: (i) $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$, (ii) $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$ and (iii) $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$.

We begin with the case $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$.

Proposition 2.1. Suppose that (\mathbf{P}) and $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$ hold. Then every $(P S)_{c}$ sequence is bounded.

Proof. Let $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence. We have

$$
\begin{aligned}
J\left(u_{n}\right) & -\frac{1}{2^{*}\left(t_{1}\right)}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x \\
& +\left(\frac{1}{2^{*}\left(t_{1}\right)}-\frac{1}{2^{*}\left(t_{2}\right)}\right) \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}\left|u_{n}\right|^{2^{*}\left(t_{2}\right)} d x=c+o(1)+\epsilon_{n}\left\|u_{n}\right\|,
\end{aligned}
$$

where $\epsilon_{n} \rightarrow 0$. From this we deduce that there exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x, \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}\left|u_{n}\right|^{2^{*}\left(t_{2}\right)} d x \leq C\left(1+\left\|u_{n}\right\|\right) \tag{2.1}
\end{equation*}
$$

for every n. Let $d=\operatorname{diam} \Omega$ and $\bar{m}=\min _{x \in \bar{\Omega}} P_{2}(x)$. Then

$$
\frac{\bar{m}}{d} \int_{\Omega}\left|u_{n}\right|^{2^{*}\left(t_{2}\right)} d x \leq \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}\left|u_{n}\right|^{2^{*}\left(t_{2}\right)} d x \leq C\left(1+\left\|u_{n}\right\|\right) .
$$

By the Hölder inequality we deduce from this
$\int_{\Omega} u_{n}^{2} d x \leq|\Omega|^{1-\frac{2}{2^{*}\left(t_{2}\right)}}\left(\int_{\Omega}\left|u_{n}\right|^{2^{*}\left(t_{2}\right)} d x\right)^{\frac{2}{2^{*}\left(t_{2}\right)}} \leq \tilde{C}|\Omega|^{1-\frac{2}{2^{*}\left(t_{2}\right)}}\left(1+\left\|u_{n}\right\|^{\frac{2}{2^{*}\left(t_{2}\right)}}\right)$,
where $\tilde{C}>$ is a constant independent of n. Inequalities (2.1) and (2.2) yield the boundedness of $\left\{u_{n}\right\}$ in $H^{1}(\Omega)$.

Proposition 2.2. Suppose that (\mathbf{P}) and $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$ hold. Then there exist constants $\kappa>0$ and $\rho>0$ such that

$$
J(u) \geq \kappa \quad \text { for } \quad\|u\|=\rho .
$$

Proof. We use property (S). We distinguish two cases (i) $\|\nabla v\|_{2} \leq \eta|t|$ and (ii) $\|\nabla v\|_{2}>\eta|t|$, where $\eta>0$ is a constant from property (S) and $u=v+t$, $v \in V, t \in \mathbb{R}$. If (i) holds and $\|\nabla v\|_{2}^{2}+t^{2}=\rho^{2}$, then $t^{2} \geq \frac{\rho^{2}}{1+\eta^{2}}$. By (S) we get

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x \leq \frac{|t|^{2^{*}\left(t_{1}\right)}}{2} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x=-|t|^{2^{*}\left(t_{1}\right)} \alpha
$$

where $\alpha=-\frac{1}{2} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x>0$. From this we derive the estimate of J from below

$$
\begin{equation*}
J(u) \geq \frac{\alpha \rho^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)\left(1+\eta^{2}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}}-\frac{1}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x \tag{2.3}
\end{equation*}
$$

In the case (ii) we have

$$
\begin{equation*}
\|u\|_{V} \leq\|\nabla v\|_{2}\left(1+\frac{1}{\eta^{2}}\right)^{\frac{1}{2}} \tag{2.4}
\end{equation*}
$$

It follows from Lemma 1.1 that

$$
\left.\left|\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}\right| u\right|^{2^{*}\left(t_{1}\right)} d x \left\lvert\, \leq C_{1}\|u\|_{V}^{2^{*}\left(t_{1}\right)} \leq C_{1}\|\nabla v\|_{2}^{2^{*}\left(t_{1}\right)}\left(1+\frac{1}{\eta^{2}}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}\right.
$$

for some constant $C_{1}>0$. Thus
$J(u) \geq \frac{1}{2}\|\nabla v\|_{2}^{2}-C_{1}\|\nabla v\|_{2}^{2^{*}\left(t_{1}\right)}\left(1+\frac{1}{\eta^{2}}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}-\frac{1}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x$.
Taking $\|\nabla v\|_{2}^{2} \leq \rho^{2}$ small enough we derive from the above inequality that

$$
J(u) \geq \frac{1}{4}\|\nabla v\|_{2}^{2}-\frac{1}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t^{2}}}|u|^{2^{*}\left(t_{2}\right)} d x .
$$

If $\|u\|_{V}=\rho$, then combining (2.4) with the last inequality we get

$$
\begin{equation*}
J(u) \geq \frac{\rho^{2} \eta^{2}}{4\left(1+\eta^{2}\right)}-\frac{1}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x \tag{2.5}
\end{equation*}
$$

