Characterization of symmetric extensions of a valuation on a field K to $K(X_1, \ldots, X_n)$

CĂTĂLINA VIŞAN

Communicated by Constantin Năstăsescu

Abstract - This paper deals with the characterization of the symmetric valuations on $K(X_1, \ldots, X_n)$. Notions as ultrasymmetric extensions and symmetrically-open extensions are defined. Sufficient conditions for extending the symmetry of a valuation are discussed. The main results are a closed-form expression of the r.t.s.-extensions and a complete classification of the symmetrically-open extensions.

Key words and phrases : valued fields, extensions of valuations, symmetric valuations.

Mathematics Subject Classification (2010) : 12F20, 12J10, 13A18.

1. Introduction

The classification of the extensions of a valuation, from K to $K(X_1, \ldots, X_n)$ (for $n \geq 2$), is still an open problem in algebra, even if the extensions from K to $K(X)$ have been completely analyzed and described in [\[4,](#page-27-0) [7,](#page-27-1) [10\]](#page-27-2) and [\[9\]](#page-27-3). The reason for this is the fact that, when getting with analysis to the second indeterminate (X_2) , one has to face the algebraic closure of the field $K(X_1)$, which raises difficult issues in the domain of algebraic geometry (algebraic functions of one or several indeterminates).

In the paper [\[11\]](#page-27-4), by the same author, it has been defined a special class of extensions of a valuation from K to $K(X_1, \ldots, X_n)$, called symmetrical *valuations*, which treats in an undifferentiated way the n indeterminates and, thanks to this property, allows an analysis that avoids the barrier mentioned above. The main result of that paper was the definition and characterization of the r.t.s.-extensions, which will play a crucial role in this study.

This paper continues the work started in [\[11\]](#page-27-4) by defining the notions of ultrasymmetry and symmetrically-openness, obtaining a complete classification of the r.t.s.-extensions, discussing the extension of the symmetry to an algebraic closure and finally, using all these, giving a complete classification of the symmetrically-open extensions.

2. General notations and definitions

Let K be a field and v a valuation on K. We will write this pair (K, v) . We will denote by k_v the residue field, by G_v the value group, by O_v the valuation ring and by M_v the maximal ideal of v. We will also denote by ρ_v : $O_v \to k_v$ the residual homeomorphism. For $x \in O_v$ we denote by $x^* = \rho_v(x)$, its image in k_v .

Given u and u' two valuations on K, we will say that u is equivalent to u' and write $u \cong u'$, if there exists an isomorphism of order groups $j: G_u \to G'_u$ such that $u' = ju$.

Let K'/K be an extension of fields. We will call a valuation v' on K' an extension of v if $v'(x) = v(x)$ for all x in K. If v' is an extension of v we will canonically identify $k_{v'}$ with a subfield of k_v and G_v with a subgroup of $G_{v^{\prime}}.$

Let (K, v) be a valued field. If we choose \overline{K} an algebraic closure of K and \bar{v} an extension of v to K, then the residual field of \bar{v} will be, in fact, an algebraic closure of k_v and the value group of \bar{v} will be $\mathbf{Q}G_v$, namely the smallest divisible group that contains G_v .

We denote by $K(X)$ the field of rational fractions of an indeterminate X over K and with $K[X]$ the ring of polynomials of an indeterminate X over K.

Let u be an extension of v to $K(X)$. We will say that u is a residualtranscendental extension (*r.t.- extension*) if k_u/k_v is a transcendental extension of fields. When not, but we still have $G_u \subseteq \mathbf{Q}G_v$, we will say that u is a residual-algebraic torsion extension (r.a.t.-extension) and when $G_u \not\subset \mathbf{Q}G_v$, we will say that u is a residual-algebraic free extension $(r.a.f.-extension)$. Additional information to this classification may be found in [\[4\]](#page-27-0).

In [\[11\]](#page-27-4) a *symmetric valuation* (with respect to X_1, \ldots, X_n) was defined as a valuation w on $K(X_1, \ldots, X_n)$, $n \geq 2$, such that, given any permutation π of $\{1, 2, \ldots, n\}$ and any $f \in K(X_1, \ldots, X_n)$, we have

$$
w(f(X_1, X_2, \ldots, X_n)) = w(f(X_{\pi(1)}, X_{\pi(2)}, \ldots, X_{\pi(n)})).
$$

In this case we denote by $\pi f(X_1, X_2, ..., X_n) = f(X_{\pi(1)}, X_{\pi(2)}, ..., X_{\pi(n)}),$ the automorphism $f \to \pi f$ of $K(X_1, \ldots, X_n)$ that leaves the symmetric fractions of polynomials in $K(X_1, \ldots, X_n)$ unchanged.

Let w be a symmetric valuation on $K(X_1, \ldots, X_n)$. Let $K(X_1, \ldots, X_n)$ be an algebraic closure of $K(X_1, \ldots, X_n)$ and \overline{w} an extension of w from $K(X_1, ..., X_n)$ to $K(X_1, ..., X_n)$.

We say that \bar{w} extends the symmetry of w if, for any partition of $\{1, 2, \ldots, n\} = \{i_1, i_2, \ldots, i_m\} \cup \{j_1, j_2, \ldots, j_{n-m}\}\$, with $0 \leq m < n$, the restriction of \bar{w} to $K(X_{i_1},\ldots,X_{i_m})(X_{j_1},\ldots,X_{j_{n-m}})$ is symmetric with respect to $X_{j_1}, \ldots, X_{j_{n-m}}$, where $K(X_{i_1}, \ldots X_{i_m})$ is the closure of $K(X_{i_1}, \ldots X_{i_m})$ in $\overline{K(X_1,\ldots,X_n)}$. For such an extension we denote by:

$$
\delta_a := \overline{w}(X - a), \text{ for any } a \in \overline{K}, \text{ where } X \text{ is arbitrarily} chosen from } X_1, \dots, X_n; \mathcal{M}_{\overline{w}} := {\delta_a/a \in \overline{K}};
$$

and for any i, such that $0 \leq i \leq n$, we denote by:

