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1. Introduction

The classification of the extensions of a valuation, from K to K(X1, . . . , Xn)
(for n ≥ 2), is still an open problem in algebra, even if the extensions from K
to K(X) have been completely analyzed and described in [4, 7, 10] and [9].
The reason for this is the fact that, when getting with analysis to the second
indeterminate (X2), one has to face the algebraic closure of the field K(X1),
which raises difficult issues in the domain of algebraic geometry (algebraic
functions of one or several indeterminates).

In the paper [11], by the same author, it has been defined a special class
of extensions of a valuation from K to K(X1, . . . , Xn), called symmetrical
valuations, which treats in an undifferentiated way the n indeterminates and,
thanks to this property, allows an analysis that avoids the barrier mentioned
above. The main result of that paper was the definition and characterization
of the r.t.s.-extensions, which will play a crucial role in this study.

This paper continues the work started in [11] by defining the notions of
ultrasymmetry and symmetrically-openness, obtaining a complete classifica-
tion of the r.t.s.-extensions, discussing the extension of the symmetry to an
algebraic closure and finally, using all these, giving a complete classification
of the symmetrically-open extensions.
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2. General notations and definitions

Let K be a field and v a valuation on K. We will write this pair (K, v).
We will denote by kv the residue field, by Gv the value group, by Ov the
valuation ring and by Mv the maximal ideal of v. We will also denote by
ρv : Ov → kv the residual homeomorphism. For x ∈ Ov we denote by
x∗ = ρv(x), its image in kv.

Given u and u′ two valuations on K, we will say that u is equivalent to u′

and write u ∼= u′, if there exists an isomorphism of order groups j : Gu → G′u
such that u′ = ju.

Let K ′/K be an extension of fields. We will call a valuation v′ on K ′ an
extension of v if v′(x) = v(x) for all x in K. If v′ is an extension of v we
will canonically identify kv′ with a subfield of kv and Gv with a subgroup of
Gv′ .

Let (K, v) be a valued field. If we choose K̄ an algebraic closure of K
and v̄ an extension of v to K̄, then the residual field of v̄ will be, in fact,
an algebraic closure of kv and the value group of v̄ will be QGv, namely the
smallest divisible group that contains Gv.

We denote by K(X) the field of rational fractions of an indeterminate X
over K and with K[X] the ring of polynomials of an indeterminate X over
K.

Let u be an extension of v to K(X). We will say that u is a residual-
transcendental extension (r.t.- extension) if ku/kv is a transcendental exten-
sion of fields. When not, but we still have Gu ⊆ QGv, we will say that u is a
residual-algebraic torsion extension (r.a.t.-extension) and when Gu 6⊂ QGv,
we will say that u is a residual-algebraic free extension (r.a.f.-extension).
Additional information to this classification may be found in [4].

In [11] a symmetric valuation (with respect to X1, . . . , Xn) was defined
as a valuation w on K(X1, . . . , Xn), n ≥ 2, such that, given any permutation
π of {1, 2, . . . , n} and any f ∈ K(X1, . . . , Xn), we have

w(f(X1, X2, . . . , Xn)) = w(f(Xπ(1), Xπ(2), . . . , Xπ(n))).

In this case we denote by πf(X1, X2, . . . , Xn) = f(Xπ(1), Xπ(2), . . . , Xπ(n)),
the automorphism f → πf of K(X1, . . . , Xn) that leaves the symmetric
fractions of polynomials in K(X1, . . . , Xn) unchanged.

Let w be a symmetric valuation on K(X1, . . . , Xn). Let K(X1, . . . , Xn)
be an algebraic closure of K(X1, . . . , Xn) and w̄ an extension of w from
K(X1, . . . , Xn) to K(X1, . . . , Xn).

We say that w̄ extends the symmetry of w if, for any partition of
{1, 2, . . . , n} = {i1, i2, . . . , im} ∪ {j1, j2, . . . , jn−m}, with 0 ≤ m < n, the re-
striction of w̄ to K(Xi1 , . . . , Xim)(Xj1 , . . . , Xjn−m) is symmetric with respect

to Xj1 , . . . , Xjn−m , where K(Xi1 , . . . Xim) is the closure of K(Xi1 , . . . Xim)
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in K(X1, . . . , Xn). For such an extension we denote by:

δa := w̄(X − a), for any a ∈ K̄, where X is arbitrarily

chosen from X1, . . . , Xn;

Mw̄ := {δa/a ∈ K̄};

and for any i, such that 0 ≤ i ≤ n, we denote by:

Ki := K(X1, . . . , Xi), with the convention K0 = K;

ui := the restriction of w to Ki, with the conventions

u0 = v, un = w;

Oi, Gi, resp. ki := the valuation ring, the valuation group,

resp. residual field of ui;

Mi :=
{
w̄(Xi − ρ)/ρ ∈ K(X1, . . . , Xi−1)

}
, for i ≥ 1.

We call the freedom degree of the extension w (with respect to v) the
quantity

freedegw = card{i ∈ {1, . . . , n}/Gi ∩QGi−1 6= Gi}.

and we notice, due to [4], that freedegw represents the number of inter-
mediate extensions from v on K to w on K(X1, . . . , Xn) that are residual-
algebraic free and this number is independent on the order the indetermi-
nates X1, . . . , Xn are taken into account.

Following [11, Theorem 4.3 and Corollary 4.4], we have several equivalent
definitions for a residual-transcendental simple extension (r.t.s.-extension),
when speaking about a symmetric extension w, of v from K to
K(X1, . . . , Xn), a fixed algebraic closure K(X1, . . . , Xn) and w̄ an extension
of w from K(X1, . . . , Xn) to K(X1, . . . , Xn) that extends the symmetry of
w; namely, we say that w is residual-transcendental simple if and only if any
of the following conditions is ensured:

(2.1) u1 is a r.t.-extension of v to K1 and χ1, χ2, . . . , χn are algebraically
independent over kv, where, for all i, χi is a generator of the transcendence
of the residue field of w|K(Xi);

(2.2) tr.deg(kw : kv) = n and χ1, χ2, . . . , χn are algebraically independent
over kv, where, for all i, χi is a generator of the transcendence of the residue
field of w|K(Xi);

(2.3) freedeg(w) = 0 and supMn exists and is contained in M1;
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(2.4) there exists a ∈ K̄ and δ ∈ QGv such that, for any F ∈ K̄[X1, . . . , Xn]

written as F =
∑

(i1,...,in)∈I

ai1,...,in · (X1 − a)i1 · (X2 − a)i2 · . . . · (Xn − a)in ,

with I a finite set of n-tuples of indices, we get

w̄(F ) = inf
(i1,...,in)∈I

(v̄(ai1,...,in) + (i1 + . . .+ in) · δ) .

(2.5) there exists a ∈ K̄ and δ ∈ QGv such that the following two conditions
are satisfied:

(i) w(Xi −X1) = δ, for all i ∈ {2, . . . , n};
(ii) when we denote:

g ∈ K[X] the minimal monic polynomial of a;

v′ an extension of v la K(a);

γ :=
∑
a′∈K̄
g(a′)=0

inf(δ, v′(a′ − a));

then for any F ∈ K[X1, . . . , Xn] written as:

F =
∑

(ii,...,in)∈I

fi1,...,in(X1) · g(X1)i1 · (X2 −X1)i2 · . . . · (Xn −X1)in

with deg fi1,...,in < deg g and I a finite set of n-tuples of indices, we get:

w(F ) = inf
(i1,...,in)∈I

(
v′(fi1,...in(a)) + i1 · γ + (i2 + . . . in) · δ

)
.

For n = 1 we will consider any extension as being, trivially, a r.t.s.-
extension.

With the following additional notations:

e = e(γ,K(a)), the smallest positive integer such that e · γ ∈ Gv;
h ∈ K[X] such that deg h < deg g and v′(h(a)) = e · γ (X is here generic);

ri = g(Xi)
e/h(Xi), which is an element K(Xi);

χi = r∗i , the class ri within the residue field of w |K(Xi);

we get, from [11, Corollary 4.5], that:

Gn = Gv′ + Zγ ⊆ QGv;

kn = kv′(χ1, . . . , χn).
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3. Characterization of r.t.s.-extension

Before discussing about the r.t.s.-extensions, we will analyze a simple type
of symmetric extensions namely the Gaussian valuation w, which extends
an arbitrary valuation v from K to K(X1, . . . , Xn) in such a way that, for
F ∈ K[X1, . . . , Xn] written as

F =
∑

(i1,...,in)∈I

ai1,...,in ·X
i1
1 · . . . ·X

in
n , with ai1,...,in ∈ K

where I is a finite set of n-uples of indices, we get:

w(F ) = inf
(i1,...,in)∈I

(v(ai1,...,in)) .

