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Abstract - In this paper we solve the problem of generalized Rayleigh

wave (
◦

P 2) propagation in an isotropic semi-infinite plane subject to initial
electro-mechanical fields. We suppose an initial transverse electric field and
a particular choice of the incremental stress field according to the boundary
surface x2 = 0, in the realistic assumption concerning the material constants
and the initial mechanical stress field. In this way we succeed to generalize
the well-known Rayleigh equation (1885), and to establish the condition for
the existence and uniqueness of the solution of this equation into the interval
(0, 1). At the same time, the numerical solutions obtained for silica (SiO2),
are analyzed.
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1. Introduction

The mathematical problems related to the behaviour of piezoelectric bod-
ies subject to incremental deformations and electric fields superposed on an
initial large static deformation and electric fields is a topic of considerable
and increasing interest. The problem of waves propagation in piezoelec-
tric crystals subject to initial electro-mechanical fields have attracted con-
siderable attention, due to their complexity and multiple applications (see
papers [4–15]).

The monograph [2] establishes the basic equations of the theory of piezo-
electric bodies subject to infinitesimal deformations and fields superposed
on initial mechanical and electric fields.

An useful development of the equations of electromagnetism in material
continua may be found in [19].

The problem of waves propagation in elastic crystals and in piezoelectric
crystals, is presented in [3]. The plane waves propagation in a piezoelectric
semi-infinite plane when the sagittal plane is normal to a direct, respective
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inverse axis of order two, or the propagation of the Rayleigh/Bleustein-
Gulyaev wave type, presented in this monograph, are considered as being
classical.

An alternative derivation of the equations obtained in [2] is described
in [1]. In addition, it is presented a qualitative analysis of the problem
of harmonic waves propagation in piezoelectric crystals subject to initial
fields, in the particular case of homogeneous initial state and non-polarizable
environment.

Using the alternative derivation obtained in [1], the mathematical prob-
lem describing the propagation of plane guided waves in a non-magnetiz-
able electroelastic semi-infinite plane (called sagittal plane) subject to initial
fields, is presented in [16,17]. In this problem the volumetric charge density
and mechanical body forces, static or incremental, are neglected, the initial
state is homogeneous, the environment is non-polarizable, the body con-
ducts neither heat nor electricity, and the quasi-electrostatic approximation
is adopted.

In this context, for a piezoelectric solid from the monoclinic system, and
for a particular choice both of the sagittal plane x1x2 and of the initial
electric field, the mathematical problem decomposes in [17]. It is obtained
mechanical and piezoelectric waves generalizing the classical guided waves
which are related to the case of the absent initial fields (see, to compare [3]).

These are
◦
P 2 and

◦

TH waves, which stand for the sagittal plane normal to
a direct dyad axis and for the initial electric field normal to sagittal plane,

respective
◦

P 2 and
◦

TH waves, which stand for the sagittal plane normal to
an inverse dyad axis and for the initial electric field parallel to sagittal plane
(see [17]). These waves are called the generalized Rayleigh, or Bleustein-
Gulyaev waves.

In this paper we solve the problem of generalized Rayleigh wave (
◦
P 2)

propagation in the isotropic semi-infinite plane subject to electro-mechanical
initial fields (see also [18]). The initial electric field is normal to sagittal plane
x1x2, and the boundary surface x2 = 0 is free from incremental stresses. In
this way, in realistic assumptions concerning the material constants and
the initial mechanical stress field, we succeed to generalize the well-known
Rayleigh equation (1885), and to obtain the polarization directions. We
shall see that these derivations essentially depend on the shear stress field

component
◦
S12. Moreover, we establish the condition for the existence and

uniqueness into the interval (0, 1) of the solution of the generalized Rayleigh
equation.

At the same time, we give the numerical solutions obtained for an isotropic
material as SiO2.
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2. Basic assumptions

We suppose that we are in the following hypothesis:

the isotropic solid is elastic, with linear behaviour; the isotropic solid con-
ducts neither heat, nor electricity; the environment of the body is not po-
larizable; the isotropic solid is non-magnetizable.

We shall use the quasi-electrostatic approximation of the equation of bal-
ance; the body is homogeneous, and the initial state as well; the initial
static mechanical body forces and the volumetric static charge density are
neglected; the incremental mechanical body forces and the incremental vol-
umetric charge density are neglected.

The isotropic solid is semi-infinite, occupying the region x2 > 0.

- x1
�����������������������������

?x2

⊗x3

Fig. 1. The isotropic semi-infinite plane

The waves propagate along x1 axis; the plane x1x2 containing the surface
normal and the propagation direction is the sagittal plane (see Figure 1);
the guide of waves has properties invariant with time t and with x1 variable;
we neglect the effects of diffraction in x3 direction.

We suppose normal modes which have the form

uj(
→
x, t) = a◦j(x2, x3)ei(ωt−kx1) , j = 1, 4 , V =

ω

k
.

The initial static electric field is normal to sagittal plane, (
◦
E1 =

◦
E2 = 0);

the
◦
E3 component of the initial static electric field and the initial static

mechanical stress field
◦
S are considered as parameters of the problem.