 $K_i := K(X_1, \ldots, X_i)$, with the convention $K_0 = K$; $u_i :=$ the restriction of w to K_i , with the conventions $u_0 = v, u_n = w;$

 O_i, G_i , resp. $k_i :=$ the valuation ring, the valuation group,

resp. residual field of u_i ;

$$
\mathcal{M}_i := \left\{ \overline{w}(X_i - \rho) / \rho \in \overline{K(X_1, \ldots, X_{i-1})} \right\}, \text{ for } i \geq 1.
$$

We call the *freedom degree* of the extension w (with respect to v) the quantity

$$
f{\rm reedge }w={\rm card}\{i\in\{1,\ldots,n\}/G_i\cap {\bf Q}G_{i-1}\neq G_i\}.
$$

and we notice, due to [\[4\]](#page-27-0), that freedeg w represents the number of intermediate extensions from v on K to w on $K(X_1, \ldots, X_n)$ that are residualalgebraic free and this number is independent on the order the indeterminates X_1, \ldots, X_n are taken into account.

Following [\[11,](#page-27-4) Theorem 4.3 and Corollary 4.4], we have several equivalent definitions for a residual-transcendental simple extension $(r.t.s.-extension)$, when speaking about a symmetric extension w , of v from K to $K(X_1, \ldots, X_n)$, a fixed algebraic closure $\overline{K(X_1, \ldots, X_n)}$ and \overline{w} an extension of w from $K(X_1, \ldots, X_n)$ to $\overline{K(X_1, \ldots, X_n)}$ that extends the symmetry of w ; namely, we say that w is residual-transcendental simple if and only if any of the following conditions is ensured:

(2.1) u_1 is a r.t.-extension of v to K_1 and $\chi_1, \chi_2, \ldots, \chi_n$ are algebraically independent over k_v , where, for all i, χ_i is a generator of the transcendence of the residue field of $w|_{K(X_i)}$;

(2.2) tr.deg($k_w : k_v$) = n and $\chi_1, \chi_2, \ldots, \chi_n$ are algebraically independent over k_v , where, for all i, χ_i is a generator of the transcendence of the residue field of $w|_{K(X_i)}$;

(2.3) freedeg(w) = 0 and sup \mathcal{M}_n exists and is contained in \mathcal{M}_1 ;

(2.4) there exists $a \in \overline{K}$ and $\delta \in \mathbf{Q}G_v$ such that, for any $F \in \overline{K}[X_1, \ldots, X_n]$ written as $F = \sum$ $(i_1,...,i_n)∈I$ $a_{i_1,...,i_n} \cdot (X_1 - a)^{i_1} \cdot (X_2 - a)^{i_2} \cdot \ldots \cdot (X_n - a)^{i_n},$

with I a finite set of *n*-tuples of indices, we get

$$
\bar{w}(F) = \inf_{(i_1,...,i_n)\in I} (\bar{v}(a_{i_1,...,i_n}) + (i_1 + ... + i_n) \cdot \delta).
$$

(2.5) there exists $a \in \overline{K}$ and $\delta \in \mathbf{Q}G_v$ such that the following two conditions are satisfied:

- (i) $w(X_i X_1) = \delta$, for all $i \in \{2, ..., n\}$;
- (ii) when we denote:

$$
g \in K[X]
$$
 the minimal monic polynomial of a ;
 v' an extension of v la $K(a)$;

$$
\gamma := \sum_{\substack{a' \in \bar{K} \\ g(a') = 0}} inf(\delta, v'(a' - a));
$$

then for any $F \in K[X_1,\ldots,X_n]$ written as:

$$
F = \sum_{(i_1,\ldots,i_n)\in I} f_{i_1,\ldots,i_n}(X_1) \cdot g(X_1)^{i_1} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n}
$$

with deg f_{i_1,\dots,i_n} < deg g and I a finite set of n-tuples of indices, we get:

$$
w(F) = \inf_{(i_1,...,i_n)\in I} \left(v'(f_{i_1,...i_n}(a)) + i_1 \cdot \gamma + (i_2 + ... i_n) \cdot \delta \right).
$$

For $n = 1$ we will consider any extension as being, trivially, a r.t.s.extension.

With the following additional notations:

 $e = e(\gamma, K(a))$, the smallest positive integer such that $e \cdot \gamma \in G_v$; $h \in K[X]$ such that $\deg h < \deg g$ and $v'(h(a)) = e \cdot \gamma$ (X is here generic); $r_i = g(X_i)^e / h(X_i)$, which is an element $K(X_i)$; $\chi_i = r_i^*$, the class r_i within the residue field of w $|_{K(X_i)}$;

we get, from [\[11,](#page-27-4) Corollary 4.5], that:

$$
G_n = G_{v'} + \mathbf{Z}\gamma \subseteq \mathbf{Q}G_v;
$$

$$
k_n = k_{v'}(\chi_1, \dots, \chi_n).
$$

3. Characterization of r.t.s.-extension

Before discussing about the r.t.s.-extensions, we will analyze a simple type of symmetric extensions namely the Gaussian valuation w , which extends an arbitrary valuation v from K to $K(X_1, \ldots, X_n)$ in such a way that, for $F \in K[X_1,\ldots,X_n]$ written as

$$
F = \sum_{(i_1, \dots, i_n) \in I} a_{i_1, \dots, i_n} \cdot X_1^{i_1} \cdot \dots \cdot X_n^{i_n}, \text{ with } a_{i_1, \dots, i_n} \in K
$$

where I is a finite set of *n*-uples of indices, we get:

$$
w(F) = \inf_{(i_1,\dots,i_n)\in I} \left(v(a_{i_1,\dots,i_n}) \right).
$$

Proposition 3.1. The Gaussian valuation w, that extends an arbitrary valuation v from K to $K(X_1, \ldots, X_n)$ has the following properties:

 $(P3.1.1)$ w is symmetric and $w = 0$;

 $(P3.1.2)$ w is trivial if and only if v is trivial;

(P3.1.3) The restriction w^e of w to $K(e_1^{(n)})$ $\binom{n}{1},\ldots,\allowbreak e_{n}^{(n)}$) is also Gaussian so it is itself symmetric and isomorphic with w, as extensions of v to two isomorphic fields.