Estimates (2.3) and (2.5) yield
$J(u) \geq \min \left(\frac{\rho^{2} \eta^{2}}{4\left(1+\eta^{2}\right)}, \frac{\alpha \rho^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)\left(1+\eta^{2}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}}\right)-\frac{1}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x$.
Applying Lemma 1.1 to the integral on the right hand side gives

$$
J(u) \geq \min \left(\frac{\rho^{2} \eta^{2}}{4\left(1+\eta^{2}\right)}, \frac{\alpha \rho^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)\left(1+\eta^{2}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}}\right)-C_{2} \rho^{2^{*}\left(t_{2}\right)}
$$

for some constant $C_{2}>0$. Since $2<2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$, taking $\rho>0$ sufficiently small we can find a constant $\kappa>0$ such that

$$
J(u) \geq \kappa \text { for }\|u\|_{V}=\rho
$$

which completes the proof.
We now turn our attention to the case $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$.

Proposition 2.3. Suppose that (\mathbf{P}) and $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$ hold. Moreover, assume that

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} d x \neq 0
$$

Then $(P S)_{c}$ sequences of J are bounded in $H^{1}(\Omega)$.
Proof. Let $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence. We use the decomposition $u_{n}=v_{n}+t_{n}, v_{n} \in V$ and $t_{n} \in \mathbb{R}$. First we show that $\left\{t_{n}\right\}$ is bounded. Arguing by contradiction, assume $t_{n} \rightarrow \infty$ (the case $t_{n} \rightarrow-\infty$ can be treated in a similar way). We have
$c+o(1)+\epsilon_{n}\left\|u_{n}\right\|=J\left(u_{n}\right)-\frac{1}{2^{*}\left(t_{1}\right)}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) \int_{\Omega}\left|\nabla v_{n}\right|^{2} d x$,
with $\epsilon_{n} \rightarrow 0$. This shows that

$$
\begin{equation*}
\left\|\nabla v_{n}\right\|_{2}^{2} \leq C\left(1+\left\|u_{n}\right\|_{V}\right) \tag{2.6}
\end{equation*}
$$

for some constant $C>0$ independent of n. Inequality (2.6) can be rewritten in the following form

$$
\left\|\nabla\left(\frac{v_{n}}{t_{n}}\right)\right\|_{2}^{2} \leq \frac{C}{t_{n}}\left(\frac{1}{t_{n}}+\left[\int_{\Omega}\left|\nabla\left(\frac{v_{n}}{t_{n}}\right)\right|^{2} d x+1\right]^{\frac{1}{2}}\right)
$$

Hence $\left\|\nabla\left(\frac{v_{n}}{t_{n}}\right)\right\|_{2}^{2} \rightarrow 0$ and consequently $\frac{v_{n}}{t_{n}} \rightarrow 0$ in $L^{2^{*}\left(t_{1}\right)}\left(\Omega, \frac{1}{|x|^{t_{1}}}\right)$ and $L^{2^{*}\left(t_{1}\right)}\left(\Omega, \frac{1}{|x-\xi|^{t_{1}}}\right)$. On the other hand we have

$$
\begin{aligned}
c+o(1)+\epsilon_{n}\left\|u_{n}\right\|_{V} & =J\left(u_{n}\right)-\frac{1}{2}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle \\
& =\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right)\left(\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}\left|u_{n}\right|^{2^{*}\left(t_{1}\right)} d x\right. \\
& \left.+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}}\left|u_{n}\right|^{2^{*}\left(t_{1}\right)} d x\right) .
\end{aligned}
$$

Dividing this equality by $t_{n}^{2^{*}\left(t_{1}\right)}$ we get

$$
\begin{aligned}
\frac{1}{t_{n}^{2^{*}\left(t_{1}\right)}}(c & \left.+o(1)+\epsilon_{n}\left\|u_{n}\right\|_{V}\right) \\
& =\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right)\left(\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}\left|\frac{v_{n}}{t_{n}}+1\right|^{2^{*}\left(t_{1}\right)} d x\right. \\
& \left.+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}}\left|\frac{v_{n}}{t_{n}}+1\right|^{2^{*}\left(t_{1}\right)} d x\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we obtain

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} d x=0
$$

and we have arrived at a contradiction. Since $\left\{t_{n}\right\}$ is bounded, it follows from (2.6) that $\left\{\left\|\nabla v_{n}\right\|_{2}\right\}$ is also bounded and the result follows.