3. The
◦
P 2 generalized problem

Following the results obtained in [16,17] for monoclinic crystals, the mathe-

matical problem related to the propagation of the plane guided wave
◦
P 2 in

deformable isotropic semi-infinite plane subject to initial electromechanical
fields (see [18]), has the following form: ◦

Γ11 −
◦
ρ V

2 ◦
Γ12

◦
Γ12

◦
Γ22 −

◦
ρ V

2

( a◦1
a◦2

)
(x 2) =

→
0 , (3.1)
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where
◦
Γ11 = (

◦
C11 +

◦
S11) + 2i

◦
S12

∂

∂X2
− (
◦
C66 +

◦
S22)

∂ 2

∂X2
2

,

◦
Γ12 = i(

◦
C12 +

◦
C66)

∂

∂X2
,

◦
Γ22 = (

◦
C66 +

◦
S11) + 2i

◦
S12

∂

∂X2
− (
◦
C11 +

◦
S22)

∂ 2

∂X2
2

,

(3.2)

are complex differential operators in non-dimensional variable X2, depending

on the initial stress field
◦
S , only.

The mechanical boundary conditions on the plane x2 = 0 are:

−Σ21 =
{
k

[
−i
◦
S12 + (

◦
C66+

◦
S22)

∂

∂X2

]
a◦1(x2)−

−k i
◦
C66 a◦2(x2)

}
ei(ωt−kx1) ,

−Σ22 =
{
k

[
−i
◦
S12 + (

◦
C11+

◦
S22)

∂

∂X2

]
a◦2(x2)−

−k i
◦
C12 a◦1(x2)

}
ei(ωt−kx1) ,

(3.3)

depending on the initial stress field
◦
S only, for given stresses −Σ21, −Σ22 .

Here the elastic constants
◦
C11,

◦
C12,

◦
C66 are linked by relations

◦
C11 = λ+ µ,

◦
C12 = λ,

◦
C66 = µ = (

◦
C11 −

◦
C12)/2 ,

where λ and µ are Lamé’s coefficients.

The solution of this problem is
(
a◦1, a◦2, 0, 0

) not=
→
a ◦

P 2

.

Concluding, this problem defines a mechanical guided wave, polarized in

the sagittal plane x1x2, depending on the initial stress field
◦
S , only.

If we search the solution of the problem (3.1) - (3.3) in the form

→
a◦(x2) =

→
a◦e−Xkx2 =

→
a◦e−XX2 ,

with X a complex number, so that Re(Xk) > 0, and we follow the derivation
rules

∂

∂X2
(·) = −X (·) , ∂ 2

∂X2
2

(·) = X
2
(·) = −(iX )

2
(·) ,
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then our mathematical problem becomes ◦
Γ11 −

◦
ρ V

2 ◦
Γ12

◦
Γ12

◦
Γ22 −

◦
ρ V

2

( a◦1
a◦2

)
=
→
0 , (3.4)

called the fundamental system. Here

◦
Γ11 = (

◦
C11 +

◦
S11)− 2

◦
S12(iX ) + (

◦
C66 +

◦
S22)(iX )

2
,

◦
Γ12 = −(

◦
C12 +

◦
C66)(iX ) ,

◦
Γ22 = (

◦
C66 +

◦
S11)− 2

◦
S12(iX ) + (

◦
C11 +

◦
S22)(iX )

2
.

(3.5)

The boundary conditions on x2 = 0 are:

−Σ21 = −k i
{[
◦
S12 − (

◦
C66 +

◦
S22)(iX )

]
a◦1 +

◦
C66a◦2

}
ei(ωt−kx1) ,

−Σ22 = −k i
{
◦
C12a◦1 +

[
◦
S12 − (

◦
C11 +

◦
S22)(iX )

]
a◦2

}
ei(ωt−kx1) .

(3.6)

The displacement vector has the form:

→
u =

→
a◦e

i(ωt−kx1)−Xkx2 , where Re(Xk) > 0 . (3.7)

4. The analysis of
◦
P 2 problem

For the fundamental system (3.4) the compatibility condition is

(
◦
Γ11 −

◦
ρ V

2
)(
◦
Γ22 −

◦
ρ V

2
)−
◦
Γ12

2
= 0 ,

or, in the equivalent form{
◦
ρ V

2 −
[
(
◦
C11 +

◦
S22)(iX )

2
− 2

◦
S12(iX ) + (

◦
C11 +

◦
S11)

]}
·

·
{
◦
ρ V

2 −
[
(
◦
C66 +

◦
S22)(iX )

2
− 2

◦
S12(iX ) + (

◦
C66 +

◦
S11)

]}
= 0 .