Proof. Statements [\(P3.1.1\)](#page-4-0) and [\(P3.1.2\)](#page-4-1) are obvious, so we will take care only of [\(P3.1.3\)](#page-4-2).

Indeed, if we wrote the same symmetric polynomial in the two fields:

$$
F^{e}(e_1^{(n)}, \ldots, e_n^{(n)}) = \sum_{\substack{(i_1, \ldots, i_n) \in I}} a_{i_1, i_2, \ldots, i_n} \left(e_1^{(n)}\right)^{i_1} \cdot \ldots \cdot \left(e_1^{(n)}\right)^{i_n}
$$

$$
= \sum_{\substack{(j_1, \ldots, j_n) \in J}} b_{j_1, j_2, \ldots, j_n} X_1^{j_1} \cdot \ldots \cdot X_n^{j_n}
$$

$$
= F(X_1, \ldots, X_n)
$$

then each $a_{i_1,i_2,...,i_n}$ is a linear combination of $b_{j_1,j_2,...,j_n}$, weighted by integer values, but also reversely, so we have:

$$
w^{e}(F^{e}) \ge \inf_{(j_{1},...,j_{n})\in J} (v(b_{j_{1},j_{2},...,j_{n}})) = w(F)
$$

$$
\ge \inf_{(i_{1},...,i_{n})\in I} (v(a_{i_{1},i_{2},...,i_{n}})) = w^{e}(F^{e})
$$

therefore $w^e(F^e)$ is the Gaussian valuation on $K(e_1^{(n)})$ $\binom{n}{1}, \ldots, e_n^{(n)}$, which extends K .

Now we can move on to the r.t.s.-extensions, which appear as a generalization of the Gaussian ones. However, before a complete characterization of these, we need two preliminary results.

Lemma 3.1. An extension w on $K(X_1, \ldots, X_n)$ of a valuation v on K, with $n \geq 2$, is symmetric if and only if, for each i with $1 \leq i \leq n-1$, w is symmetric with respect to X_i , X_n .

Proof. " \Rightarrow ": The assertion is obvious.

" \Leftarrow ": For $n = 2$ the statement is also obvious. Therefore, let's consider $n > 2$. Let π be a permutation of the set $\{1, 2, ..., n\}$. By denoting with π_{ij} the inversions (when $i \neq j$) or the identity (when $i = j$), we may write

$$
\pi = \bigcap_{\substack{i=1 \ i \neq j}}^{n-1} (\pi_{i,j_i}) = \bigcap_{\substack{i=1 \ i \neq j}}^{n-1} (\pi_{n,i} \circ \pi_{n,j_i} \circ \pi_{n,i}) = \bigcap_{k=1}^{3(n-1)} (\pi_{n,i_k})
$$

with $\{j_i\}$ and $\{i_k\}$ two arrays of indices conveniently chosen. From the hypothesis we know that, for each i and any $f \in K(X_1, \ldots, X_n)$, we have $w(f) = w(\pi_{n,i}f)$. We conclude that:

$$
w(\pi f) = w\left(\begin{pmatrix} 3(n-1) \\ 0 \\ k=1 \end{pmatrix} \pi_{n,i_k} \right) f \right) = w\left(\pi_{n,i_1}\left(\begin{pmatrix} 3(n-1) \\ 0 \\ k=2 \end{pmatrix} \pi_{n,i_k} \right) \right)
$$

$$
= w\left(\begin{pmatrix} 3(n-1) \\ 0 \\ k=2 \end{pmatrix} \pi_{n,i_k} \right) f \right) = \dots = w(f)
$$

Proposition 3.2. Let w be an extension of v from K to $K(X_1, \ldots, X_n)$ such that there exist $a \in \overline{K}$ and two values $\delta, \epsilon \in \mathbf{Q}G_v$ with $\delta \leq \epsilon$, ensuring the following three conditions

- i) (a, δ) is a minimal pair of definition with respect to K and v;
- *ii*) $w(X_i X_1) = \epsilon$, for each $i \in \{2, ..., n\}$;
- iii) when we denote by:

 $g \in K[X]$ the minimal monic polynomial of a;

$$
v' - extension of v to K(a);
$$

$$
\gamma := \sum_{\substack{a' \in \bar{K} \\ g(a') = 0}} inf(\delta, v'(a' - a));
$$

we have that, for all $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_1,\ldots,i_n)\in I} f_{i_1,\ldots,i_n}(X_1)^{i_1} \cdot g(X_1)^{i_1} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n},
$$

with deg f_{i_1,\dots,i_n} < deg g and I a finite set of n-tuples of indices, we get:

$$
w(F) = \inf_{(i_1,...,i_n)\in I} \bigl(v'(f_{i_1,...,i_n}(a)) + i_1 \cdot \gamma + (i_2 + \dots + i_n) \cdot \epsilon \bigr).
$$

In these circumstances, w is a symmetric valuation on $K(X_1, \ldots, X_n)$ and, given $\overline{K(X_1,\ldots,X_n)}$ an algebraic closure of $K(X_1,\ldots,X_n)$ and \overline{w} an extension of w from $K(X_1, \ldots, X_n)$ to $\overline{K(X_1, \ldots, X_n)}$, we extends the symmetry of w.

Proof. Let's prove, first, that w is symmetric. According to Lemma [3.1,](#page-4-3) in order to prove that w is symmetric it is enough to show that w is symmetric with respect to X_1, X_n , because for the rest of the pairs this fact is obvious.