In the case $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$ we can obtain the mountain-pass geometry for a modified variational functional

$$
\begin{aligned}
J_{\mu}(u & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2^{*}\left(t_{1}\right)} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x \\
& -\frac{\mu}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x
\end{aligned}
$$

where $0<\mu<\mu_{\circ}$ is a parameter and $\mu_{\circ}>0$ is sufficiently small. The variational functional J_{μ} corresponds to the following Neumann problem

$$
\begin{cases}-\Delta u & =\frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)-2} u+\mu \frac{P_{2}(x)}{|x-\xi|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)-2} u \text { in } \Omega, \tag{2.7}\\ \frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega, u>0 \text { on } \Omega .\end{cases}
$$

Proposition 2.4. Suppose that (\mathbf{P}) and $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$ hold. Then there exist constants $\mu_{\circ}>0, \kappa>0$ and $\rho>0$ such that

$$
J_{\mu}(u) \geq \kappa \quad \text { for } \quad\|u\|=\rho
$$

and $0<\mu<\mu$ 。
Proof. As in the proof of Proposition 2.2 we get
$J_{\mu}(u) \geq \min \left(\frac{\rho^{2} \eta^{2}}{4\left(1+\eta^{2}\right)}, \frac{\alpha \rho^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)\left(1+\eta^{2}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}}\right)-\frac{\mu}{2^{*}\left(t_{1}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x$.
It then follows from Lemma 1.1 that

$$
J_{\mu}(u) \geq \min \left(\frac{\rho^{2} \eta^{2}}{4\left(1+\eta^{2}\right)}, \frac{\alpha \rho^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)\left(1+\eta^{2}\right)^{\frac{2^{*}\left(t_{1}\right)}{2}}}\right)-\mu C_{2} \rho^{2^{*}\left(t_{1}\right)}
$$

for some positive constant $C_{2}>0$. The result follows by taking μ_{\circ} sufficiently small.

Problem (2.7) does not have a solution for μ large.
Proposition 2.5. Suppose that assumptions of Proposition 2.4 hold. Then problem (2.7) does not admit a solution for

$$
\begin{equation*}
\mu>\frac{-\int_{\Omega} \frac{P_{1}(x)}{\mid x t^{t_{1}}} d x}{\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}} d x} . \tag{2.8}
\end{equation*}
$$

Proof. Suppose that u is a solution of problem (2.7). Let $\epsilon>0$. Testing (2.7) with $\phi(x)=\left(u^{2}+\epsilon^{2}\right)^{-\frac{2^{*}\left(t_{1}\right)-1}{2}}$ we get

$$
\begin{aligned}
0 & >-\left(2^{*}\left(t_{1}\right)-1\right) \int_{\Omega}|\nabla u|^{2} u\left(u^{2}+\epsilon^{2}\right)^{-\frac{2^{*}\left(t_{1}\right)+1}{2}} d x \\
& =\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} \frac{|u|^{2^{*}\left(t_{1}\right)-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}\left(t_{1}\right)-1}{2}}} d x \\
& +\mu \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}} \frac{|u|^{2^{*}\left(t_{1}\right)-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}\left(t_{1}\right)-1}{2}}} d x .
\end{aligned}
$$

Hence

$$
\mu \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}} \frac{u^{2^{*}\left(t_{1}\right)-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}\left(t_{1}\right)-1}{2}}} d x<-\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} \frac{u^{2^{*}\left(t_{1}\right)-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}\left(t_{1}\right)-1}{2}}} d x .
$$

Letting $\epsilon \rightarrow 0$ we obtain

$$
\mu \leq \frac{-\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x}{\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{1_{1}}} d x}
$$

and the result follows.
Remark 2.1. It is clear that problem (2.7) has no solution if

$$
\begin{equation*}
\frac{P_{1}(x)}{|x|^{t_{1}}}+\mu \frac{P_{2}(x)}{|x-\xi|^{t_{1}}}>0 \text { on } \Omega . \tag{2.9}
\end{equation*}
$$

Obviously inequality (2.9) yields (2.8).
Finally, we consider the case $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$. As in the case $2^{*}\left(t_{1}\right)=$ $2^{*}\left(t_{2}\right)$ we consider the nonlinear Neumann problem involving a parameter $\mu>0$

$$
\begin{cases}-\Delta u & =\frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)-2} u+\mu \frac{P_{2}(x)}{|-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)-2} u \text { in } \Omega, \tag{2.10}\\ \frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega, u>0 \text { on } \Omega,\end{cases}
$$

where $0<\mu<\mu_{*}$ with $\mu_{*}>0$ small. Let

$$
\begin{aligned}
I_{\mu}(u) & =\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2^{*}\left(t_{1}\right)} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x \\
& -\frac{\mu}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x
\end{aligned}
$$

Proposition 2.6. Suppose (P) and $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$ hold. Then there exist constants $\mu_{*}>0, \kappa>0$ and $\rho>0$ such that

$$
\begin{equation*}
I_{\mu}(u) \geq \kappa \quad \text { for } \quad\|u\|=\rho \tag{2.11}
\end{equation*}
$$

and $0<\mu<\mu_{*}$. Moreover,

$$
\inf _{\|u\| \leq \rho} I_{\mu}(u)<0 \text { for } 0<\mu<\mu_{*} \text {. }
$$

Proof. The proof of the first part is similar to that of Proposition 2.2. To show the second part observe that for a constant $t>0$ we have

$$
I_{\mu}(t)=-\frac{2^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x-\mu \frac{t^{2^{*}\left(t_{2}\right)}}{2^{*}\left(t_{2}\right)} \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} d x
$$

Since $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right), I_{\mu}(t)<0$ for $t>0$ sufficiently small.