(4.1)

The equation (4.1) is a fourth degree relation in (iX ) depending on the
unknown parameter V . We suppose that X = Re X + i Im X . Then the
condition (4.1) reduces now to the following relations
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(
◦
C11+

◦
S22)

[
(ImX )

2
−(ReX )

2
]

+

+ 2
◦
S12(ImX ) + (

◦
C11+

◦
S11−

◦
ρ V

2
)=0 ,[

(
◦
C11+

◦
S22)(ImX )+

◦
S12

]
(ReX )=0 ,

(4.2)

(according to the first factor from (4.1)), or

(
◦
C66+

◦
S22)

[
(ImX )

2
−(ReX )

2
]
+

+ 2
◦
S12(ImX ) + (

◦
C66+

◦
S11−

◦
ρ V

2
)=0 ,[

(
◦
C66+

◦
S22)(ImX )+

◦
S12

]
(ReX )=0 ,

(4.3)

(according to the second factor from (4.1)).

Taking into consideration that in most of the practical situations
◦
C11 +

◦
S22 > 0 ,

◦
C66 +

◦
S22 > 0 , and Re(Xk) > 0 ,

then the system (4.2) has a unique solution denoted by X(1), where

ReX(1) =

√
(
◦
C11 +

◦
S22)(

◦
C11 +

◦
S11 −

◦
ρ V

2
)−

◦
S12

2

(
◦
C11 +

◦
S22)

,

ImX(1) =
−
◦
S12

(
◦
C11 +

◦
S22)

,

(4.4)

if

V
2
<

(
◦
C11 +

◦
S11)(

◦
C11 +

◦
S22)−

◦
S12

2

◦
ρ (
◦
C11 +

◦
S22)

. (4.5)

For the system (4.3), the unique solution denoted by X(2), is

ReX(2) =

√
(
◦
C66 +

◦
S22)(

◦
C66 +

◦
S11 −

◦
ρ V

2
)−

◦
S12

2

(
◦
C66 +

◦
S22)

,

ImX(2) =
−
◦
S12

(
◦
C66 +

◦
S22)

,

(4.6)

if

V
2
<

(
◦
C66 +

◦
S11)(

◦
C66 +

◦
S22)−

◦
S12

2

◦
ρ (
◦
C66 +

◦
S22)

. (4.7)
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We observe that if the restriction (4.7) is satisfied then the restriction

(4.5) is satisfied, too. We also observe that if
◦
S12 = 0 then

◦
X1 and

◦
X2

become real numbers.
In what follows, we shall suppose that the restriction (4.7) is fulfilled.
Hence, in most of the practical situations, the equation (4.1) has two

solutions which verify the condition Re(Xk) > 0, that is X(1) and X(2) given
by (4.4) and (4.6), respectively.

Solving the fundamental system (3.4) we obtain the polarization direc-
tions

→
a◦(1) =

(
1,−iX(1), 0, 0

)
and

→
a◦(2) =

(
iX(2), 1, 0, 0

)
, (4.8)

corresponding to the displacement
→
u (1),

→
u (2), in the form (3.7).

Therefore, the general solution of the system (3.4) is
→
u = A1

→
u (1) +A2

→
u (2),

where

→
u =

→
a(x2)ei(ωt−kx1) , with

→
a(x2) = (a1, a2, a3, a4)(x2) and

a1(x2) = A1e−X(1)kx2 +A2iX(2)e
−X(2)kx2 , a3(x2) = 0 ,

a2(x2) = −A1iX(1)e
−X(1)kx2 +A2e−X(2)kx2 , a4(x2) = 0 .

(4.9)

Here A1 and A2 are constant quantities,
→
a(x2) being named the polarization

direction.
Taking into account (4.9), in the case of homogeneous mechanical bound-

ary conditions

−Σ21 = 0 and − Σ22 = 0 , for x2 = 0 ,

the boundary conditions (3.6) take the form[
(2
◦
C66+

◦
S22)X(1)+ i

◦
S12

]
A1 +

+
[
i(
◦
C66+

◦
S22)X(2)

2
−
◦
S12X(2)+ i

◦
C66

]
A2=0,

[
i(
◦
C11+

◦
S22)X(1)

2
−
◦
S12X(1)− i

◦
C12

]
A1−

−
[
(2
◦
C66+

◦
S22)X(2)+ i

◦
S12

]
A2=0.

(4.10)

This is a system of equations, the unknown variables being A1 and A2.
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The compatibility condition for this system is

−
[
◦
S12

2
+(2

◦
C66+

◦
S22)

2
]
X(1)X(2)−

− i
◦
S12

(
4
◦
C66+

◦
S11+

◦
S22−

◦
ρV

2
)(
X(1)+X(2)

)
+

+
(

2
◦
C66+

◦
S11−

◦
ρV

2
)

2
+
◦
S12

2
= 0 .

(4.11)

Using the usual decomposition into real and imaginary part for X(1) and
X(2) respectively, the condition (4.11) is now equivalent to the system

−
[
◦
S12

2
+ (2

◦
C66 +

◦
S22)

2
] (
ReX(1)ReX(2) − ImX(1)ImX(2)

)
+

+
◦
S12

(
4
◦
C66 +

◦
S11 +

◦
S22 −

◦
ρ V

2
)

(ImX(1) + ImX(2)) +

+
(

2
◦
C66 +

◦
S11 −

◦
ρ V

2
)

2
+
◦
S12

2
= 0 ,

−
[
◦
S12

2
+ (2

◦
C66 +

◦
S22)

2
] (
ReX(1)ImX(2) + ImX(1)ReX(2)

)
−

−
◦
S12

(
4
◦
C66 +

◦
S11 +

◦
S22 −

◦
ρ V

2
)

(ReX(1) +ReX(2)) = 0 .