Let, therefore, $F \in K[X_1, \ldots, X_n]$ written as in iii), but let's put

$$
g_{i_2,\dots,i_n}(X_1) = \sum_{i_1 \text{ such that } (i_1,\dots,i_n) \in I} f_{i_1,\dots,i_n}(X_1) \cdot g(X_1)^{i_1}.
$$

so F becomes:

$$
F = \sum_{(\bullet, i_2, \dots, i_n) \in I} g_{i_2, \dots, i_{n-1}, i_n}(X_1) \cdot (X_2 - X_1)^{i_2} \cdot \dots \cdot (X_n - X_1)^{i_n} \qquad (3.1)
$$

and we have:

$$
w(F) = \inf_{(\bullet, i_2, \ldots, i_n) \in I} \bigl(u_1(g_{i_2, \ldots, i_n}) + (i_2 + \ldots + i_n) \cdot \epsilon \bigr).
$$

Now let's analyze the polynomial $\pi F \in K[X_1, \ldots, X_n]$, obtained from F by inverting X_n with X_1 . Let's consider an arbitrary ω that extends w on $K(X_1, \ldots, X_n)$. We have:

$$
w(\pi F) = w \left(\sum_{(\bullet, i_2, \dots, i_{n-1}, i_n) \in I} g_{i_2, \dots, i_{n-1}, i_n}(X_n) \cdot (X_2 - X_n)^{i_2} \cdot \dots \cdot \left((X_{n-1} - X_n)^{i_n} \cdot (X_1 - X_n)^{i_n} \right) \right)
$$

that may be written further, denoting by J_{i_2,\dots,i_n} the set $\{1,\dots,\deg g_{i_2,\dots,i_n}\},$ with $r_{i_2,\dots,i_n;j}$ being the roots of $g_{i_2,\dots,i_{n+1}}$, where $j \in J_{i_2,\dots,i_n}$ and with a_{i_2,\dots,i_n} being the coefficient of the term with the maximal degree:

$$
w(\pi F) = \omega \left(\sum_{(\bullet, i_2, ..., i_{n-1}, i_n) \in I} \left(a_{i_2, ..., i_n} \cdot \left(\prod_{j \in J_{i_2, ..., i_n}} (X_n - r_{i_2, ..., i_n; j}) \right) \cdot (X_2 - X_n)^{i_2} \cdot \ldots \cdot (X_1 - X_n)^{i_n} \right) \right)
$$

and from this, having $X_n - r_{i_2,...,i_n;j} = X_n - X_1 + X_1 - r_{i_2,...,i_n;j}$, we get:

$$
w(\pi F) = \omega \left(\sum_{(\bullet, i_2, ..., i_n) \in I} \sum_{H \subset J_{i_2, ..., i_n}} \left(a_{i_2, ..., i_n} \cdot \left(\prod_{j \in J_{i_2, ..., i_n} - H} (X_1 - r_{i_2, ..., i_n; j}) \right) \cdot (X_2 - X_n)^{i_2} \cdot \dots \cdot (X_1 - X_n)^{i_n + card(H)} \right) \right)
$$
(3.2)

Considering the fact that, for each $i \neq j \in \{1, ..., n\}$ and any $r \in \overline{K}$, we get

$$
w(X_i - X_j) = w(X_i - X_1 + X_1 - X_j) = \epsilon \ge \delta = \omega(X_1 - r)
$$

it may be derived that each term of the double summation in [\(3.2\)](#page-7-0) has the valuation greater or equal to $w(F)$:

$$
\omega \left(a_{i_2,...,i_n} \cdot \left(\prod_{j \in J_{i_2,...,i_n} - H} (X_1 - r_{i_2,...,i_n;j}) \right) \cdot (X_2 - X_n)^{i_2} \cdot \ldots \cdot (X_1 - X_n)^{i_n + card(H)} \right) \ge
$$

$$
\omega \left(a_{i_2,...,i_n} \cdot \left(\prod_{j \in J_{i_2,...,i_n}} (X_1 - r_{i_2,...,i_n;j}) \right) \cdot (X_2 - X_n)^{i_2} \cdot \ldots \cdot (X_1 - X_n)^{i_n} \right) =
$$

$$
w(g_{i_2,...,i_n} \cdot (X_2 - X_n)^{i_2} \cdot \ldots \cdot (X_1 - X_n)^{i_n}) =
$$

$$
u_1(g_{i_2,...,i_n} + (i_2 + ... + i_n) \cdot \epsilon) w(F)
$$

We deduce, therefore, that $w(\pi F) \geq w(F)$. We are left with proving the reverse inequality.

Out of the terms of F, whose valuation is equal to $w(F)$, let's choose one of minimal degree in X_n :

$$
g_{l_2,\dots,l_{n-1},l_n} \cdot (X_2 - X_1)^{l_2} \cdot \dots \cdot (X_{n-1} - X_1)^{l_{n-1}} \cdot (X_n - X_1)^{l_n},
$$
 with

$$
w(F) = u_1(g_{l_2,\dots,l_{n-1},l_n}) + (l_2 + \dots + l_{n-1} + l_n) \cdot \epsilon
$$
 and

$$
l_n
$$
 is minimal having this property.

Now we need to write also πF in the form [\(3.1\)](#page-6-0). In order to do that, we will need to put:

$$
X_n - r_{i_2,\dots,i_n;j} = (X_n - X_1) + (X_1 - r_{i_2,\dots,i_n;j})
$$
 and

$$
X_i - X_n = (X_i - X_1) + (X_1 - X_n)
$$
 for $2 \le i < n$

and to perform the replacement in [\(3.2\)](#page-7-0). It is not necessary to perform all the calculations, as we are interested only in those terms that get summed up for the $(n-1)$ -uple (l_2, \ldots, l_n) , meaning those that are identified by:

$$
F_{l_1,\dots,l_n,i_2,\dots,i_n,H} =
$$

$$
a_{i_2,\dots,i_n} \cdot \left(\prod_{j \in J_{i_2,\dots,i_n-H}} (X_1 - r_{i_2,\dots,i_n;j}) \right) \cdot (X_2 - X_1)^{l_2} \cdot \dots
$$

$$
\cdot (X_{n-1} - X_1)^{l_{n-1}} \cdot (X_n - X_1)^{l_n} \cdot (-1)^{l_n}
$$

with $i_2 \geq l_2, \ldots, i_{n-1} \geq l_{n-1}, i_n \leq l_n, H \subseteq J_{i_2, \ldots, i_n}$ and $i_n + i_2 - l_2 + \ldots + l_n$ $i_{n-1} - l_{n-1} + \text{card}(H) = l_n.$