3. Palais - Smale condition

We commence with the case $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$.

Proposition 3.1. Let $0, \xi \in \partial \Omega$. Suppose that (\mathbf{P}) and $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$ hold. Moreover assume that $P_{1}(0)>0$. Then $(P S)_{c}$ condition is satisfied for

$$
\begin{equation*}
c<c^{*}:=\min \left(\frac{\left(2-t_{1}\right)}{4\left(N-t_{1}\right)} \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}}, \frac{\left(2-t_{2}\right)}{4\left(N-t_{2}\right)} \frac{\left(S_{H}^{t_{2}}\right)^{\frac{N-t_{2}}{2-t_{2}}}}{P_{1}(\xi)^{\frac{N-2}{2-t_{2}}}}\right) \tag{3.1}
\end{equation*}
$$

Proof. Let $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence with c satisfying (3.1). By Proposition $2.1\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. We may assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega), L^{2^{*}\left(t_{1}\right)}\left(\Omega, \frac{1}{|x|^{t_{1}}}\right)$ and $L^{2^{*}\left(t_{2}\right)}\left(\Omega, \frac{1}{|x-\xi|^{t_{2}}}\right)$. It follows from P.L. Lions' concentration - compactness principle (see [24]) that

$$
\begin{gathered}
\left|\nabla u_{n}\right|^{2} \rightharpoonup \mu \geq|\nabla u|^{2}+b_{\circ} \delta_{0}+b_{\xi} \delta_{\xi}, \\
\frac{\left|u_{n}\right|^{2^{*}\left(t_{1}\right)}}{|x|^{t_{1}}} \rightharpoonup \frac{|u|^{2^{*}\left(t_{1}\right)}}{|x|^{t_{1}}}+a_{\circ} \delta_{0},
\end{gathered}
$$

and

$$
\frac{\left|u_{n}\right|^{2^{*}\left(t_{2}\right)}}{|x-\xi|^{t_{2}}} \rightharpoonup \frac{|u|^{2^{*}\left(t_{2}\right)}}{|x-\xi|^{t_{2}}}+a_{\xi} \delta_{\xi},
$$

in the sense of measure, where $b_{\circ}, b_{\xi}, a_{\circ}, a_{\xi}$ are nonnegative constants and δ_{0} and δ_{ξ} denote the Dirac measures assigned to 0 and ξ, respectively. The constants $b_{\circ}, b_{\xi}, a_{\circ}, a_{\xi}$ satisfy inequalities

$$
\begin{equation*}
\frac{a_{\circ}^{\frac{2}{2 *}\left(t_{1}\right)}}{{ }^{\frac{2-t_{1}}{t_{1}}}} 2_{2^{N-t_{1}}}^{b_{\circ}} \text { and } \frac{a_{\xi}^{\frac{2}{2 *}\left(t_{2}\right)}}{S_{H}^{t_{2}}} 2^{\frac{2-t_{2}}{N-t_{2}}} \leq b_{\xi} \tag{3.2}
\end{equation*}
$$

We have

$$
\begin{align*}
c & =\lim _{n \rightarrow \infty}\left(J\left(u_{n}\right)-\frac{1}{2}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right) \tag{3.3}\\
& =\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x \\
& +\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{2}\right)}\right) \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x \\
& +\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) a_{\circ} P_{1}(0)+\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{2}\right)}\right) a_{\xi} P_{2}(\xi) .
\end{align*}
$$

We now observe that

$$
0 \leq \int_{\Omega}|\nabla u|^{2} d x=\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x .
$$

Hence we derive from (3.3) that

$$
\begin{align*}
c & \geq\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right)\left(\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x\right. \tag{3.4}\\
& \left.+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}}|u|^{2^{*}\left(t_{2}\right)} d x\right) \\
& +\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) a_{\circ} P_{1}(0)+\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{2}\right)}\right) a_{\xi} P_{2}(\xi) \\
& \geq\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) a_{\circ} P_{1}(0)+\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{2}\right)}\right) a_{\xi} P_{2}(\xi)
\end{align*}
$$

Let $\varphi_{\delta}, \delta>0$, be a family of C^{1}-functions concentrating at 0 as $\delta \rightarrow 0$. We derive from $\left\langle J^{\prime}\left(u_{n}\right), u_{n} \varphi_{\delta}^{2}\right\rangle \rightarrow 0$ that

$$
\begin{equation*}
b_{\circ} \leq P_{1}(0) a_{\circ} \text { and } b_{\xi} \leq P_{2}(\xi) a_{\xi} \tag{3.5}
\end{equation*}
$$

To complete the proof it is sufficient to show that $a_{\circ}=a_{\xi}=0$. Assume that $a_{\circ}>0$, then (3.2) and (3.5) imply that

$$
a_{\circ} \geq \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{2 P_{1}(0)^{\frac{N-t_{1}}{2-t_{1}}}}
$$

It then follows from (3.4) that

$$
c \geq \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}}
$$

which is impossible. So $a_{\circ}=0$. In a similar manner we show that one has $a_{\xi}=0$.