Proposition 3.1. The Gaussian valuation w, that extends an arbitrary val-
uation v from K to K(X1, . . . , Xn) has the following properties:

(P3.1.1) w is symmetric and w = 0;

(P3.1.2) w is trivial if and only if v is trivial;

(P3.1.3) The restriction we of w to K(e
(n)
1 , . . . , e

(n)
n ) is also Gaussian so it is

itself symmetric and isomorphic with w, as extensions of v to two isomorphic
fields.

Proof. Statements (P3.1.1) and (P3.1.2) are obvious, so we will take care
only of (P3.1.3).

Indeed, if we wrote the same symmetric polynomial in the two fields:

F e(e
(n)
1 , . . . , e(n)

n ) =
∑

(i1,...,in)∈I

ai1,i2,...,in

(
e

(n)
1

)i1
· . . . ·

(
e

(n)
1

)in
=

∑
(j1,...,jn)∈J

bj1,j2,...,jnX
j1
1 · . . . ·X

jn
n

= F (X1, . . . , Xn)

then each ai1,i2,...,in is a linear combination of bj1,j2,...,jn , weighted by integer
values, but also reversely, so we have:

we(F e) ≥ inf
(j1,...,jn)∈J

(
v(bj1,j2,...,jn)

)
= w(F )

≥ inf
(i1,...,in)∈I

(
v(ai1,i2,...,in)

)
= we(F e)

therefore we(F e) is the Gaussian valuation on K(e
(n)
1 , . . . , e

(n)
n ), which ex-

tends K. 2

Now we can move on to the r.t.s.-extensions, which appear as a general-
ization of the Gaussian ones. However, before a complete characterization
of these, we need two preliminary results.
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Lemma 3.1. An extension w on K(X1, . . . , Xn) of a valuation v on K,
with n ≥ 2, is symmetric if and only if, for each i with 1 ≤ i ≤ n− 1, w is
symmetric with respect to Xi, Xn.

Proof. “⇒”: The assertion is obvious.
“⇐”: For n = 2 the statement is also obvious. Therefore, let’s consider

n > 2. Let π be a permutation of the set {1, 2, . . . , n}. By denoting with
πij the inversions (when i 6= j) or the identity (when i = j), we may write

π =
n−1◦
i=1
ji>i

(πi,ji) =
n−1◦
i=1
ji>i

(πn,i ◦ πn,ji ◦ πn,i) =
3(n−1)
◦
k=1

(πn,ik)

with {ji} and {ik} two arrays of indices conveniently chosen. From the
hypothesis we know that, for each i and any f ∈ K(X1, . . . , Xn), we have
w(f) = w(πn,if). We conclude that:

w(πf) = w

((
3(n−1)
◦
k=1

πn,ik

)
f

)
= w

(
πn,i1

((
3(n−1)
◦
k=2

πn,ik

)))

= w

((
3(n−1)
◦
k=2

πn,ik

)
f

)
= · · · = w(f)

2

Proposition 3.2. Let w be an extension of v from K to K(X1, . . . , Xn)
such that there exist a ∈ K̄ and two values δ, ε ∈ QGv with δ ≤ ε, ensuring
the following three conditions

i) (a, δ) is a minimal pair of definition with respect to K and v;

ii) w(Xi −X1) = ε, for each i ∈ {2, . . . , n};

iii) when we denote by:

g ∈ K[X] the minimal monic polynomial of a;

v′—extension of v to K(a);

γ :=
∑
a′∈K̄
g(a′)=0

inf(δ, v′(a′ − a));

we have that, for all F ∈ K[X1, . . . , Xn] written as:

F =
∑

(i1,...,in)∈I

fi1,...,in(X1)i1 · g(X1)i1 · (X2 −X1)i2 · . . . · (Xn −X1)in ,

with deg fi1,...,in < deg g and I a finite set of n-tuples of indices, we
get:

w(F ) = inf
(i1,...,in)∈I

(
v′(fi1,...,in(a)) + i1 · γ + (i2 + . . . in) · ε

)
.
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In these circumstances, w is a symmetric valuation on K(X1, . . . , Xn) and,
given K(X1, . . . , Xn) an algebraic closure of K(X1, . . . , Xn) and w̄ an exten-
sion of w from K(X1, . . . , Xn) to K(X1, . . . , Xn), w̄ extends the symmetry
of w.

Proof. Let’s prove, first, that w is symmetric. According to Lemma 3.1, in
order to prove that w is symmetric it is enough to show that w is symmetric
with respect to X1, Xn, because for the rest of the pairs this fact is obvious.

Let, therefore, F ∈ K[X1, . . . , Xn] written as in iii), but let’s put

gi2,...,in(X1) =
∑

i1 such that (i1,...,in)∈I

fi1,...,in(X1) · g(X1)i1 .

so F becomes:

F =
∑

(•,i2,...,in)∈I

gi2,...,in−1,in(X1) · (X2 −X1)i2 · . . . · (Xn −X1)in (3.1)

and we have:

w(F ) = inf
(•,i2,...,in)∈I

(
u1(gi2,...,in) + (i2 + . . .+ in) · ε

)
.

Now let’s analyze the polynomial πF ∈ K[X1, . . . , Xn], obtained from F
by inverting Xn with X1. Let’s consider an arbitrary ω that extends w on
K(X1, . . . , Xn). We have:

w(πF ) = w

 ∑
(•,i2,...,in−1,in)∈I

gi2,...,in−1,in(Xn) · (X2 −Xn)i2 · . . .

·(Xn−1 −Xn)in · (X1 −Xn)in


that may be written further, denoting by Ji2,...,in the set {1, . . . ,deg gi2,...,in},
with ri2,...,in;j being the roots of gi2,...,in+1 , where j ∈ Ji2,...,in and with ai2,...,in
being the coefficient of the term with the maximal degree:

w(πF ) = ω

 ∑
(•,i2,...,in−1,in)∈I

ai2,...,in ·
 ∏
j∈Ji2,...,in

(Xn − ri2,...,in;j)


·(X2 −Xn)i2 · . . . · (X1 −Xn)in


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and from this, having Xn − ri2,...,in;j = Xn −X1 +X1 − ri2,...,in;j , we get:

w(πF ) =

ω

 ∑
(•,i2,...,in)∈I

∑
H⊂Ji2,...,in

ai2,...,in ·
 ∏
j∈Ji2,...,in−H

(
X1 − ri2,...,in;j

)
·
(
X2 −Xn

)i2 · . . . · (X1 −Xn

)in+card(H)

 (3.2)

Considering the fact that, for each i 6= j ∈ {1, . . . , n} and any r ∈ K̄, we get

w(Xi −Xj) = w(Xi −X1 +X1 −Xj) = ε ≥ δ = ω(X1 − r)

it may be derived that each term of the double summation in (3.2) has the
valuation greater or equal to w(F ):

ω

ai2,...,in ·
 ∏
j∈Ji2,...,in−H

(
X1 − ri2,...,in;j

)
·
(
X2 −Xn

)i2 · . . . · (X1 −Xn

)in+card(H)

 ≥
ω

ai2,...,in ·
 ∏
j∈Ji2,...,in

(
X1 − ri2,...,in;j

)
·
(
X2 −Xn

)i2 · . . . · (X1 −Xn

)in =

w
(
gi2,...,in · (X2 −Xn)i2 · . . . · (X1 −Xn)in

)
=

u1(gi2,...,in + (i2 + . . .+ in) · ε > w(F )

We deduce, therefore, that w(πF ) ≥ w(F ). We are left with proving the
reverse inequality.