If we denote by \bar{u}_1 the restriction of ω to $\bar{K}(X_1)$, then we have:

$$
\omega(F_{l_2,\dots,l_n,i_2,\dots,i_n,H}) =
$$

$$
v(a_{i_2,\dots,i_n}) + \sum_{j \in J_{i_2,\dots,i_n}-H} \bar{u}_1(X_1 - r_{i_2,\dots,i_n}) + (i_2 + \dots + i_n + \text{card}(H)) \cdot \epsilon \ge
$$

$$
v(a_{i_2,\dots,i_n}) + \sum_{j \in J_{i_2,\dots,i_n}} \bar{u}_1(X_1 - r_{i_2,\dots,i_n}) + (i_2 + \dots + i_n) \cdot \epsilon =
$$

$$
u_1(g_{i_2,\dots,i_n}) + (i_2 + \dots + i_n) \cdot \epsilon \ge w(F)
$$

with the last inequality being strict when $i_n < l_n$. This means that there exists one and only one term equal to $w(F)$ among those that get summed up for the $(n - 1)$ -uple $(l_2, ..., l_n)$, namely $F_{l_2,...,l_n,l_2,...,l_n,\phi}$.

We get, thus, the reverse inequality:

$$
w(\pi F) = \inf_{(\bullet, l_2, ..., l_n) \in I} \omega \left(\sum_{i_2, ..., i_n, H} F_{l_2, ..., l_n, i_2, ..., i_n, H} \right) = w(F)
$$

so w is symmetric with respect to X_1, \ldots, X_n .

Now we notice from iii) that (a, δ) is a minimal pair of definition for u_1 (the restriction of w to $K(X_1)$) and, from [\[5,](#page-27-5) V-Entiers, §6,10], we get that u_1 is a residual-transcendental extension. Moreover, for each $i \in \{2, \ldots, n\},$ we have $\deg_{X_i} X_1 = 1$, so (X_1, ϵ) is a minimal pair of definition with respect to $K(X_1, \ldots, X_{i-1})$ and u_{i-1} (the restriction of w to $K(X_1, \ldots, X_{i-1})$), which leads to the fact that all the intermediary extensions u_i are residualtranscendental.

Let's fix $L = \overline{K(X_1, \ldots, X_n)}$ an algebraic closure of $K(X_1, \ldots, X_n)$ that extends \overline{K} from the hypothesis. We shall prove, by induction by n, that for any \bar{w} , an extension of w from $K(X_1, \ldots, X_n)$ to L, we get \bar{w} extending the symmetry of w. Let K be the closure of K in L, \bar{u}_2 an extension of u_2 to $K(X_1, X_2)$, \bar{u}_1 its restriction to $K(X_1)$ which, obviously, extends u_1 and

 \bar{v} its restriction to \bar{K} . As (X_1, ϵ) is a minimal pair of definition of u_2 , we derive that, for any $F \in K(X_1)[X_2]$ written as

$$
F = \sum_{i_2 \in I_2} \rho_{i_2} (X_2 - X_1)^{i_2}, \text{ with } \rho_{i_2} \in \overline{K(X_1)}
$$

with I_2 a set of indices, we have

$$
\bar{u}_2(F) = \inf_{i_2 \in I_2} (\bar{u}_1(\rho_{i_2} + i_2 \cdot \epsilon).
$$

which means that, for any $F \in \overline{K}[X_1, X_2]$ written as

$$
F = \sum_{(i_1, i_2) \in I_{1,2}} a_{i_1, i_2} (X_1 - a)^{i_1} (X_2 - X_1)^{i_2}, \text{ with } a_{i_1, i_2} \in \overline{K}
$$

where $I_{1,2}$ is a set of pairs of indices, we get

$$
\bar{u}_2(F) = \inf_{(\bullet, i_2) \in I_{1,2}} \left(\bar{u}_1 \left(\sum_{i_1 \text{ such that } (i_1, i_2) \in I_{1,2}} a_{i_1, i_2} (X_1 - a)^{i_1} \right) + i_2 \cdot \epsilon \right)
$$

and, since \bar{u}_1 extends u_1 which is a r.t.-extension, we have

$$
\bar{u}_2(F) = \inf_{(\bullet, i_2) \in I_{1,2}} \left(\inf_{i_1 \text{ such that } (i_1, i_2) \in I_{1,2}} (\bar{v}(a_{i_1, i_2}) + i_1 \cdot \delta) + i_2 \cdot \epsilon \right)
$$

=
$$
\inf_{(i_1, i_2) \in I_{1,2}} (\bar{v}(a_{i_1, i_2}) + i_1 \cdot \delta + i_2 \cdot \epsilon)
$$

Now let's analyze the polynomial $\pi F \in K[X_1, X_2]$, obtained from F by inverting X_2 with X_1 . We have:

$$
\pi F = \sum_{(i_1, i_2) \in I_{1,2}} a_{i_1, i_2} (X_2 - a)^{i_1} (X_1 - X_2)^{i_2} =
$$
\n
$$
\sum_{(i_1, i_2) \in I_{1,2}} \sum_{k=0}^{i_1} (-1)^{i_2} a_{i_1, i_2} C_{i_1}^k (X_1 - a)^{i_1 - k} (X_2 - X_1)^{k + i_2} =
$$
\n
$$
\sum_{l \ge 0} \left(\sum_{\substack{k, i_2 \ge 0 \\ k + i_2 = l}} (-1)^{i_2} \left(\sum_{i_1 \ge k} a_{i_1, i_2} C_{i_1}^k (X_1 - a)^{i_1 - k} \right) \right) \cdot (X_2 - X_1)^l =
$$
\n
$$
\sum_{l \ge 0} \left(\sum_{\substack{k \ge 0 \\ k \ge 0}} \left(\sum_{\substack{(i_1, i_2) \in I_{1,2} \\ i_1 + i_2 = l + h}} (-1)^{i_2} a_{i_1, i_2} C_{i_1}^h \right) \cdot (X_1 - a)^h \right) \cdot (X_2 - x_1)^l.
$$