Remark 3.1. Inspection of the proof of Proposition 3.1 shows that if $P(0) \leq$ 0 , the $(P S)_{c}$ sequence cannot concentrate at 0 . In this case (3.1) takes the form

$$
c<c^{*}=\frac{\left(2-t_{2}\right)}{4\left(N-t_{2}\right)} \frac{\left(S_{H}^{t_{2}}\right)^{\frac{N-t_{2}}{2-t_{2}}}}{P_{1}(\xi)^{\frac{N-2}{2-t_{2}}}} .
$$

We now consider the case $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$.

Proposition 3.2. Let $0, \xi \in \partial \Omega$. Let (\mathbf{P}) and $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$ hold. Suppose that $P_{1}(0)>0,0<\mu$ and

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x+\mu \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}} d x \neq 0
$$

Then J_{μ} satisfies the $(P S)_{c}$ condition for

$$
c<\tilde{c}:=\min \left(\frac{\left(2-t_{1}\right)}{4\left(N-t_{1}\right)} \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}}, \frac{\left(2-t_{2}\right)}{4\left(N-t_{2}\right)} \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{2}}{2-t_{2}}}}{\left(\mu P_{2}(\xi)\right)^{\frac{N-2}{2-t_{1}}}}\right)
$$

Proof. We argue as in the proof of Proposition 3.1. Let $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence for J. By Proposition $2.3\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. So we may assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega)$ and $L^{2^{*}\left(t_{1}\right)}\left(\Omega, \frac{1}{|x|^{2 *\left(t_{1}\right)}}\right.$. We have

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty}\left(J\left(u_{n}\right)-\frac{1}{2}\left\langle J^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right)=\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right)\left(\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x\right. \\
& \left.+\mu \int_{\Omega} \frac{P_{2}(x)}{|x-\xi| t^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x\right) \\
& +\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right)\left(a_{\circ} P_{1}(0)+\mu a_{\xi} P_{2}(\xi)\right)
\end{aligned}
$$

where $b_{\circ}, b_{\xi}, a_{\circ}$ and a_{ξ} satisfy

$$
b_{\circ} \leq P_{1}(0) a_{\circ} \text { and } b_{\xi} \leq \mu P_{2}(\xi) a_{\xi}
$$

We now observe that

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x+\mu \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}}|u|^{2^{*}\left(t_{1}\right)} d x \geq 0
$$

If $a_{\circ}>0$, then

$$
c>\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}},
$$

which is impossible. Similarly, if $a_{\xi}>0$, then

$$
c>\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2^{*}\left(t_{1}\right)}\right) \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{\left(\mu P_{2}(\xi)\right)^{\frac{N-2}{2-t_{1}}},}
$$

which again gives a contradiction and the result follows.
We now consider the case $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$.
Proposition 3.3. Let $0, \xi \in \partial \Omega$. Suppose that (\mathbf{P}) and $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$ hold. Moreover, assume that $P_{1}(0)>0$ and $0<\mu<\mu_{*}$. If $\left\{u_{n}\right\}$ is a bounded in $H^{1}(\Omega)$ a $(P S)_{c}$ sequence for the functional I_{μ} with

$$
\begin{equation*}
c<\min \left(\frac{\left(2-t_{1}\right)}{4\left(N-t_{1}\right)} \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}}, \frac{\left(2-t_{2}\right)}{4\left(N-t_{2}\right)} \frac{\left(S_{H}^{t_{2}}\right)^{\frac{N-t_{2}}{2-t_{2}}}}{\left(\mu P_{2}(\xi)\right)^{\frac{N-2}{2-t_{2}}}}\right), \tag{3.6}
\end{equation*}
$$

then $\left\{u_{n}\right\}$ contains a subsequence converging weakly to nonzero solution of (2.10).

Proof. Since $\left\{u_{n}\right\}$ is a bounded sequence in $H^{1}(\Omega)$, we may assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega), L^{2^{*}\left(t_{1}\right)}\left(\Omega, \frac{1}{|x|^{t_{1}}}\right)$ and $L^{2^{*}\left(t_{2}\right)}\left(\Omega, \frac{1}{|x-\xi|^{t_{2}}}\right)$. Applying the P.L. Lions' concentration - compactness principle we get (3.4). If $u \equiv 0$ we derive a contradiction with (3.6).