Out of the terms of F , whose valuation is equal to w(F ), let’s choose
one of minimal degree in Xn:

gl2,...,ln−1,ln · (X2 −X1)l2 · . . . · (Xn−1 −X1)ln−1 · (Xn −X1)ln , with

w(F ) = u1(gl2,...,ln−1,ln) + (l2 + . . .+ ln−1 + ln) · ε and

ln is minimal having this property.

Now we need to write also πF in the form (3.1). In order to do that, we will
need to put:

Xn − ri2,...,in;j = (Xn −X1) + (X1 − ri2,...,in;j) and

Xi −Xn = (Xi −X1) + (X1 −Xn) for 2 ≤ i < n
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and to perform the replacement in (3.2). It is not necessary to perform all
the calculations, as we are interested only in those terms that get summed
up for the (n− 1)-uple (l2, . . . , ln), meaning those that are identified by:

Fl1,...,ln,i2,...,in,H =

ai2,...,in ·

 ∏
j∈Ji2,...,in−H

(
X1 − ri2,...,in;j

) · (X2 −X1

)l2 · . . .
·
(
Xn−1 −X1

)ln−1 · (Xn −X1)ln · (−1)ln

with i2 ≥ l2, . . . , in−1 ≥ ln−1, in ≤ ln, H ⊆ Ji2,...,in and in + i2 − l2 + . . . +
in−1 − ln−1 + card(H) = ln.

If we denote by ū1 the restriction of ω to K̄(X1), then we have:

ω(Fl2,...,ln,i2,...,in,H) =

v(ai2,...,in) +
∑

j∈Ji2,...,in−H
ū1(X1 − ri2,...,in) + (i2 + . . .+ in + card(H)) · ε ≥

v(ai2,...,in) +
∑

j∈Ji2,...,in

ū1(X1 − ri2,...,in) + (i2 + . . .+ in) · ε =

u1(gi2,...,in) + (i2 + . . .+ in) · ε ≥ w(F )

with the last inequality being strict when in < ln. This means that there
exists one and only one term equal to w(F ) among those that get summed
up for the (n− 1)-uple (l2, . . . , ln), namely Fl2,...,ln,l2,...,ln,φ.

We get, thus, the reverse inequality:

w(πF ) = inf
(•,l2,...,ln)∈I

ω

 ∑
i2,...,in,H

Fl2,...,ln,i2,...,in,H

 = w(F )

so w is symmetric with respect to X1, . . . , Xn.
Now we notice from iii) that (a, δ) is a minimal pair of definition for u1

(the restriction of w to K(X1)) and, from [5, V-Entiers,§6,10], we get that
u1 is a residual-transcendental extension. Moreover, for each i ∈ {2, . . . , n},
we have degXi X1 = 1, so (X1, ε) is a minimal pair of definition with re-
spect toK(X1, . . . , Xi−1) and ui−1 (the restriction of w toK(X1, . . . , Xi−1)),
which leads to the fact that all the intermediary extensions ui are residual-
transcendental.

Let’s fix L = K(X1, . . . , Xn) an algebraic closure of K(X1, . . . , Xn) that
extends K̄ from the hypothesis. We shall prove, by induction by n, that
for any w̄, an extension of w from K(X1, . . . , Xn) to L, we get w̄ extending
the symmetry of w. Let K̄ be the closure of K in L, ū2 an extension of u2

to K(X1, X2), ū1 its restriction to K(X1) which, obviously, extends u1 and
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v̄ its restriction to K̄. As (X1, ε) is a minimal pair of definition of u2, we
derive that, for any F ∈ K(X1)[X2] written as

F =
∑
i2∈I2

ρi2(X2 −X1)i2 , with ρi2 ∈ K(X1)

with I2 a set of indices, we have

ū2(F ) = inf
i2∈I2

(
ū1(ρi2 + i2 · ε

)
.

which means that, for any F ∈ K̄[X1, X2] written as

F =
∑

(i1,i2)∈I1,2

ai1,i2(X1 − a)i1(X2 −X1)i2 , with ai1,i2 ∈ K̄

where I1,2 is a set of pairs of indices, we get

ū2(F ) = inf
(•,i2)∈I1,2

ū1

 ∑
i1 such that (i1,i2)∈I1,2

ai1,i2(X1 − a)i1

+ i2 · ε


and, since ū1 extends u1 which is a r.t.-extension, we have

ū2(F ) = inf
(•,i2)∈I1,2

(
inf

i1 such that (i1,i2)∈I1,2

(
v̄(ai1,i2) + i1 · δ

)
+ i2 · ε

)
= inf

(i1,i2)∈I1,2

(
v̄(ai1,i2) + i1 · δ + i2 · ε

)
Now let’s analyze the polynomial πF ∈ K[X1, X2], obtained from F by
inverting X2 with X1. We have:

πF =
∑

(i1,i2)∈I1,2

ai1,i2(X2 − a)i1(X1 −X2)i2 =

∑
(i1,i2)∈I1,2

i1∑
k=0

(−1)i2ai1,i2C
k
i1(X1 − a)i1−k(X2 −X1)k+i2 =

∑
l≥0

 ∑
k,i2≥0
k+i2=l

(−1)i2

∑
i1≥k

ai1,i2C
k
i1(X1 − a)i1−k


 · (X2 −X1)l =

∑
l≥0


∑
h≥0


∑

(i1,i2)∈I1,2
i1+i2=l+h

i1≥h

(−1)i2ai1,i2C
h
i1

 · (X1 − a)h

 · (X2 − x1)l.
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In order to have (X1 − a)h(X2 −X1)l appearing in πF , there must exist a
pair (i1, i2) ∈ I1,2 featuring i1 ≥ h and i1 + i2 = l + h, so i1 ≤ l. Out of
these, let’s choose the pair (j1, j2) for which v̄(aj1,j2C

h
j1

) is minimal. Since

δ ≤ ε and v̄(Chj1) we derive

ū2


∑

(i1,i2)∈I1,2
i1+i2=l+h

i1≥h

(−1)i2ai1,i2C
h
i1(X1 − a)h(X2 −X1)l

 ≥ v̄(aj1,j2) + j1 · δ+ j2 · ε

for any l and h, so ū2(πF ) ≥ ū2(F ).

By choosing (h′, l′) ∈ I1,2 such that ū2(F ) = v̄(ah′,l′) + h′ · δ + l′ · ε and
such that h′ is maximal with this property we notice that, among the terms
that compose the coefficient of (X1 − a)h

′
(X2 −X1)l

′
, there exists one and

only one equal to ū2(F ), namely the one having i1 = h′ and i2 = l′.

It follows that ū2(πF ) = ū2(F ), for any F ∈ K(X1)[X2], so ū2 extends
the symmetry of u2.

Let’s move on to the induction step and let’s consider the target state-
ment true for any n′ < n. Let w̄ be an extension of w from K(X1, . . . , Xn)
to L, an integer m such that 0 ≤ m < n and a partition of {1, 2, . . . , n} =
{k1, k2, . . . , km} ∪ {l1, l2, . . . , ln−m}. Let’s denote by ū the restriction of w̄
to K(Xk1 , . . . , Xkm)(Xl1 , . . . , Xln−m), where K(Xk1 , . . . , Xkm) is the closure
of K(Xk1 , . . . , Xkm) in L. We shall prove that ū is symmetric with respect
to Xl1 , . . . , Xln−m . There are two cases, depending on the value of m.

If m > 0, as w is symmetric, we know that, for any F ∈ K[X1, . . . , Xn]
written as∑

(i1,...,in)∈I

fi1,...,in(Xk1) · g(Xk1)i1 · (Xk2 −Xk1)i2 · . . . · (Xkm −Xk1)im ·

(Xl1 −Xi1)im+1 · . . . · (Xln−m −Xk1)in ,

with deg fi1,...,in < deg g and I a finite set of n-uples of indices, we get:

w(F ) = inf
(i1,...,in)∈I

(
v′(fi1,...,in(a)) + i1 · γ + (i2 + . . .+ in) · ε

)
.