In order to have $(X_1 - a)^h (X_2 - X_1)^l$ appearing in πF , there must exist a pair $(i_1, i_2) \in I_{1,2}$ featuring $i_1 \geq h$ and $i_1 + i_2 = l + h$, so $i_1 \leq l$. Out of these, let's choose the pair (j_1, j_2) for which $\bar{v}(a_{j_1, j_2} C_{j_1}^h)$ is minimal. Since $\delta \leq \epsilon$ and $\bar{v}(C_{j_1}^h)$ we derive

$$
\bar{u}_2\left(\sum_{\substack{(i_1,i_2)\in I_{1,2}\\(i_1+i_2=l+h)\\i_1\geq h}}(-1)^{i_2}a_{i_1,i_2}C_{i_1}^h(X_1-a)^h(X_2-X_1)^l\right)\geq \bar{v}(a_{j_1,j_2})+j_1\cdot \delta +j_2\cdot \epsilon
$$

for any l and h, so $\bar{u}_2(\pi F) \ge \bar{u}_2(F)$.

By choosing $(h', l') \in I_{1,2}$ such that $\bar{u}_2(F) = \bar{v}(a_{h',l'}) + h' \cdot \delta + l' \cdot \epsilon$ and such that h' is maximal with this property we notice that, among the terms that compose the coefficient of $(X_1 - a)^{h'} (X_2 - X_1)^{l'}$, there exists one and only one equal to $\bar{u}_2(F)$, namely the one having $i_1 = h'$ and $i_2 = l'$.

It follows that $\bar{u}_2(\pi F) = \bar{u}_2(F)$, for any $F \in K(X_1)[X_2]$, so \bar{u}_2 extends the symmetry of u_2 .

Let's move on to the induction step and let's consider the target statement true for any $n' < n$. Let \bar{w} be an extension of w from $K(X_1, \ldots, X_n)$ to L, an integer m such that $0 \leq m < n$ and a partition of $\{1, 2, ..., n\}$ ${k_1, k_2, \ldots, k_m} \cup {l_1, l_2, \ldots, l_{n-m}}.$ Let's denote by \bar{u} the restriction of \bar{w} to $K(X_{k_1},\ldots,X_{k_m})(X_{l_1},\ldots,X_{l_{n-m}})$, where $K(X_{k_1},\ldots,X_{k_m})$ is the closure of $K(X_{k_1},...,X_{k_m})$ in L. We shall prove that \bar{u} is symmetric with respect to $X_{l_1}, \ldots, X_{l_{n-m}}$. There are two cases, depending on the value of m.

If $m > 0$, as w is symmetric, we know that, for any $F \in K[X_1, \ldots, X_n]$ written as

$$
\sum_{(i_1,\ldots,i_n)\in I} f_{i_1,\ldots,i_n}(X_{k_1})\cdot g(X_{k_1})^{i_1}\cdot (X_{k_2}-X_{k_1})^{i_2}\cdot \ldots \cdot (X_{k_m}-X_{k_1})^{i_m}.
$$

$$
(X_{l_1}-X_{i_1})^{i_{m+1}}\cdot \ldots \cdot (X_{l_{n-m}}-X_{k_1})^{i_n},
$$

with deg f_{i_1,\dots,i_n} < deg g and I a finite set of n-uples of indices, we get:

$$
w(F) = \inf_{(i_1, ..., i_n) \in I} \bigl(v'(f_{i_1, ..., i_n}(a)) + i_1 \cdot \gamma + (i_2 + ... + i_n) \cdot \epsilon \bigr).
$$

Again, all the intermediary extensions are r.t.-extensions so, as above, for any polynomial $G \in K(X_{k_1}, \ldots, X_{k_m})(X_{l_1}, \ldots, X_{l_{n-m}})$ written as

$$
\sum_{(i_{m+1},...,i_n)\in J} \eta_{i_{m+1},...,i_n} \cdot (X_{l_1}-X_{k_1})^{i_{m+1}} \cdot \ldots \cdot (X_{l_{n-m}}-X_{k_1})^{i_n},
$$

with $\eta_{i_{m+1},...,i_n} \in K(X_{k_1},...,X_{k_m}).$

But we are now verifying the conditions of the induction hypothesis, with $n' = n - m < n, \delta' = \epsilon$ and the minimal monic polynomial of X_{k_1} being $g' \in \overline{K(X_{k_1},\ldots,X_{k_m})}[X]$ with $g'(X) = X - X_{k_1}$ so, applying the induction hypothesis, it follows that \bar{u} is symmetric with respect to $X_{l_1}, \ldots, X_{l_{n-m}}$.

Finally, when $m = 0$, Lemma [3.1](#page-4-3) allows us to verify the symmetry, successively, only against two indeterminates, which reduces the analysis of this case to the one above. \Box

Corollary 3.1. An extension w, of v from K to $K(X_1, \ldots, X_n)$, is a r.t.s. extension if and only if hypothesis [\(2.5\)](#page-3-0) holds, namely there exists $a \in K$ and $\delta \in \mathbf{Q}G_v$ such that the following conditions are true:

$$
i) w(X_i - X_1) = \delta, \text{ for all } i \in \{2, \ldots, n\};
$$

ii) when we denote by:

 $g \in K[X]$ the minimal monic polynomial of a;

 v' an extension of v to $K(a)$;

$$
\gamma := \sum_{\substack{a' \in \bar{K} \\ g(a') = 0}} \inf(\delta, v'(a' - a));
$$

then, for any $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_1,\ldots,i_n)\in I} f_{i_1,\ldots,i_n}(X_1) \cdot g(X_1)^{i_1} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n},
$$

with deg f_{i_1,\dots,i_n} < deg g with I is a finite set of n-tuples of indices, we get:

$$
w(F) = \inf_{(i_1,\dots,i_n)\in I} \bigl(v'(f_{i_1,\dots,i_n}(a)) + i_1 \cdot \gamma + (i_2 + \dots i_n) \cdot \delta\bigr).
$$

In particular, the Gaussian extension verifies the conditions required by Proposition [3.2](#page-5-0), by having $a = 0$ and $\delta = \epsilon = 0$, so it is a particular case of a r.t.s.-extension.