(4.12)

Substituting ImX(1) from (4.4) and ImX(2) from (4.6), the system (4.12)
becomes equivalent with the system

l
[
ReX(1)ReX(2)

]
= mV

4
+ nV

2
+ p ,

◦
S12

[
(q̃ − ◦ρ V 2

)(ReX(1) +ReX(2))−

− b
(

1
r
ReX(1) +

1
w
ReX(2)

)]
= 0 ,

(4.13)

where

◦
C11 +

◦
S22

not= w ,
◦
C66 +

◦
S22

not= r , 2
◦
C66 +

◦
S22

not= d̃ ,

2
◦
C66 +

◦
S11

not= ẽ ,
◦
S12

2
+ d̃

2 not= b , d̃+ ẽ
not= q̃ ,

bwr
not= l ,

◦
ρ

2
wr

not= m ,
◦
ρ

[
◦
S12

2
(w + r)− 2ẽwr

]
not= n ,

◦
S12

2
[b− q̃(w + r) + wr] + ẽ

2
wr

not= p .

(4.14)
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It is important now to observe that if
◦
S12 = 0, then (4.13) is equivalent to

(4.13.1). It means that the second equation of the system (4.13) is fulfilled,
the system being reduced to the equation (4.13.1), for the real
numbers X(1) and X(2). Consequently, to solve the system (4.13) depends

essentially on
◦
S12 component.

5. The velocity equation. Special case
◦
S12 = 0

From (4.4) and (4.6) it yields that ReX(1) = X(1) and ReX(2) = X(2), and
the equation (4.13.2) is fulfilled. Therefore, the system (4.13) is reduced to
the velocity equation (4.13.1), for the real numbers X(1) and X(2). Then, the
velocity equation becomes

R
4
− 8R

3
+

[ 24
◦
VL

2 ◦
V T

2 − 16
◦

K
( ◦
V T

2 −
◦
S11

2
◦
ρ

)2
◦
VL

2 ◦
V T

2

]
R

2
−

−

[ 32
◦
VL

2 ◦
V T

2 − 16
◦

K (
◦
VL

2
+
◦
V T

2
)
( ◦
V T

2 −
◦
S11

2
◦
ρ

)
◦
VL

2 ◦
V T

2

]
R+

+ 16(1−
◦

K ) = 0 ,

(5.1)

where√√√√ ◦
C11 +

◦
S11
◦
ρ

not=
◦
VL ,

√√√√ ◦
C66 +

◦
S11
◦
ρ

not=
◦
V T , are the longitudinal,

respectively the transverse speed in the inactive initial field case, and

(
◦
C11 +

◦
S11)(

◦
C66 +

◦
S11)(2

◦
C66 +

◦
S22)

4

(
◦
C11 +

◦
S22)(

◦
C66 +

◦
S22)(2

◦
C66 +

◦
S11)

4

not=
◦

K ,

V
2

( ◦
V T

2 −
◦
S11

2
◦
ρ

) not= R .

(5.2)

It represents a generalization of the equation

R
3
− 8(R− 1)

(
R− 1− C12

C11

)
= 0 , (5.3)

derived by lord Rayleigh (1885), where R = V
2
/VT

2
, VT =

√
C66/ρ , and

R ∈ (0, 1) if 0 < V < VT ; the equation (5.3) has an unique solution R̃ into
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the interval (0, 1), solution that leads to an unique velocity V = VT

√
R̃ .

Indeed, we notice that if
◦
S11 =

◦
S22, then

◦
K = 1 and the last term

from (5.1) vanishes. So, this equation becomes one of third degree in R,
that is

R
3
− 8(R− 1)

[
(R− 1)− 2

◦
C66

◦
C12 +

◦
S11(2

◦
C11 − 2

◦
C66 +

◦
S11)

2(
◦
C11 +

◦
S11)(

◦
C66 +

◦
S11)

]
−

−
[

4
◦
S11(2

◦
C11 − 2

◦
C66 +

◦
S11)

(
◦
C11 +

◦
S11)(

◦
C66 +

◦
S11)

]
= 0 ,

(5.4)

or

R
3
− 8R

2
+AR−B = 0 , (5.5)

where

A = 4
5
◦
S11

2
+ 2

◦
S11(3

◦
C11 +

◦
C66) + 2

◦
C66(3

◦
C11 − 2

◦
C66)

(
◦
C11 +

◦
S11)(

◦
C66 +

◦
S11)

,

B = 8
2
◦
S11

2
+
◦
S11(3

◦
C11 −

◦
C66) + 2

◦
C66(

◦
C11 −

◦
C66)

(
◦
C11 +

◦
S11)(

◦
C66 +

◦
S11)

,

(5.6)

and

R =
V

2

◦
V T

2 −
◦
S11

2
◦
ρ

, belongs to

0, 1 +

◦
S11

2
◦
C66 +

◦
S11

 not= I. (5.7)

Please note that 1 +

◦
S11

2
◦
C66 +

◦
S11

∈ (0, 2).