4. Existence of solutions

We commence with the case $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$. Let $0, \xi \in \partial \Omega$. Assume that

$$
\begin{equation*}
c^{*}=\frac{\left(2-t_{1}\right)}{4\left(N-t_{1}\right)} \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}} \text { and } P_{1}(0)>0 . \tag{4.1}
\end{equation*}
$$

We choose $r_{\circ}>0$ so that $P_{1}(x)>0$ on $B\left(0,2 r_{\circ}\right) \subset \Omega$. Let ϕ be a $C^{1}-$ function such that $\phi(x)=1$ on $B\left(0, r_{\circ}\right), \phi(x)=0$ on $\mathbb{R}^{N}-B\left(0,2 r_{\circ}\right)$ and $0 \leq \phi(x) \leq 1$ on \mathbb{R}^{N}. To estimate the mountain-pass level of the functional J we use the function given by (1.3) with $s=t_{1}$. Let $w_{\epsilon, t_{1}}(x)=\phi(x) W_{\epsilon}^{t_{1}}(x)$ and define a function I on $H^{1}(\Omega)$ by

$$
I(u)=\frac{\int_{\Omega}|\nabla u|^{2} d x}{\left(\int_{\Omega} \frac{|u|^{2}\left(t_{1}\right)}{|x|^{t_{1}}} d x\right)^{\frac{N-2}{N-t_{1}}}} .
$$

Denoting by $H(0)$ a mean curvature of $\partial \Omega$ at 0 , we have the following asymptotic estimate for $I\left(w_{\epsilon, t_{1}}\right)$ (see [11], [17]):

$$
I\left(w_{\epsilon, t_{1}}\right)= \begin{cases}\frac{S_{H}^{t_{1}}}{2^{2-t_{1}}}-H(0) a_{N} \epsilon^{\frac{2}{2-t_{1}}}+o\left(\epsilon^{\frac{2}{2-t_{1}}}\right) & , N \geq 4 \tag{4.2}\\ \frac{S_{H}^{t_{1}}}{2^{\frac{t_{1}}{1}}}-H(0) b_{N} \epsilon^{\frac{2}{2-t_{1}}}|\ln \epsilon|+o\left(\frac{2}{\epsilon^{2-t_{1}}}\right) & , N=3,\end{cases}
$$

where a_{N} and b_{N} are positive constants.

Theorem 4.1. Let $0, \xi \in \partial \Omega$ and $H(0)>0$. Suppose $(\mathbf{P}), 2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$ and (4.1) hold. If

$$
\left|P_{1}(x)-P_{1}(0)\right|=o\left(|x|^{\frac{2}{2-t_{1}}}\right)
$$

for x close to 0 , then problem (1.1) admits a solution.
Proof. By Proposition 2.2, the functional J has a mountain-pass structure. Since $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$ there exists a function $v \in H^{1}(\Omega)$ such that $\|v\|>\rho$ and $J(v)<0$. Let c be a mountain-pass level for J, that is,

$$
c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} J(\gamma(t)),
$$

where

$$
\Gamma=\left\{\gamma \in C\left([0,1], H^{1}(\Omega)\right), \gamma(0)=0, \gamma(1)=v\right\}
$$

where $v=t w_{\epsilon, t_{1}}$ with $t>0$ sufficiently large. It is clear that

$$
\begin{align*}
c & \leq \max _{t \geq 0} J\left(t w_{\epsilon, t_{1}}\right) \leq \max _{t \geq 0}\left(\frac{t^{2}}{2} \int_{\Omega}\left|\nabla w_{\epsilon, t_{1}}\right|^{2} d x\right. \tag{4.3}\\
& \left.-\frac{t^{2^{*}\left(t_{1}\right)}}{2^{*}\left(t_{1}\right)} \int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}\left|w_{\epsilon, t_{1}}\right|^{2^{*}\left(t_{1}\right)} d x\right) \\
& =\frac{\left(2-t_{1}\right)}{2\left(N-t_{1}\right)} \frac{\left(\int_{\Omega}\left|\nabla w_{\epsilon, t_{1}}\right|^{2} d x\right)^{\frac{N-t_{1}}{2-t_{1}}}}{\left(\int_{\Omega} \frac{P_{1}(x)}{\left.|x|^{t_{1}}\left|w_{\epsilon, t_{1}}\right|^{2 *\left(t_{1}\right)} d x\right)^{\frac{N-2}{2-t_{1}}}}\right.} .
\end{align*}
$$

Obviously, the curve $\gamma(s)=s t w_{\epsilon, t_{1}}, 0 \leq s \leq 1$, with t sufficiently large, belongs to Γ. We now observe that

$$
\begin{equation*}
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}}\left|w_{\epsilon, t_{1}}\right|^{2^{*}\left(t_{1}\right)} d x=P_{1}(0) \int_{\Omega} \frac{\left|w_{\epsilon, t_{1}}\right|^{2^{*}\left(t_{1}\right)}}{|x|^{t_{1}}} d x+o\left(\epsilon^{\frac{2}{2-t_{1}}}\right) . \tag{4.4}
\end{equation*}
$$

Combining (4.2), (4.3) and (4.4) we derive $c<c_{*}$. Thus by Proposition 3.1 the functional J satisfies the (PS) condition at the level c. The existence of a solution $u \neq 0$ of (1.1) follows from the mountain-pass principle. By Theorem 10 in [3] we may assume that $u \geq 0$ on Ω. The fact that $u>0$ on Ω follows from Harnack inequality (see [16]).