Again, all the intermediary extensions are r.t.-extensions so, as above,
for any polynomial G ∈ K(Xk1 , . . . , Xkm)(Xl1 , . . . , Xln−m) written as∑

(im+1,...,in)∈J

ηim+1,...,in · (Xl1 −Xk1)im+1 · . . . · (Xln−m −Xk1)in ,

with ηim+1,...,in ∈ K(Xk1 , . . . , Xkm).
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But we are now verifying the conditions of the induction hypothesis,
with n′ = n−m < n, δ′ = ε and the minimal monic polynomial of Xk1 being
g′ ∈ K(Xk1 , . . . , Xkm)[X] with g′(X) = X −Xk1 so, applying the induction
hypothesis, it follows that ū is symmetric with respect to Xl1 , . . . , Xln−m .

Finally, when m = 0, Lemma 3.1 allows us to verify the symmetry,
successively, only against two indeterminates, which reduces the analysis of
this case to the one above. 2

Corollary 3.1. An extension w, of v from K to K(X1, . . . , Xn), is a r.t.s.
extension if and only if hypothesis (2.5) holds, namely there exists a ∈ K̄
and δ ∈ QGv such that the following conditions are true:

i) w(Xi −X1) = δ, for all i ∈ {2, . . . , n};

ii) when we denote by:

g ∈ K[X] the minimal monic polynomial of a;

v′ an extension of v to K(a);

γ :=
∑
a′∈K̄
g(a′)=0

inf(δ, v′(a′ − a));

then, for any F ∈ K[X1, . . . , Xn] written as:

F =
∑

(i1,...,in)∈I

fi1,...,in(X1) · g(X1)i1 · (X2 −X1)i2 · . . . · (Xn −X1)in ,

with deg fi1,...,in < deg g with I is a finite set of n-tuples of indices, we
get:

w(F ) = inf
(i1,...,in)∈I

(
v′(fi1,...,in(a)) + i1 · γ + (i2 + . . . in) · δ

)
.

In particular, the Gaussian extension verifies the conditions required by
Proposition 3.2, by having a = 0 and δ = ε = 0, so it is a particular case of
a r.t.s.-extension.

4. Ultrasymmetric extensions and symmetrically-open extensions

Definition 4.1. A valuation w on K(X1, . . . , Xn), with n ≥ 2, is called
ultrasymmetric (with respect to X1, . . . , Xn) if, for any permutation π of
the set {1, 2, . . . , n} and any f ∈ K(X1, . . . , Xn), we have: w(f) ≥ 0 ⇔
w(πf) ≥ 0 and, when both inequalities are strict, we have f∗ = (πf)∗ in kw.

Observations:
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(D4.1.1) An ultrasymmetric valuation is always symmetric but the recip-
rocal is not true. Indeed, let’s suppose (reductio ad absurdum) that w is
ultrasymmetric and, at the same time, there exists f ∈ K(X1, . . . , Xn) such
that w(f) < w(πf). We can assume, without any loss of generality, that
w(f) and w(πf) are minimal with this property among the permutations of
f . Then we have two cases:

(i) w(f) = w(π−1f) < w(πf), so w(f/πf) < 0 = w(π−1f/f)

(ii) w(f) < w(πf) ≤ w(π−1f), so w(f/πf) < 0 < w(πf/f) ≤ w(π−1f/f).

and in both cases the ultrasymmetry of f is invalidated, since w(π−1f/f) =
w(π−1(f/πf)).

On the other hand, the following example shows that the reciprocal is not
true: let w be the trivial valuation on K(X1, . . . , Xn), with n ≥ 2, that
extends the trivial valuation on K. In this case, a = 0, δ = 0 and kn is iso-
morphic with Kn, so we might say that f∗ = f for any f ∈ K(X1, . . . , Xn).
From:

X∗1 = X1 6= X2 = X∗2

we can see immediately that the extension, although symmetric, is not ul-
trasymmetric.

(D4.1.2) A r.t.s.-extension with respect to X1, . . . , Xn, with n ≥ 2, is not
ultrasymmetric.

(D4.1.3) The Gaussian valuation, for n ≥ 2, is not ultrasymmetric. Indeed,
w(Xi −Xj) = 0, so X∗i 6= X∗j , for any different i, j in {1, 2, . . . , n}.

Definition 4.2. An extension w, of a valuation v from K to K(X1, . . . , Xn),
symmetric with respect to X1, . . . , Xn, is called symmetrically-open (with
respect to X1, . . . , Xn) if, adding any number of other indeterminates (el-
ements transcendental and algebraically independent over K(X1, . . . , Xn)),
Xn+1, . . . , Xn+r, there exists a symmetric extension of it to K(X1, . . . , Xn+r)
with respect to X1, . . . , Xn+r.

Observations:

(D4.2.1) If w is symmetrically-open with respect to X1, . . . , Xn, with n ≥ 2,
then it is symmetrically-open with respect to X1, . . . , Xi, for i < n. The dual
statement will be proved later.

(D4.2.2) Any r.t.s.-extension is symmetrically-open; in particular, any Gaus-
sian extension is symmetrically-open. This means that, if we formally extend
the definition above for n = 0, we can say that any extension is (trivially)
symmetrically-open with respect to the void set.
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The next proposition prepares the classification of the symmetrical ex-
tensions in a simple way, as it was promised in the introduction. In essence,
it states that a symmetrically-open extension cannot have complete freedom
in its construction, except for the first intermediary extension, namely the
one from K to K(X1).

But, first, we need an important lemma to regulate the extension of the
symmetry to the algebraic closure.

Lemma 4.1. Let w be an extension of v from K to K(X1, . . . , Xn), sym-
metrically open with respect to X1, . . . , Xn and a fixed algebraic closure
K(X1, . . . , Xn) of K(X1, . . . , Xn). Consider a partition

{1, 2, . . . , n} = {i1, i2, . . . , im} ∪ {j1, j2, . . . , jn−m},

with 0 ≤ m < n, then put L := K(Xi1 , . . . , Xim) and denote with Y1, . . . , Yk
the indeterminates Xj1 , . . . Xjn−m (where k = n−m). Let’s choose an infi-
nite array of elements, Yk+1, Yk+2, . . . , that are transcendental and algebraic
independent over the field L(Y1, . . . , Yk). Then:

(L4.1.1) For any L′, normal finite extension of L, there exists r ≥ k+1 and
an extension ω of w to L(Y1, . . . , Yr), symmetric with respect to Xi1 , . . . , Xim

, Y1, . . . , Yr, such that, given any extension ω′ of ω to L′(Y1, . . . , Yr), we get
ω′ symmetric with respect to Y1, . . . , Yr.

(L4.1.2) Any extension w̄ of w to K(X1, . . . , Xn) also extends the symmetry
of w.

Proof. (L4.1.1) Let’s suppose (reduction ad absurdum) that for any r ≥
k+ 1 and any extension ω of w to L(Y1, . . . , Yr), symmetric with respect to
Xi1 , . . . , Xim , Y1, . . . , Yr, there exists ω′, an extension of ω to L′(Y1, . . . , Yr),
such that ω′ is not symmetric with respect to Y1, . . . , Yr.

Obviously, the group Aut(L′/L) is finite and denote by l its order. Let
r := (k + 1) · l ≥ k + 1. As w is symmetrically-open, we know that there
exists ω, an extension of w to L(Y1, . . . , Yr), symmetric with respect to
Xi1 , . . . , Xim , Y1, . . . , Yr. Let ω′ be an extension of it to L′(Y1, . . . , Yr) which
is not symmetric with respect to Y1, . . . , Yr and, moreover, whose restriction
to L′(Y1, . . . , Yk+1) is not symmetric, either. This must exist because, if it
hadn’t, r′ = k + 1 would invalidate the assumption made. Therefore, there
exist π ∈ Sk+1 and f ∈ L′(Y1, . . . , Yk+1) with ω′(f) 6= ω′(πf).

Let ωe, respectively ω′e, be the restriction of ω, respectively ω′, to the

field generated by the elementary symmetric polynomials L(e
(r)
1 , . . . , e

(r)
r ),

respectively L′(e
(r)
1 , . . . , e

(r)
r ), as it may be seen in the diagram below:
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L ωe : L(e
(r)
1 , . . . , e

(r)
r ) ω : L(Y1, . . . , Yr)

L′ ω′e : L′(e
(r)
1 , . . . , e

(r)
r ) ω′, ω′′, . . . : L′(Y1, . . . , Yr)

normal isomorphic to L′/L

unique

l + 1 distinct

isomorphic to L′/L

The automorphism groups of the three vertical extensions are isomorphic:

Aut(L′/L) ∼= Aut(L′(e
(r)
1 , . . . , e(r)

e )/L(er1, . . . , e
(r)
r )) ∼=

Aut(L′(Y1, . . . , Yr)/L(Y1, . . . , Yr))

the correspondence given by:

a→σ(a)∑
(i1,...,ir)∈I

ai1,...,ir · (e
(r)
1 )i1 · . . . · (e(r)

r )ir →
∑

(i1,...,ir)∈I

σ(ai1,...,ir) · (e
(r)
1 )i1 · . . .