In particular, if
◦
S11 =

◦
S22 = 0 then the equation (5.4) becomes the

Rayleigh’s equation (5.3).
Therefore, the equation (5.1), as well as the equation (5.4) or

(5.5), represent generalizations of the equation (5.3) derived by
lord Rayleigh (1885). The equation (5.1) is obtained from (4.13) consid-

ering
◦
S12 = 0. The equation (5.4) or (5.5) is obtained from (5.1) considering,

in addition, that
◦
S11 =

◦
S22.
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6. Polarization directions. Special case
◦
S12 = 0

Returning to the system (4.10) of boundary conditions, we obtain

X(1) =

√√√√ ◦
C11 +

◦
S11 −

◦
ρ V

2

◦
C11 +

◦
S22

, X(2) =

√√√√ ◦
C66 +

◦
S11 −

◦
ρ V

2

◦
C66 +

◦
S22

, (6.1)

and

A1 = −
i[(
◦
C66 +

◦
S22)X(2)

2
+
◦
C66]

(2
◦
C66 +

◦
S22)X(1)

A2 ⇔ A2 = iA1

√
X(1)

X(2)
. (6.2)

From (4.8), that is

→
a◦(1) =

(
1,−iX(1), 0, 0

)
and

→
a◦(2) =

(
iX(2), 1, 0, 0

)
,

and from (6.1), we obtain
→
a◦(1) and

→
a◦(2), and following (6.2) and (4.9), we

find the components of the polarization direction

a◦1(x2) = A1

[
e−X(1)kx2 −

√
X(1)X(2) e−X(2)kx2

]
,

a◦3(x2) = 0 , a◦4(x2) = 0 ,

a◦2(x2) = iA1

√
X(1)

X(2)

[
e−X(2)kx2 −

√
X(1)X(2) e−X(1)kx2

]
.

(6.3)

The corresponding displacement vector is

→
u =

→
a◦(x2)ei(ωt−kx1) . (6.4)

These relations are identical in form with those obtained by lord Rayleigh
(1885). The only difference between them is the different expressions for
X(1) and X(2), (see (4.4) and (4.6)). Note that, in the absence of initial
fields, these expressions provide the same known quantities obtained by lord
Rayleigh, as we see in what follows.

Hence, in the special case
◦
S11 =

◦
S22 we obtain

X(1) =

√√√√1− V
2

◦
VL

2
, where

◦
VL

2
=
◦
C11 +

◦
S11
◦
ρ

,

X(2) =

√√√√1− V
2

◦
V T

2
, where

◦
V T

2
=
◦
C66 +

◦
S11
◦
ρ

.
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If
◦
S11 =

◦
S22 =

◦
S12 = 0, (i.e. in the absence of initial fields), then these

last relations take place for the classical speed values
◦
VL

2
=
◦
C11/

◦
ρ (the

longitudinal elastic wave speed), and
◦
V T

2
=
◦
C66/

◦
ρ (the transverse elastic

wave speed).

7. The solutions of the generalized equation (5.5). Special case
◦
S12 = 0

We focus our attention more on the equation (5.5), that is the equation
obtained from the generalized equation (5.1) considering in addition that
◦
S11 =

◦
S22.

We define the associated function

f : [0, 2]→R , f(R) = R3 − 8R2 +AR−B , (7.1)

where A and B are the constants defined by (5.6).
In order to study the existence and the uniqueness of the solution of this

equation, we define:

◦
S1 =

−(5
◦
C11 +

◦
C12) +

√
9
◦
C11

2
+ 10

◦
C11

◦
C12 + 17

◦
C12

2

8
< 0 ,

◦
S2 =

−(5
◦
C11 + 9

◦
C12) +

√
49
◦
C11

2
+ 66

◦
C11

◦
C12 + 81

◦
C12

2

12
> 0 ,

◦
S3 =

(5
◦
C12 − 3

◦
C11)−

√
9
◦
C11

2 − 18
◦
C11

◦
C12 + 13

◦
C12

2

2
< 0 ,

◦
S4 =

(5
◦
C12 − 3

◦
C11) +

√
9
◦
C11

2 − 18
◦
C11

◦
C12 + 13

◦
C12

2

2
> 0 ,

min{
◦
S1,

◦
S3} = a < 0 , min{

◦
S2,

◦
S4} = b > 0 , J = (a, b) .

(7.2)

• If
◦
S11 ∈ (0, b), then 1 +

◦
S11

2
◦
C66 +

◦
S11

> 1 and the equation (5.5) has an

unique solution R̃ into the interval (0, 1). The corresponding velocity
is

◦
V =

√√√√√
 ◦VT

2 −
◦
S11

2
◦
ρ

 R̃ , 0 <
◦
V <

◦
VT . (7.3)

• If
◦
S11 ∈ (a, 0), then 0 < 1 +

◦
S11

2
◦
C66 +

◦
S11

not= c < 1 and the equation (5.5)
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has an unique solution R̃ ∈ (0, c) if, in addition, the condition

f (c) > 0 , (7.4)

is satisfied; the corresponding velocity
◦
V results from (7.3) in the same

way.