Similarly, we have
Theorem 4.2. Let $0, \xi \in \partial \Omega, H(\xi)>0$. Suppose that $(\mathbf{P}), 2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$ and

If

$$
\left|P_{2}(\xi)-P_{2}(x)\right|=o\left(|x|^{\frac{2}{2-t_{2}}}\right)
$$

for x close to ξ, then problem (1.1) admits a solution.
We now consider the case $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$. We can always assume that $0<\mu<\mu_{\circ}<\frac{P_{1}(0)}{P_{2}(\xi)}$ by taking μ_{\circ} smaller if necessary. Then

$$
\tilde{c}=\frac{\left(2-t_{1}\right)}{4\left(N-t_{1}\right)} \frac{\left(S_{H}^{t_{1}}\right)^{\frac{N-t_{1}}{2-t_{1}}}}{P_{1}(0)^{\frac{N-2}{2-t_{1}}}}
$$

Propositions 2.3, 2.4, 3.2 and Remark 2.1 lead to the following existence theorem in the case $2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right)$.

Theorem 4.3. Let $0, \xi \in \partial \Omega$. Let $P_{1}(0)>0,2^{*}\left(t_{1}\right)=2^{*}\left(t_{2}\right), H(0)>0$, $0<\mu<\mu_{\circ}$ and

$$
\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x+\mu \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{1}}} d x<0 .
$$

Moreover assume that (\mathbf{P}) holds and that

$$
\left|P_{1}(x)-P_{1}(0)\right|=o\left(|x|^{\frac{2}{2-t_{1}}}\right)
$$

for x close to 0 , then problem (2.7) admits a solution.
Finally, in the case $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$, by Proposition 2.6 , the functional I_{μ} satisfies (2.11) and $\inf _{\|u\|_{\rho}} I_{\mu}(u)<0$. Therefore we can apply the Ekeland variational principle and obtain the $(P S)_{c}$ sequence with $c=\inf _{\|u\|_{\rho}} I_{\mu}(u)<$ 0 for $0<\mu<\mu^{*}$. This sequence, according to Proposition 3.3, contains a subsequence weakly converging to nonzero solution of (2.10). This allows us to formulate the following existence result for problem (2.10):

Theorem 4.4. Let $0, \xi \in \partial \Omega$. Suppose $(\mathbf{P}), 2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$ and $P_{1}(0)>0$ hold. Then problem (2.10) admits a solution.

Theorems 4.3 and 4.4 continue to hold for $\mu=0$, that is, for the following problem

$$
\begin{cases}-\Delta u & =\frac{P(x)}{|x|^{s}}|u|^{2^{*}(s)-2} u \text { in } \Omega, \tag{4.5}\\ \frac{\partial u}{\partial \nu} & =0 \text { on } \partial \Omega, u>0 \text { on } \Omega,\end{cases}
$$

where $0<s<2$ and $P(x)$ is a continuous function on $\bar{\Omega}$. Moreover, we assume that
(R) The function $P(x)$ changes sign and $\int_{\Omega} \frac{P(x)}{|x|^{s}} d x<0$.

The corresponding variational functional is given by

$$
I(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{P(x)}{|x|^{2}}|u|^{2^{*}(s)} d x .
$$

Repeating the arguments from Sections 2 and 3 we can show that I has a mountain - pass geometry. If $P(0)>0$, then the $(P S)_{c}$ condition holds for

$$
c<\frac{(2-s)}{4(N-s)} \frac{\left(S_{H}^{s}\right)^{\frac{N-s}{2-s}}}{P(0)}
$$

If $P(0) \leq 0$, the $(P S)_{c}$ condition holds for every $c \in \mathbb{R}$. We can now state the following existence result for problem (4.5)

Theorem 4.5. Let $0 \in \partial \Omega, 0<s<2, P(0)>0$ and $H(0)>0$. Moreover, assume that (\mathbf{R}) holds and

$$
|P(x)-P(0)|=o\left(|x|^{\frac{2}{2-s}}\right)
$$

for x close to 0 . Then problem (4.5) admits a solution.
The proof is similar to that of Theorem 4.1 and is omitted.

Remark 4.1. In the case $2^{*}\left(t_{1}\right)<2^{*}\left(t_{2}\right)$, that is $t_{1}>t_{2}$, a solution u of problem (1.1) satisfies the following estimate

$$
\begin{aligned}
& \frac{\bar{m}}{d^{t_{1}}} \int_{\Omega} u^{\frac{2\left(t_{1}-t_{2}\right)}{N-2}} d x \leq \bar{m} \int_{\Omega} \frac{u^{\frac{2\left(t_{1}-t_{2}\right)}{N-2}}}{|x-\xi|^{t_{2}}} d x \leq \\
\leq & \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} u^{\frac{2\left(t_{1}-t_{2}\right)}{N-2}} d x \leq-\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x,
\end{aligned}
$$

where, $\bar{m}=\min _{x \in \bar{\Omega}} P_{2}(x)$. Indeed, taking as a test function $\phi(x)=\left(u^{2}+\right.$ $\left.\epsilon^{2}\right)^{-\frac{2^{*}\left(t_{1}\right)-1}{2}}$ (see the proof of Proposition 2.5) we get