·(e(r)
r )ir∑

(i1,...,ir)∈I

ai1,...,ir · Y
i1

1 · . . . · Y
ir
r →

∑
(i1,...,ir)∈I

σ(ai1,...,ir) · Y
i1

1 · . . . · Y
ir
r

Let’s notice that there must exist at least l+ 1 different extensions of ω′e to
L′(Y1, . . . , Yr).

Indeed, ω′(f) 6= ω′(πf), with f ∈ L′(Y1, . . . , Yk+1), and let’s see π and all
the other permutations defined below in Sr. Let’s put
fi ∈ L′(Yi(k+1)+1, . . . , Y(i+1)(k+1)), 0 ≤ i < l, obtained from f by trans-

lations of its indeterminates, namely fi = τif where τi = τ−1
i inverts the

whole group Y1, . . . , Yk+1 with the group Yi(k+1)+1, . . . , Y(i+1)(k+1); in par-
ticular, f0 = f . Let’s consider all the pairs of extensions of ω′e that apply
the permutation π on the group Yi(k+1)+1, . . . , Y(i+1)(k+1), 0 ≤ i < l, namely
(ω′i, ω

′′
i ) = (τiω

′, (π ◦ τi)ω′); in particular, (ω′0, ω
′′
0) = (ω′, πω′). We have

ω′i(fi) 6= ω′′i (fi), but, since fi has no common indeterminates with the other
fj , j < i, it follows that at least one of ω′i and ω′′i is different from all ω′j , ω

′′
j

with j < i. In total, remembering that ω′0 6= ω′′0 , we have l + 1 different
extensions of ω′e to L′(Y1, . . . , Yr).

In conclusion, the number of extensions of ωe to L′(Y1, . . . , Yr), passing
through
L(Y1, . . . , Yr) (the path marked by dotted thick arrows), is at least l + 1.
On the other hand, ω, being symmetric, extends in a unique manner ωe

to L(Y1, . . . , Yr) ([11, Theorem 3.1]), so the number of extensions of ωe to
L′(Y1, . . . , Yr), passing through L(Y1, . . . , Yr) (the path marked by continu-
ous thick arrows) is at most l and, thus, we got a contradiction.
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(L4.1.2) Let’s fix w̄ an extension of w to K(X1, . . . , Xn). Again, we will
prove the result by contradiction.

Let’s suppose, accordingly, that there exists a partition:

{1, 2, . . . , n} = {i1, i2, . . . , im} ∪ {j1, j2, . . . , jn−m}, with 0 ≤ m < n,

such that the restriction of w̄ to K(Xi1 , . . . , Xim)(Xj1 , . . . , Xjn−m) is not

symmetric with respect to Xj1 , . . . , Xjn−m , where K(Xi1 , . . . , Xim) is the

closure of K(Xi1 , . . . , Xim) in K(X1, . . . , Xn).
Denote by L = K(Xi1 , . . . , Xim) and by Y1, . . . , Yk the indeterminates

Xj1 , . . . , Xjn−m (k = n−m).
Let’s also put ū = w̄ |L̄(Y1,...,Yk) (we notice that it is an intermediary

extension between w and w̄).
As ū is not symmetric, it follows that there exists a polynomial f ∈

L̄(Y1, . . . , Yk) and a permutation π of {1, 2, . . . , k} such that ū(f) 6= ū(πf).
Let L′ ⊆ L̄ be the normal finite extension of L that contains all the coeffi-
cients of f .

According to (L4.1.1) there exists an r ≥ k + 1 and ω an extension
of w to L(Y1, . . . , Yr), symmetric with respect to Xi1 , . . . , Xim , Y1, . . . , Yr ,
such that given ω′, any extension of it to L′(Y1, . . . , Yr), we get that ω′ is
symmetric with respect to Y1, . . . , Yr. But, in particular, ω is symmetric
with respect to Y1, . . . , Yr and we know from [11, Lemma 3.4] that there
must exist ω′, an extension of ω to L′(Y1, . . . , Yk), that extends ū, so we also
have ω′(f) 6= ω′(πf), which leads to a contradiction.

2

We can move on to the announced proposition.

Proposition 4.1. Let w be a symmetric extension of v, from K to
K(X1, . . . , Xn), a fixed algebraic closure K(X1, . . . , Xn) and w̄ an exten-
sion of w to K(X1, . . . , Xn).

Then w is symmetrically-open with respect to X1, . . . , Xn if and only if
either n < 2, or n ≥ 2 and there exists ε ∈ G2 an upper bound of the set
M1 = {w̄(X1 − a)/a ∈ K̄}, such that, for any F ∈ K[X1, . . . , Xn] written
as:

F =
∑

(i2,...,in)∈I

fi2,...,in · (X2 −X1)i2 · . . . · (Xn −X1)in , with fi2,...,in ∈ K[X1]

where I is a finite set of (n− 1)-uples of indices, we get:

w(F ) = inf
(i2,...,in)∈I

(
u1(fi2,...,in) + (i2 + . . .+ in) · ε

)
.

Proof.
“⇒” For n < 2 there is nothing to prove. Let’s suppose w is symmetri-

cally open and let n ≥ 2. According to (L4.1.2), w̄ extends the symmetry of
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w. Let’s fix Xn+1, Xn+2, . . . an array of elements that are transcendental and
algebraically independent over K(X1, . . . , Xn). Let L := K(X1, . . . , Xn−1).

For any ρ ∈ L̄ let’s denote the closure of L(ρ) in with Lρ, which is normal
finite extension of L. According to (L4.1.1) there exists rρ ≥ 1 and ωρ an
extension of w to L(X1, . . . , Xn), symmetric with respect to X1, . . . , Xn+rρ ,
such that, given any ω′, an extension of it to Lρ(Xn, . . . , Xn+rρ), we get that
ω′ is symmetric with respect to X1, . . . , Xn+rρ . Let w̄ρ be the common exten-

sion of w̄ and ωρ to K(X1, . . . , Xn)(Xn+1, . . . , Xn+rρ), which we know it ex-
ists, [11, Lemma 3.4]. Therefore, the restriction of ω̄ρ to Lρ(Xn, . . . , Xn+rρ),
is symmetric with respect to Xn, . . . , Xn+rρ . We have:

w̄(Xn −X1) = ω̄ρ(Xn+1 −Xn) = ω̄ρ(Xn+1 − ρ+ ρ−Xn)

≥ ω̄ρ(Xn − ρ) = w̄(Xn − ρ)

and this holds for any ρ ∈ L̄, independently of the choice of rρ and ωρ.

LetMi = {w̄(Xi− ρ)/ρ ∈ K(X1, . . . , Xi−1)}, with i ∈ {1, . . . , n}. Obvi-
ously, w̄(Xn−X1) ∈Mn. From the discussion above, we have w̄(Xn−X1) =
supMn and let’s denote by ε this value. Moreover, we have:

ε = w̄(Xn −X1) = w̄(X2 −X1) = w(X2 −X1) ∈M2

and, since M2 ⊆ Mn, it follows that ε = supM2, so ε is an upper bound
also ofM1. Now, as supM2 ∈M2, we derive, according to [4], that u2, the
extension of u1 from K(X1) to K(X1, X2) is either a r.t.-extension, when
QG1 = QG2, or a r.a.f-extension, when otherwise.

In both cases, the pair (X1, ε) is a definition pair for u2 and is minimal
since degX2

X1 = 1.
Consequently, given what we know from [4] and [10], it follows that, for

any F ∈ K[X1, X2] written as:

F =

s2∑
i2=0

fi2 · (X2 −X1)i2 , with fi2 ∈ K[X1]

we get
w(F ) = inf

i2

(
u1(fi2) + i2 · ε

)
.