4. Ultrasymmetric extensions and symmetrically-open extensions

Definition 4.1. A valuation w on $K(X_1, \ldots, X_n)$, with $n \geq 2$, is called ultrasymmetric (with respect to X_1, \ldots, X_n) if, for any permutation π of the set $\{1, 2, \ldots, n\}$ and any $f \in K(X_1, \ldots, X_n)$, we have: $w(f) \geq 0 \Leftrightarrow$ $w(\pi f) \geq 0$ and, when both inequalities are strict, we have $f^* = (\pi f)^*$ in k_w .

Observations:

(D4.1.1) An ultrasymmetric valuation is always symmetric but the reciprocal is not true. Indeed, let's suppose *(reductio ad absurdum)* that w is ultrasymmetric and, at the same time, there exists $f \in K(X_1, \ldots, X_n)$ such that $w(f) < w(\pi f)$. We can assume, without any loss of generality, that $w(f)$ and $w(\pi f)$ are minimal with this property among the permutations of f. Then we have two cases:

(i)
$$
w(f) = w(\pi^{-1}f) < w(\pi f)
$$
, so $w(f/\pi f) < 0 = w(\pi^{-1}f/f)$

(ii)
$$
w(f) < w(\pi f) \le w(\pi^{-1}f)
$$
, so $w(f/\pi f) < 0 < w(\pi f/f) \le w(\pi^{-1}f/f)$.

and in both cases the ultrasymmetry of f is invalidated, since $w(\pi^{-1}f/f) =$ $w(\pi^{-1}(f/\pi f)).$

On the other hand, the following example shows that the reciprocal is not true: let w be the trivial valuation on $K(X_1, \ldots, X_n)$, with $n \geq 2$, that extends the trivial valuation on K. In this case, $a = 0$, $\delta = 0$ and k_n is isomorphic with K_n , so we might say that $f^* = f$ for any $f \in K(X_1, \ldots, X_n)$. From:

$$
X_1^* = X_1 \neq X_2 = X_2^*
$$

we can see immediately that the extension, although symmetric, is not ultrasymmetric.

(D4.1.2) A r.t.s.-extension with respect to X_1, \ldots, X_n , with $n \geq 2$, is not ultrasymmetric.

(D4.1.3) The Gaussian valuation, for $n \geq 2$, is not ultrasymmetric. Indeed, $w(X_i - X_j) = 0$, so $X_i^* \neq X_j^*$, for any different i, j in $\{1, 2, ..., n\}$.

Definition 4.2. An extension w, of a valuation v from K to $K(X_1, \ldots, X_n)$, symmetric with respect to X_1, \ldots, X_n , is called symmetrically-open (with respect to X_1, \ldots, X_n) if, adding any number of other indeterminates (elements transcendental and algebraically independent over $K(X_1, \ldots, X_n)$, $X_{n+1},\ldots,X_{n+r,}$ there exists a symmetric extension of it to $K(X_1,\ldots,X_{n+r})$ with respect to X_1, \ldots, X_{n+r} .

Observations:

 $(D4.2.1)$ If w is symmetrically-open with respect to X_1, \ldots, X_n , with $n \geq 2$, then it is symmetrically-open with respect to X_1, \ldots, X_i , for $i < n$. The dual statement will be proved later.

(D4.2.2) Any r.t.s.-extension is symmetrically-open; in particular, any Gaussian extension is symmetrically-open. This means that, if we formally extend the definition above for $n = 0$, we can say that any extension is (trivially) symmetrically-open with respect to the void set.

The next proposition prepares the classification of the symmetrical extensions in a simple way, as it was promised in the introduction. In essence, it states that a symmetrically-open extension cannot have complete freedom in its construction, except for the first intermediary extension, namely the one from K to $K(X_1)$.

But, first, we need an important lemma to regulate the extension of the symmetry to the algebraic closure.

Lemma 4.1. Let w be an extension of v from K to $K(X_1, \ldots, X_n)$, symmetrically open with respect to X_1, \ldots, X_n and a fixed algebraic closure $K(X_1, \ldots, X_n)$ of $K(X_1, \ldots, X_n)$. Consider a partition

$$
\{1,2,\ldots,n\} = \{i_1,i_2,\ldots,i_m\} \cup \{j_1,j_2,\ldots,j_{n-m}\},\
$$

with $0 \leq m < n$, then put $L := K(X_{i_1}, \ldots, X_{i_m})$ and denote with Y_1, \ldots, Y_k the indeterminates $X_{j_1}, \ldots X_{j_{n-m}}$ (where $k = n - m$). Let's choose an infinite array of elements, Y_{k+1}, Y_{k+2}, \ldots , that are transcendental and algebraic independent over the field $L(Y_1, \ldots, Y_k)$. Then:

(L4.1.1) For any L', normal finite extension of L, there exists $r \geq k+1$ and an extension ω of w to $L(Y_1, \ldots, Y_r)$, symmetric with respect to X_{i_1}, \ldots, X_{i_m} , Y_1, \ldots, Y_r , such that, given any extension ω' of ω to $L'(Y_1, \ldots, Y_r)$, we get ω' symmetric with respect to Y_1, \ldots, Y_r .

(L4.1.2) Any extension \bar{w} of w to $\overline{K(X_1, \ldots, X_n)}$ also extends the symmetry of w.

Proof. [\(L4.1.1\)](#page-13-0) Let's suppose (reduction ad absurdum) that for any $r \geq$ $k+1$ and any extension ω of w to $L(Y_1, \ldots, Y_r)$, symmetric with respect to $X_{i_1}, \ldots, X_{i_m}, Y_1, \ldots, Y_r$, there exists ω' , an extension of ω to $L'(Y_1, \ldots, Y_r)$, such that ω' is not symmetric with respect to Y_1, \ldots, Y_r .