$$
\begin{aligned}
0 & >-\left(2^{*}\left(t_{1}\right)-1\right) \int_{\Omega}|\nabla u|^{2} u\left(u^{2}+\epsilon^{2}\right)^{-\frac{2^{*}\left(t_{1}\right)+1}{2}} d x= \\
& =\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} \frac{u^{2^{*}\left(t_{1}\right)-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}\left(t_{1}\right)-1}{2}}} d x+\int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} \frac{u^{2^{*}\left(t_{2}\right)-1}}{\left(u^{2}+\epsilon^{2}\right)^{\frac{2^{*}\left(t_{1}\right)-1}{2}}} d x .
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$ the estimate follows. In a similar, way one can show that a solution u of problem (2.10) (with $2^{*}\left(t_{1}\right)>2^{*}\left(t_{2}\right)$) satisfies the following estimate

$$
\begin{aligned}
\frac{\bar{m}}{d^{t_{1}}} \int_{\Omega} u^{-\frac{2\left(t_{1}-t_{2}\right)}{N-2}} d x & \leq \bar{m} \mu \int_{\Omega} \frac{u^{-\frac{2\left(t_{1}-t_{2}\right)}{N-2}}}{|x-\xi|^{t_{2}}} d x \leq \int_{\Omega} \frac{P_{2}(x)}{|x-\xi|^{t_{2}}} u^{-\frac{2\left(t_{1}-t_{2}\right)}{N-2}} d x \\
& \leq-\int_{\Omega} \frac{P_{1}(x)}{|x|^{t_{1}}} d x .
\end{aligned}
$$

References

[1] Adimurthi and G. Mancini, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), 1-18.
[2] Adimurthi and G. Mancini, The Neumann problem for ellipic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, (1991), 9-25.
[3] H. Berestycki, I. Capuzzo - Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonlinear Differ. Equ. Appl. (NoDEA), 2 (1995), 553-572.
[4] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.
[5] D. Cao and J. Chabrowski, Critical Neumann problem with competing Hardy potentials, Rev. Mat. Complut., 20 (2007), 309-338.
[6] J. Chabrowski and W. Willem, Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), 421-431.
[7] J. Chabrowski, On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (2002), 69-79.
[8] J. Chabrowski, On the nonlinear Neumann problem involving the critical Sobolev exponent and Hardy potential, Rev. Mat. Complut., 17 (2004), 195-227.
[9] J. Chabrowski, On the Neumann problem with the Hardy - Sobolev potential, Ann. Mat. Pura Appl., 186 (2007), 703-719.
[10] J. Chabrowski, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent, Milan J. Mathematics, 75 (2007), 197-224.
[11] J. Chabrowski, On the Neumann problem with multiple critical nonlinearities, Complex variables and elliptic equations, 55 (2010), 501-524.
[12] J. Chabrowski, The Hardy potential and eigenvalue problems, Opuscula Math., 31(2) (2011), 173-194.
[13] J. Chen, Exact behavior of positive solutions for semilinear elliptic equations with Hardy term, Proc. Am. Math. Soc., 132 (2004), 3225-3229.
[14] Yinbin Deng and Lingyu Jin, Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents, Nonlin. Anal., 67 (2007), 3261-3275.
[15] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
[16] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, second edition, 1983.
[17] N. Ghoussoub and X.S. Kang, Hardy - Sobolev critical elliptic equations with boundary singularities, Ann. de l'Institute H. Poincaré, Analyse nonlinéaire, 21 (2004), 767-793.
[18] N. Ghoussoub and C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev exponents, Trans. Am. Math. Soc., 88 (2000), 5703-5743.
[19] E. Janelli, The role played by space dimension in elliptic critical problems, J. Diff. Equations, 156 (1999), 407-426.
[20] Pigong Han, Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential, Proc. Am. Math. Soc., 135 (2007), 365-372.
[21] Pigong Han and Zhaoxia Liu, A solution to nonlinear Neumann problem with an inverse square potential, Calc. Var., 30 (2007), 315-352.
[22] Dongsheng Kang and Shuanguie Peng, Existence of solutions for elliptic problems with critial Sobolev - Hardy exponents, Israel J. Math., 143 (2004), 291-297.
[23] Dongsheng Kang and Yinbin Deng, Multiple solutions for inhomogeneous elliptic problems involving critical Sobolev - Hardy exponents, Nonlin. Anal., 60 (2005), 729-753.
[24] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Revista Math. Iberoamericana, 1, 1 and 2 (1985), 145-201 and 45-120.
[25] S. Terracini, On positive solutions to a class of equations with a singular coefficient and critical exponent, Adv. in Diff. Equations, 1 (1996), 241-264.
[26] X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equations, 93 (1993), 247-281.

Jan Chabrowski

Department of Mathematics, The University of Queensland
St. Lucia 4072, Qld, Australia
E-mail: jhc@maths.uq.edu.au