Now, let K ′ = K(X1, X2) and let’s reconsider w and w̄ with respect
to X3, . . . , Xn, Xn+1. Obviously, w remains symmetric and w̄ extends its
symmetry.

Furthermore, since

ε = supMn = supMn−1 = . . . = supM3 ∈ G2

we deduce that QG2 = QG3 = . . . = QGn because, if this wasn’t true and
we took QGi−1 6= QGi, with the smallest i ≥ 3 validating this, then there
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would exist ρ ∈ K(X1, . . . , Xi−1) that would make w̄(Xi− ρ) 6∈ QGi−1 and,
therefore

w̄(X1 − ρ) = w̄(X1 −Xi +Xi − ρ) = w̄(Xi − ρ)

but this is not possible since w̄(X1 − ρ) ∈ QGi−1.
We have proven, thus, that freedeg(w) = 0, with respect to X3, . . . , Xn.

Using (2.3) we derive that w is a r.t.s.-extension with respect to X3, . . . , Xn

and, given any F ∈ K[X1, . . . , Xn] written as:

F =
∑

(i2,...,in)∈I

fi2,...,in · (X2 −X1)i2 · . . . · (Xn −X1)in , with fi2,...,in ∈ K[X1]

where I is a finite set of (n− 1)-uples of indices, we get:

w(F ) = inf
(·,i2,...,in)∈I

u2

 ∑
i21 such that (i2,i3,...,in)∈I

fi2,...,in · (X2 −X1)i2

 +

(i3 + . . .+ in) · ε

 =

inf
(i2,...,in)∈I

(
u1(fi2,...,in) + (i2 + . . .+ in) · ε

)
.

“⇐” If n = 1, we are free to choose a value ε, upper bound forM1. This
value will be automatically in G2, once we put w′(X2−X1) = ε. So we may
consider, directly, the case n ≥ 1 and let’s choose Xn+1 transcendental over
K(X1, . . . , Xn). Let’s define w′ as the extension of w to K(X1, . . . , Xn+1)
given by the pair (X1, ε), which is minimal because degXn+1

= 1.
Therefore, for any F ∈ K[X1, . . . , Xn+1] written as:

F =
∑

(i2,...,in+1)∈I

fi2,...,in+1 · (X2 −X1)i2 · . . . · (Xn+1 −X1)in+1 ,

with fi2,...,in+1 ∈ K[X1] (4.1)

where I is a finite set of n-uples of indices, we get

w′(F ) = inf
(i2,...,in+1)∈I

(
u1(fi2,...,in+1) + (i2 + . . .+ in+1) · ε

)
.

Let’s notice that w′, as extension of w, from K(X1, . . . , Xn) to
K(X1, . . . , Xn)(Xn+1) may be either a r.t.-extension or a r.a.f.-extension,
the latter being valid only if n = 1 and ε 6∈ QG1. But, in both cases, (see [4]
and [10]), ε is an upper bound of Mn, which means that, in particular, for
any r ∈ K̄, we get:

w′(Xn+1 −X1) = ε ≥ w̄′(X1 − r)
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Using the definition of w′ we derive that w′(Xi −Xj) = ε for each i 6= j in
{1, . . . , n+ 1}.

Further, it is obvious that w′ is symmetric with respect to Xi, Xn+1 for
each i ≥ 2 therefore, in order to check the symmetry of w′, it is enough
(cf. Lemma 3.1) to check the inversion of Xn+1 with X1. Let, thus, F ∈
K[X1, . . . , Xn+1] and let’s analyze the polynomial πF ∈ K[X1, . . . , Xn+1]
obtained from F by inverting Xn+1 with X1. Let’s consider w̄′ that extends
w̄ on K̄(X1, . . . , Xn+1).

We have

w′(πF ) = w′

 ∑
(i2,...,in,in+1)∈I

fi2,...,in,in+1(Xn+1) · (X2 −Xn+1)i2 · . . .

·(Xn −Xn+1)in · (X1 −Xn+1)in+1


which may be written, further, denoting by Ji2,...,in+1 the set
{1, . . . ,deg fi2,...,in+1}, with ri2,...,in+1;j being the roots of fi2,...,in+1 , where
j ∈ Ji2,...,in+1 and denoting by ai2,...,in+1 the coefficient of the term of maxi-
mal degree

w′(πF ) = w̄′

 ∑
(i2,...,in+1)∈I

ai2,...,in+1 ·

 ∏
j∈Ji2,...,in+1

(Xn+1 − ri2,...,in+1;j)


·(X2 −Xn+1)i2 · . . . · (X1 −Xn+1)in+1


which, by replacing Xn+1 − ri2,...,in+1;j = Xn+1 − X1 + X1 − ri2,...,in+1;j ,
becomes:

w′(πF ) =

w̄′

 ∑
(i2,...,in+1)∈I

∑
H⊂Ji2,...,in+1

ai2,...,in+1 ·

 ∏
j∈Ji2,...,in+1

−H

(
X1 − ri2,...,in+1;j

)
·
(
X2 −Xn+1

)i2 · . . . · (X1 −Xn+1

)in+1+card(H)

 (4.2)

Considering the fact that, for any i 6= j in {1, . . . , n+ 1} and any r ∈ K̄, we
get

w′(Xi −Xj) = ε ≥ w̄′(X1 − r)
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it follows that each term of the double summation in (4.2) has its valuation
greater or equal to w′(F ):

w̄′

ai2,...,in+1 ·

 ∏
j∈Ji2,...,in+1

−H
(X1 − ri2,...,in+1;j)


·(X2 −Xn+1)i2 · . . . · (X1 −Xn+1)in+1+card(H)

 ≥
w̄′

ai2,...,in+1 ·

 ∏
j∈Ji2,...,in+1

(X1 − ri2,...,in+1;j)


·(X2 −Xn+1)i2 · . . . · (X1 −Xn+1)in+1

 =

w′
(
fi2,...,in+1 · (X2 −Xn+1)i2 · . . . · (X1 −Xn+1)in+1

)
=

u1(fi2,...,in+1) + (i2 + . . .+ in+1) · ε ≥ w′(F )

We deduce, thus, that w′(πF ) ≥ w′(F ). We are left with the reverse in-
equality.

Of the terms of F , whose valuation is equal to w′(F ), let’s chose one of
minimal degree in Xn+1:

fl2,...,ln,ln+1 · (X2 −X1)l2 · . . . · (Xn −X1)ln · (Xn+1 −X1)ln+1 , with

w′(F ) = u1(fl2,...,ln,ln+1) + (l2 + . . .+ ln + ln+1) · ε and

ln+1 is minimal validating this property.

Now, we need to write also πF under the form (4.1). In order to do this, we
will need to set:

Xn+1 − ri2,...,in+1;j = (Xn+1 −X1) + (X1 − ri2,...,in+1;j) and

Xi −Xn+1 = (Xi −X1) + (X1 −Xn+1) for 2 ≤ i ≤ n

and to make the replacements in (4.2). It is not necessary to perform all the
calculations, because we are interested only in those terms that sum up for
the n-uple (l2, . . . , ln+1), meaning those of the form:

Fl2,...,ln+1,i2,...,in+1,H =

ai2,...,in+1 ·

 ∏
j∈Ji2,...,in+1−H

(X1 − ri2,...,in+1;j)


· (X2 −X1)l2 · . . . · (Xn −X1)ln · (Xn+1 −X1)ln+1 · (−1)ln+1
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with i2 ≥ l2, . . . , in ≥ ln, in+1 ≤ ln+1, H ⊆ Ji2,...,in+1 and in+1 + i2 − l2 +
. . .+ in − ln + card(H) = ln+1.