8. Numerical example. Special case
◦
S12 = 0

We shall consider now that the isotropic material is SiO2 (silica).
In the absence of the initial fields, the classical Rayleigh equation (5.3)

has the solution V = VT

√
R̃, where VT = 3763.3105 m/s, R̃ = 0.8204850,

so V = 3408.8302 m/s. In the case of active initial fields, considering
◦
S11 =

◦
S22 = (p%)

◦
C11 and

◦
S12 = 0, where p ∈ {−5,−4, . . . , 4, 5}, we shall establish

the admissible solutions of the generalized Rayleigh’s equation (5.5), for
every situation concerning the parameter p. We shall see that, in each case,

the above mentioned equation has a single admissible solution
◦
V . We shall

estimate the relative variation (
◦
V − V )/V not= ∆r, where V is the propagation

velocity according to the absent initial fields situation (obtained here in the
case p = 0). This numerical example confirms all the results related to the
existence and the uniqueness of the solution of the equation (5.5).

In this way, considering

-the material constants:
◦
C11 = 7.85 · 1010 N/m2 ,

◦
C12 = 1.61 · 1010 N/m2 ,

◦
C66 = 3.12 · 1010 N/m2 ,

◦
ρ = 2203 kg/m3 ,

-the parametric initial stress field:
◦
S11 =

◦
S22 = (p%)

◦
C11 , p ∈ Z , |p| ≤ 5 ,

-the longitudinal (L), (transverse (T)) generalized velocity:

◦
VL =

√√√√ ◦
C11 +

◦
S11
◦
ρ

,
◦
V T =

√√√√ ◦
C66 +

◦
S11
◦
ρ

,

-the definition domain for the generalized equation: I=

(
0, 1+

◦
S11

2
◦
C66 +

◦
S11

)
,

-the generalized velocity solution:
◦
V=

√√√√( ◦
V T

2 −
◦
S11

2
◦
ρ

)
R̃ ,



204 Ion-Iulian Ana

-the admissibility condition for generalized velocity solution:
◦
V ∈ (0,

◦
V T ) ,

-the relative variation: ∆r =
◦
V −V
V

,

-the positive domain for the
◦
S11 stress component (taction case)(

0 , b
)

= ( 0 , 0.833866·1010 ) N/m2 ,

domain for which the existence and uniqueness is established ,

-the negative domain for the
◦
S11 stress component (compression case)(

a , 0
)

= (−1.7416486·1010 ; 0 ) N/m2 ,

domain for which the existence and uniqueness is established if the condition

f(c)>0 ,where f is given by (7.1) and 1+
◦
S11/(2

◦
C66+

◦
S11)not= c , is satisfied ,

we obtain the numerical data of Table 1.

Table 1. Numerical data obtained in the special case
◦
S 12 = 0

◦ S
1
1

=
(p

%
)
◦ C
1
1
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n

g
it

u
d

in
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l

g
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er
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d

v
el

o
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T
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sv
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d

v
el

o
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ty

T
h

e
d

o
m

a
in

o
f

d
efi

n
it
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n

fo
r

th
e

g
en

er
a
li

ze
d

eq
u

a
ti

o
n

T
h

e
so

lu
ti

o
n

o
f

g
en

er
a
li

ze
d

eq
u

a
ti

o
n

T
h

e
co

rr
es

p
o
n

d
in

g
v
el

o
ci

ty
so

lu
ti

o
n

T
h

e
re

la
ti

v
e

v
a
ri

a
ti

o
n

T
h

e
su

p
p

le
m

en
ta

ry
co

n
d

it
io

n
f(
·)

>
0

p
◦
VL

◦
VT I = (0; ·) R̃

◦
V ∆r f(·)

-5 5818.2099 3518.6424 (0;0.93287730) 0.70798034 3065.3034 ' -10% 1.3901
-4 5848.7519 3568.9181 (0;0.94701316) 0.73239215 3138.5599 ' -7.9% 1.2982
-3 5879.1352 3618.4954 (0;0.96077942) 0.75578399 3209.3348 ' -5.8% 1.2140
-2 5909.3623 3667.4025 (0;0.97419037) 0.77822337 3277.8479 ' -3.8% 1.1366
-1 5939.4356 3715.6659 (0;0.9872596) 0.79977171 3344.2905 ' -1.8% 1.0655
0 5969.3574 3763.3105 (0;1) 0.820485 3408.8302 = 0.0% ----

1 5999.1299 3810.3593 (0;1.0124238) 0.84041443 3471.6145 ' 1.8% ----
2 6028.754 3856.8342 (0;1.0245428) 0.85960691 3532.7742 ' 3.6% ----
3 6058.2361 3902.7558 (0;1.0363678) 0.8781055 3592.4254 ' 5.3% ----
4 6087.5739 3948.1432 (0;1.0479097) 0.89594985 3650.6721 ' 7.0% ----
5 6116.7711 3993.0148 (0;1.0591783) 0.91317646 3707.6074 ' 8.7% ----

Taking into account the results obtained in Table 1, we observe that,
in realistic assumptions concerning the parametric initial stress field, that

is
◦
S11 =

◦
S22 = (p%)

◦
C11, (where p ∈ {−5,−4, . . . , 4, 5}), and

◦
S12 = 0,

the solution
◦
V of the equation (5.5) is close to the solution of the classical

Rayleigh’s equation, in the sense that |∆r| ≤ 10%, and in the case of p = 0,
both of these equations coincide.

We plot for each integer value of p, so that p ∈ {−5,−4, . . . , 4, 5}, the
graph of function f given by (7.1). For a better view we give a zoom on the
[0, 1] interval.
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Fig. 2. The graph of the function f for p ∈ {0 . . . , 4, 5} (traction case)

Fig. 3. The graph of the function f for p ∈ {−5,−4 . . . , 0} (compression case)

It is important to observe that, the increasing of the traction leads to
the increasing of the velocity, and the increasing of the compression leads
to the decreasing of the velocity. At the same time, in the traction case the
obtained velocity is greater than that obtained in the classical case, and in the
compression case the obtained velocity is smaller than in the classical one.
However, we observe the graphics asymmetry for p = ±ε, ε ∈ {1, . . . , 5} (see
Figure 2-3).

9. The generalized velocity equation. Special case
◦
S12 6= 0

In this case, the equation (4.13.2) is equivalent with(4
◦
C66 +

◦
S11 +

◦
S22 −

◦
ρ V

2
)−

[ ◦
S12

2
+ (2

◦
C66 +

◦
S22)

2]
(
◦
C11 +

◦
S22)(

◦
C66 +

◦
S22)

◦
S22

·
·(ReX(2) +ReX(1)) =

=

[ ◦
S12

2
+ (2

◦
C66 +

◦
S22)

2]
(
◦
C11 +

◦
S22)(

◦
C66 +

◦
S22)

(ReX(2)

◦
C66 +ReX(1)

◦
C11) .

(9.1)

Taking into account that both members of this equality are positive, and
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the following notation

◦
S12

2
+ (2

◦
C66 +

◦
S22)

2
= b ,

◦
ρ (
◦
C11 +

◦
S22)(

◦
C66 +

◦
S22) = c ,

◦
S22b− (4

◦
C66 +

◦
S11 +

◦
S22)(

◦
C11 +

◦
S22)(

◦
C66 +

◦
S22) = d ,

(
◦
C11 +

◦
S11)(

◦
C66 +

◦
S22) = e , (

◦
C11 +

◦
S22)

◦
ρe = g ,

(
◦
C11 +

◦
S22)

2[
(
◦
C66 +

◦
S22)(

◦
C66 +

◦
S11)−

◦
S12

2]
= f ,

(
◦
C66 +

◦
S22)

2[
(
◦
C11 +

◦
S22)(

◦
C11 +

◦
S11)−

◦
S12

2]
= h ,

(
◦
C66 +

◦
S22)

◦
ρe = j , (

◦
C66 +

◦
S11)(

◦
C66 +

◦
S22)−

◦
S12

2
= s ,

(9.2)

and substituting ReX(2) and ReX(1) from (4.4) and (4.6), the equality (9.1)
has the form:

[
ReX(2)ReX(1)

] {
(2e

2
c
2
)V

4
+ (4cde

2
)V

2
+ (2e

2
)(d

2− b2
◦
C11

◦
C66)

}
=

=
[
c
2
(g + j)

]
V

6
+
[
2cd(g + j)− c2(f + h)

]
V

4
+

+
[
−2cd(f + h) + d

2
(g + j)− b2(g

◦
C66

2
+ j

◦
C11

2
)
]
V

2
+

+
[
b
2
(f
◦
C66

2
+ h

◦
C11

2
)− d2

(f + h)
]
.

(9.3)

Using the notations (4.14) and (9.2), the system (4.13) is equivalent with
the system

l
[
ReX(1)ReX(2)

]
= mV

4
+ nV

2
+ p ,{

(2e
2
c
2
)V

4
+ (4cde

2
)V

2
+ (2e

2
)(d

2− b2
◦
C11

◦
C66)

}
·
[
ReX(2)ReX(1)

]
=

=
[
c
2
(g + j)

]
V

6
+
[
2cd(g + j)− c2(f + h)

]
V

4
+

+
[
−2cd(f + h) + d

2
(g + j)− b2(g

◦
C66

2
+ j

◦
C11

2
)
]
V

2
+

+
[
b
2
(f
◦
C66

2
+ h

◦
C11

2
)− d2

(f + h)
]
.