If we denote by ū1 the restriction of w̄′ to K̄(X1), then we have:

w̄′(Fl2,...,ln+1,i2,...,in+1,H) =

v(ai2,...,in+1) +
∑

j∈Ji2 ,...,in+1−H
ū1(X1 − ri2,...,in+1;j)+

(i2 + . . .+ in+1) + card(H)) · ε ≥

v(ai2,...,in+1) +
∑

j∈Ji2 ,...,in+1

ū1(X1 − ri2,...,in+1;j) + (i2 + . . .+ in+1) · ε =

u1(fi2,...,in+1) + (i2 + . . .+ in+1) · ε ≥ w′(F )

with the last inequality being strict if in+1 < ln+1. This means that there
exists one and only one term equal to w′(F ) among those that sum up for the
n-uple (l2, . . . , ln+1), namely Fl2,...,ln+1,l2,...,ln+1,φ. Thus, we get the reverse
inequality:

w′(πF ) = inf
(l2,...,ln+1)∈I

w̄′

 ∑
i2,...,in+1,H

Fl2,...,ln+1,i2,...,in+1,H

 ≤ w′(F )

We conclude that w′(πF ) = w′(F ), therefore w′ is symmetric with re-
spect to X1, . . . , Xn+1. By induction, choosing Xn+2, Xn+3, . . . and reason-
ing similarly, we get a chain of symmetric extensions, leading to the conclu-
sion that w is a symmetrically-open extension with respect to X1, . . . , Xn.

2

Corollary 4.1. With the notations above we have:

(C4.1.1) The dual statement of (D4.2.1) also stands: for any symmetrically-
open extension with respect to X1, . . . , Xn there exists an extension of it,
symmetrically-open with respect to X1, . . . , Xi, for all i > n, with
tr.deg(K(X1, . . . , Xi) : K) = i.

(C4.1.2) For a chain of symmetrically-open extensions, built using (C4.1.1),
there exists a chain of extensions to the algebraic closures (of the fields
each of the extensions in the original chain are defined on), such that their
symmetry is also extended.

(C4.1.3) A symmetric extension is symmetrically-open if and only if it may
be extended to a symmetric valuation on K(X1, . . . , Xn+1) that has an ex-
tension further to K(X1, . . . , Xn+1) which extends its symmetry.

(C4.1.4) If n ≥ 3, a symmetrically-open extension cannot be ultrasymmetric
with respect to X1, . . . , Xn.
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(C4.1.5) If w is symmetrically-open with respect to X1, . . . , Xn then:

0 ≤ freedegw ≤ 2;

n− 2 ≤ tr.deg(kw : kv) ≤ n;

n− 1 ≤ freedegw + tr. deg(kw : kv) ≤ n.

Proof. (C4.1.1), (C4.1.2) The statements are obvious from the closed-form
of the symmetrically open extensions, corroborated with Proposition 3.2

(C4.1.3) The implication “⇒” is obvious due to (C4.1.2), so we’ll focus
on the reverse implication.

Let w′ be the extension of w to K(X1, . . . , Xn+1) and w̄′ its extension
to K(X1, . . . , Xn+1) . In the proof made for the “⇒” implication in Propo-
sition 4.1 we have, directly:

w̄(Xn −X1) = w̄′(Xn+1 −Xn) = w̄′(Xn+1 − ρ+ ρ−Xn)

≥ w̄′(Xnρ) = w̄(Xn − ρ)

for any ρ ∈ K(X1, . . . , Xn−1) wherefrom the proof follows similarly.
(C4.1.4) If we consider w as a valuation on K(X1)(X2, X3), it is sym-

metrically open with respect to X2, X3. From Proposition 4.1 it follows that
w might be written as for Corollary 3.1 with:

K → K(X1);

a→ X1;

g → X −X1;

δ → ε = w(X2 −X1) = w(X3 −X1).

Therefore, according to (2.4), w is a r.t.s.-extension with respect to X2, X3.
Now, using (D4.1.2), we conclude that w is not ultrasymmetric.

(C4.1.5) For n ≤ 2, the first two statements are obvious. If n ≥ 3,
we use the same arguments as above to derive that w, as a valuation on
K(X1)(X2, X3, . . . , Xn), is a r.t.s.-extension with respect to X2, X3, . . . , Xn

and, considering (2.2) and (2.3), we conclude that:

0 = freedegX2,...,Xn w ≥ freedegw − 1 and:

n− 1 = tr.deg(kw : kui) ≤ tr.deg(kw : kv).

We are left with the last inequality. From [4] we know that all the inter-
mediary extensions from Ki−1 to Ki (with 1 ≤ i ≤ n) may be classified as
r.t., r.a.t. or r.a.f. As tr.deg(kw : kv) represents the number of intermediary
extensions that are r.t.-extensions and w represents the number of interme-
diary extensions that are r.a.f.-extensions it remains to be proved that there
cannot exist more than one intermediary extension that is r.a.t.-extension,
namely the first of the intermediary extensions.
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Let’s analyze the only intermediary extension that is important not to be
a r.a.t.-extension, namely the extension fromK(X1) toK(X1, X2). Suppose,
by reduction ad absurdum, that it is a r.a.t.-extension. Then the set

M2 = {w̄(X2 − ρ)/ρ ∈ K(X1)}

wouldn’t have an upper bound inside.
From Proposition 4.1 we know that there exists ε ∈ G2, an upper bound

for M1 ⊆ M2, such that, for any F ∈ K[X1, X2] written as F =
∑
i∈I

fi ·

(X2 −X1)i, with fi ∈ K[X1] where I is a finite set of indices, we get

u2(F ) = inf
i∈I

(
u1(fi) + i · ε

)
.

Let {εj}j∈J be a strictly increasing sequence of elements inM2, where J
is a countable set. As M2 doesn’t have a largest element, we may assume,
without any loss of generality, that ε0 = ε. We choose, for each j ∈ J , an
element ρj in K(X1), of minimal degree over K(X1), such that u2(X2−ρj) =
εj . For j = 0 we choose ρ0 = X1.

Let {u′j}j∈J be the sequence of r.t.-extensions from K(X1) to K(X1, X2)
defined by the minimal pairs (ρj , εj). From [4, Theorem 5.1] it follows that
this sequence is an ordered system of r.t.-extensions that has u2 as its limit:

u2(F ) = sup
j∈J

(
u′j(F )

)
, for all F ∈ K(X1, X2).

But this leads to:
u2(F ) = u′0(F ) = sup

j∈J

(
u′j(F )

)
which means that the ordered system of r.t.-extensions is stationary, which
contradicts the assertion that {εj}j∈J is a strictly increasing sequence.

2

5. Characterization of the symmetrically-open extensions

We can now present the main result of this paper, that allows a complete
classification of the symmetrically-open extensions in two classes, depending
on the existence of a r.a.f.-extension among the intermediary extensions.
Additionally, the following theorem states that any extension in the second
category (having a r.a.f.-extension among the intermediary ones) may be
reduced, in fact, to a sequence of extensions from the first category.

Theorem 5.1. Let w be a symmetrically-open extension of a valuation v,
from K to K(X1, . . . , Xn), with n ≥ 2, a fixed algebraic closure
K(X1, . . . , Xn) and w̄ that extends the symmetry of w to K(X1, . . . , Xn).
Then w may be in one of the following possible situations:
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(I) freedegw + tr.deg(kw : kv) = n and, in this case, w is defined by a
triplet (a, δ, ε), in which we have a ∈ K̄, δ ∈ Z × QGv and ε ∈ Z × Z ×
QGv, ε > δ such that, for any F ∈ K[X1, . . . , Xn] written as:

F =
∑

(i1,...,in)∈I

fi1,...,in · gi1(X2 −X1)i2 · . . . · (Xn −X1)in ,

with fi1,...,in ∈ K[X1],deg fi1,...,in < deg g

where I is a finite set of n-uples of indices and g ∈ K[X1] is the minimal
monic polynomial of a over K, we get:

w(F ) = inf
(i1,...,in)∈I

(
v̄(fi1,...,in(a)) + i1 · γ + (i2 + ·in) · ε

)
,

with γ =
∑

a′∈K̄,g(a′)=0

inf
(
δa, v̄(a′ − a)

)

(II) freedegw + tr. deg(kw : kv) = n− 1 and, in this case, w is the limit of
an ordered system of extensions of type (I), that have in their definition the
same value for ε.

Proof. From C4.1.5 we know that n− 1 ≤ freedegw+ tr.deg(kw : kv) ≤ n
so the cases (I) and (II) are, indeed, the only possible ones.

In case (I) all the intermediary extensions from Ki−1 to Ki (with 1 ≤ i ≤
n) are r.t.-extensions or r.a.f.-extensions. Looking at the first of them, we
notice that there exist a ∈ K̄ and δ ∈ Z×QGv such that, for any f ∈ K[X1]
written as:

f =
∑
i1∈I1

fi1 · gi1 , with fi1 ∈ K[X1],deg fi1 < deg g

where I1 is a finite set of indices and g ∈ K[X1] is the minimal monic
polynomial of a over K, we get:

u1(f) = inf
i1∈I1

(
v̄(fi1(a))+i1·γ

)
, with γ =

∑
a′∈K̄,g(a′)=0

inf
(
δa, v̄(a′−a)

)
. (5.1)

We also note that:

w(X1 − a) = u1(X1 − a) = δ ∈M1.

From Proposition 4.1 we know that there exists ε ∈ G2, upper bound ofM1

(so ε ≥ δ), such that, for any F ∈ K[X1, . . . , Xn] written as:

F =
∑

(i2,...,in)∈I

fi2,...,in · (X2 −X1)i2 · . . . · (Xn −X1)in , with fi2,...,in ∈ K[X1]
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where I is a finite set of (n− 1)-uples of indices, we get

w(F ) = inf
(i2,...,in)∈I

(
u1(fi2,...,in) + (i2 + . . .+ in) · ε

)
.

By applying 5.1 for fi2,...,in in the parenthesis above, we derive exactly the
wanted formula:

w(F ) = inf
(i1,...,in)∈I

(
v̄(fi1,...,in(a)) + i1 · γ + (i2 + . . .+ in) · ε

)
. (5.2)

Let’s now consider case (II). As we discussed at Corollary 4.1, the ex-
tension u1 of v, from K to K(X1), is a r.a.t.-extension. Then the set M1

doesn’t have a maximal element.

Let {δj}j∈J be an increasing sequence of elements in M1, where J is a
countable set and let’s choose, for each j ∈ J , an element aj in K̄, of minimal
degree over K, such that we would have u1(X1 − aj) = δj . Let’s denote by
gj the minimal monic polynomial of aj . Let {u′j}j∈J be the sequence of the
r.t.-extensions from K to K(X1) defined by the minimal pairs (aj , δj). It
follows from [4, Theorem 5.1] that this is an ordered system of r.t.-extensions
that has u1 as limit:

u1(f) =
∑
j∈J

(
u′j(f)

)
, for any f ∈ K(X1).

From Proposition 4.1 we know that there exists ε ∈ G2, an upper bound
of M1 (so ε ≥ δj for each j ∈ J), such that, for any F ∈ K[X1, . . . , Xn]
written as:

F =
∑

(i2,...,in)∈I

fi2,...,in · (X2 −X1)i2 · . . . · (Xn −X1)in , with fi2,...,in ∈ K[X1]

where I is a finite set of (n− 1)-uples of indices, we have:

w(F ) = inf
(i2,...,in)∈I

(
u1(fi2,...,in) + (i2 + . . .+ in)·

)
=

= inf
(i2,...,in)∈I

(
sup
j∈J

(
u′j(fi2,...,in)

)
+ (i2 + . . .+ in) · ε

)
=

= inf
(i2,...,in)∈I

sup
j∈J

(
u′j(fi2,...,in) + (i2 + . . .+ in) · ε

)
.

(5.3)

As u′j1 is dominated by u′j2 for any j1 < j2, the quantity in parenthesis
forms an increasing sequence in Gw, so the infimum commutes with supre-
mum and we may rewrite (5.3):

w(F ) = sup
j∈J

inf
(i2,...,in)∈I

(
u′j(fi2,...,in) + (i2 + . . . , in) · ε

)
.
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For each j ∈ J let wj be the extension of u′j from K(X) to K(X1, . . . , Xn)
defined by:

wj(F ) = inf
(i2,...,in)∈I

(
u′j(fi2,...,in) + (i2 + . . .+ in) · ε

)
.

= inf
(i1,...,in)∈Ij

(
v̄(fi1,...,in(aj)) + i1 · γj + (i2 + . . .+ in) · ε

)

where γj is given by:

γj =
∑

a′∈K̄,gj(a′)=0

inf
(
δj , v̄(a′ − aj)

)
= u′j(gj)

and the set Ij is defined as

Ij = {(i1, . . . , in)/(i2, . . . , in) ∈ I and 0 ≤ i1, (i1 · deg gj) ≤ degfi2,...,in}

since we wrote each fi2,...,in as

fi2,...,in =

ki2,...,in,j∑
i1=0

fi1,i2,...,in · (gj)i1 , where ki2,...,in,j =

⌊
deg
(
fi2,...,in

)
deg(gj)

⌋
.

We obtained, thus, (5.2) for each wj and, since {u′j}j∈J is an ordered system
of r.t.-extensions that has u1 as limit, we conclude that {wj}j∈J is an ordered
system of extensions of type (I) that verifies w = supj∈J wj and all the
extensions in the ordered system have the same value for ε.

2

The following table describes all the possibilities of definition for a sym-
metrically open extension of v, from K to K(X1, . . . , Xn), avoiding the
complex issues with algebraic geometry and specifying the formulas for the
valuation group, the residual field and the properties of the extension of each
identified type.
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# Parameters
Valuation

group
Residual field Properties

1 a, δ Gva,δ+Zγa,δ

kva,δ (χ1, . . . , χn)

χi = ((Xi − a)/bδ)
∗

bδ ∈ K̄, v̄(bδ) = δ

r.t.s.-extension
tr. deg(kw : kv) = n
freedegw = 0

2
a, δ, ε

ε > δ, ε ∈ QGv

Gva,δ +

Zγa,δ + Zε

kva,δ (χ1, ψ2, . . . , ψn)

χ1 = ((X1 − a)/bδ)
∗

bδ ∈ K̄, v̄(bδ) = δ

ψi = ((Xi −X1)/bε)
∗

bε ∈ K̄, v̄(bε) = ε

pure r.t.-extension
tr. deg(kw : kv) = n
freedegw = 0

3
a, δ, ε

ε > δ, ε 6∈ QGv

Gva,δ +

Zγa,δ + Zε

kva,δ (χ1, ψ3, . . . , ψn)

χ1 = ((X1 − a)/bδ)
∗

bδ ∈ K̄, v̄(bδ) = δ

ψi = ((Xi −X1)/(X2 −X1))
∗

tr. deg(kw : kv) = n− 1
freedegw = 1

4
{aj}j , {δj}j , ε

ε > δj , ε ∈ QGv

⋃
j

(
Gvaj,δj

+

Zγaj,δj
+Zε

)
(⋃

kvaj,δj

)
(ψ2, . . . , ψn)

ψi = ((Xi −X1)/bε)
∗

bε ∈ K̄, v̄(bε) = ε

the limit of a #2-sequence
tr. deg(kw : kv) = n− 1
freedegw = 0

5
{aj}j , {δj}j , ε

ε > δj , ε 6∈ QGv

⋃
j

(
Gvaj,δj

+

Zγaj,δj
+Zε

)
(⋃

kvaj,δj

)
(ψ3, . . . , ψn)

ψi = ((Xi −X1)/(X2 −X1))
∗

the limit of a #3-sequence
tr. deg(kw : kv) = n− 2
freedegw = 0

6

a, δ, ε

ε ≥ δ, ε ∈ QG1

G1 = Gva,δ

+Zγa,δ

Gva,δ +

Zγa,δ + Zε

kva,δ (ψ2, . . . , ψn)

ψi = ((Xi −X1)/Fδ)
∗

Fε ∈ K[X1], u1(Fε) = ε

tr. deg(kw : kv) = n− 1
freedegw = 1

7

a, δ, ε

ε ≥ δ, ε 6∈ QG1

G1 = Gva,δ

+Zγa,δ

Gva,δ +

Zγa,δ + Zε

kva,δ (ψ3, . . . , ψn)

ψi = ((Xi −X1)/(X2 −X1))
∗

tr. deg(kw : kv) = n− 2
freedegw = 2
u2-ultrasymmetric
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valuation sur une corp K, Rev. Roumaine Math. Pures Appl., 5 (1988), 393-400.

[2] V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of
residual transcendental extensions of a valuation, J. Math. Kyoto Univ., 24 (1988),
579-592.
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