(9.4)

Multiplying by l both members of the equation (9.4.2), and taking into
account (9.4.1), we obtain the equation

αV
8

+ βV
6

+ γV
4

+ δV
2

+ ε = 0 , (9.5)
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where

2e
2
c
2
m

not= α , 2e
2
c
2
n+ 4cde

2
m− lc2(g + j) not= β ,

2e
2
c
2
p+ 4cde

2
n+ 2e

2
d

2
m− 2e

2
b
2
m
◦
C11

◦
C66 − 2cdl(g + j) +

+ c
2
l(f + h) not= γ ,

4cde
2
p+ 2e

2
d

2
n− 2e

2
b
2
n
◦
C11

◦
C66 + 2cdl(f + h)− d2

l(g + h) +

+ b
2
l(g
◦
C66

2
+ j

◦
C11

2
) not= δ ,

2e
2
d

2
p− 2e

2
b
2
p
◦
C11

◦
C66 − b

2
l(f
◦
C66

2
+ h

◦
C11

2
) + d

2
l(f + h) not= ε ,

(9.6)

with the other constants defined by (4.14) and (9.2).
In addition V satisfies the condition

V
2 ◦
ρr < s . (9.7)

Concerning the polarization directions, the system (4.10) of the boundary
conditions, gives us A2 as a function depending on A1, and following (4.8),
(4.4) and (4.6), we can find the polarization direction

→
a◦(x2) and the ac-

cording displacement vector described by (4.9).

10. Numerical example. Special case
◦
S12 6= 0

We shall consider now that the isotropic material is SiO2 (silica).
In the absence of the initial fields, the classical Rayleigh equation (7.4)

has the solution V = VT

√
R̃, where VT = 3763.3105 m/s, R̃ = 0.8204850,

so V = 3408.8302 m/s.

In the case of active initial fields, considering
◦
S11 =

◦
S22 = (p%)

◦
C11 and

◦
S12 = (u%)

◦
C12, where p ∈ {−2,−1, 0, 1, 2}, u ∈ {−2,−1, 1, 2}, we shall

establish the admissible solutions of generalized Rayleigh equation (7.1), for
every situation concerning p, u respectively.

In this way, if we take

-the material constants:
◦
C11 = 7.85 · 1010 N/m2 ,

◦
C12 = 1.61 · 1010 N/m2 ,

◦
C66 = 3.12 · 1010 N/m2 ,

◦
ρ = 2203 kg/m3 ,

-the parametric initial stress field:
◦
S11 =

◦
S22 = (p%)

◦
C11 , p ∈ Z , |p| ≤ 2;

◦
S12 = (u%)

◦
C12 , u ∈ Z∗, |u| ≤ 2 ,

-the limit velocity: Vl =
√
s/
◦
ρr, and the admissibility condition: 0 <

◦
V < Vl,

-the relative variation: ∆r = (
◦
V −V )/V, where V is the classical solution,
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Table 2. Numerical data obtained in the special case
◦
S 12 6= 0

◦ S
1
1

=
◦ S
2
2

=
(p

%
)
◦ C
1
1

◦ S
1
2

=
(u

%
)
◦ C
1
2

T
h
e

li
m

it
v
el

o
ci

ty

T
h
e

g
en

er
a
li

ze
d

v
el

o
ci

ty
so

lu
ti

o
n

T
h
e

re
la

ti
v
e

va
ri

a
ti

o
n

p u Vl

◦
V ∆r

-2 0 3667.4025 3277.8479 ' −3.84%
-1 0 3715.6659 3344.2905 ' −1.89%
0 0 3763.3105 3408.8302 = 0.0%

1 0 3810.3593 3471.6145 ' 1.84%
2 0 3856.8342 3532.7742 ' 3.63%
-2 ±1 3667.3000 3277.8000 ' −3.84%
-1 ±1 3715.6139 3344.2355 ' −1.89%
0 ±1 3763.2604 3408.7775 ' −0.001%
1 ±1 3810.3110 3471.5639 ' 1.84%
2 ±1 3856.8000 3532.7000 ' 3.63%
-2 ±2 3667.1859 3277.6176 ' −3.84%
-1 ±2 3715.4577 3344.0703 ' −1.89%
0 ±2 3763.1100 3408.6192 ' −0.006%
1 ±2 3810.1662 3471.4121 ' 1.83%
2 ±2 3856.6480 3532.5797 ' 3.63%

we obtain the numerical data of Table 2.

Therefore, following these numerical data, we observe that, in realistic

assumptions concerning the parametric initial stress field, the solution
◦
V of

the generalized Rayleigh equation is close to the classical solution, in the
sense that |∆r| ≤ 3.84%. At the same time, in the case of p = 0, u→ 0, u 6=
0, the generalized velocity solution, and classical velocity solution coincide.

It is important to observe that, the generalized equation (9.5) was ob-

tained in the case
◦
S12 6= 0 explicitly. Related to this equation, if we consider

that
◦
S11 =

◦
S22 = 0 and

◦
S12 → 0, then the new obtained equation and the

classical Rayleigh’s equation, do not coincide. Thus, the equation (9.5) is a
new equation which generalizes not in form the classical equation. However,
the admissible solution of this new equation proves to be an approximation

of the classical solution, and in the case
◦
S11 =

◦
S22 = 0 and

◦
S12 → 0 these

solutions coincide.
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