Obviously, the group $\text{Aut}(L'/L)$ is finite and denote by l its order. Let $r := (k+1) \cdot l \geq k+1$. As w is symmetrically-open, we know that there exists ω , an extension of w to $L(Y_1,\ldots,Y_r)$, symmetric with respect to $X_{i_1}, \ldots, X_{i_m}, Y_1, \ldots, Y_r$. Let ω' be an extension of it to $L'(Y_1, \ldots, Y_r)$ which is not symmetric with respect to Y_1, \ldots, Y_r and, moreover, whose restriction to $L'(Y_1,\ldots,Y_{k+1})$ is not symmetric, either. This must exist because, if it hadn't, $r' = k + 1$ would invalidate the assumption made. Therefore, there exist $\pi \in S_{k+1}$ and $f \in L'(Y_1, \ldots, Y_{k+1})$ with $\omega'(f) \neq \omega'(\pi f)$.

Let ω^e , respectively ω'^e , be the restriction of ω , respectively ω' , to the field generated by the elementary symmetric polynomials $L(e_1^{(r)})$ $\binom{(r)}{1}, \ldots, e_r^{(r)}$), respectively $L'(e_1^{(r)})$ $\binom{r}{1}, \ldots, e_r^{(r)}$, as it may be seen in the diagram below:

The automorphism groups of the three vertical extensions are isomorphic:

$$
Aut(L'/L) \cong Aut(L'(e_1^{(r)}, \ldots, e_e^{(r)})/L(e_1^r, \ldots, e_r^{(r)})) \cong
$$

$$
Aut(L'(Y_1, \ldots, Y_r)/L(Y_1, \ldots, Y_r))
$$

the correspondence given by:

$$
a \to \sigma(a)
$$

\n
$$
\sum_{(i_1,\dots,i_r)\in I} a_{i_1,\dots,i_r} \cdot (e_1^{(r)})^{i_1} \cdot \dots \cdot (e_r^{(r)})^{i_r} \to \sum_{(i_1,\dots,i_r)\in I} \sigma(a_{i_1,\dots,i_r}) \cdot (e_1^{(r)})^{i_1} \cdot \dots
$$

\n
$$
\sum_{(i_1,\dots,i_r)\in I} a_{i_1,\dots,i_r} \cdot Y_1^{i_1} \cdot \dots \cdot Y_r^{i_r} \to \sum_{(i_1,\dots,i_r)\in I} \sigma(a_{i_1,\dots,i_r}) \cdot Y_1^{i_1} \cdot \dots \cdot Y_r^{i_r}
$$

Let's notice that there must exist at least $l+1$ different extensions of $\omega^{\prime e}$ to $L'(Y_1, \ldots, Y_r).$

Indeed, $\omega'(f) \neq \omega'(\pi f)$, with $f \in L'(Y_1, \ldots, Y_{k+1})$, and let's see π and all the other permutations defined below in S_r . Let's put $f_i \in L'(Y_{i(k+1)+1},\ldots,Y_{(i+1)(k+1)}), 0 \leq i \leq l$, obtained from f by translations of its indeterminates, namely $f_i = \tau_i f$ where $\tau_i = \tau_i^{-1}$ inverts the whole group $Y_1, ..., Y_{k+1}$ with the group $Y_{i(k+1)+1}, ..., Y_{(i+1)(k+1)}$; in particular, $f_0 = f$. Let's consider all the pairs of extensions of ω' th that apply the permutation π on the group $Y_{i(k+1)+1}, \ldots, Y_{(i+1)(k+1)}, 0 \leq i < l$, namely $(\omega'_i, \omega''_i) = (\tau_i \omega', (\pi \circ \tau_i) \omega')$; in particular, $(\omega'_0, \omega''_0) = (\omega', \pi \omega')$. We have $\omega_i'(f_i) \neq \omega_i''(f_i)$, but, since f_i has no common indeterminates with the other $f_j, j < i$, it follows that at least one of ω'_i and ω''_i is different from all ω'_j, ω''_j with $j < i$. In total, remembering that $\omega_0' \neq \omega_0''$, we have $l + 1$ different extensions of ω'^e to $L'(Y_1,\ldots,Y_r)$.

In conclusion, the number of extensions of ω^e to $L'(Y_1,\ldots,Y_r)$, passing through

 $L(Y_1, \ldots, Y_r)$ (the path marked by dotted thick arrows), is at least $l + 1$. On the other hand, ω , being symmetric, extends in a unique manner ω^e to $L(Y_1, \ldots, Y_r)$ ([\[11,](#page-27-4) Theorem 3.1]), so the number of extensions of ω^e to $L'(Y_1,\ldots,Y_r)$, passing through $L(Y_1,\ldots,Y_r)$ (the path marked by continuous thick arrows) is at most l and, thus, we got a contradiction.

[\(L4.1.2\)](#page-13-1) Let's fix \bar{w} an extension of w to $\overline{K(X_1,\ldots,X_n)}$. Again, we will prove the result by contradiction.

Let's suppose, accordingly, that there exists a partition:

$$
\{1, 2, \ldots, n\} = \{i_1, i_2, \ldots, i_m\} \cup \{j_1, j_2, \ldots, j_{n-m}\},\ \text{with}\ 0 \le m < n,
$$

such that the restriction of \bar{w} to $K(X_{i_1},...,X_{i_m})(X_{j_1},...,X_{j_{n-m}})$ is not symmetric with respect to $X_{j_1}, \ldots, X_{j_{n-m}}$, where $K(X_{i_1}, \ldots, X_{i_m})$ is the closure of $K(X_{i_1},\ldots,X_{i_m})$ in $K(X_1,\ldots,X_n)$.

Denote by $L = K(X_{i_1},...,X_{i_m})$ and by $Y_1,...,Y_k$ the indeterminates $X_{j_1}, \ldots, X_{j_{n-m}} \ (k=n-m).$

Let's also put $\bar{u} = \bar{w} |_{\bar{L}(Y_1,...,Y_k)}$ (we notice that it is an intermediary extension between w and \bar{w}).

As \bar{u} is not symmetric, it follows that there exists a polynomial $f \in$ $L(Y_1, \ldots, Y_k)$ and a permutation π of $\{1, 2, \ldots, k\}$ such that $\bar{u}(f) \neq \bar{u}(\pi f)$. Let $L' \subseteq \overline{L}$ be the normal finite extension of L that contains all the coefficients of f.

According to [\(L4.1.1\)](#page-13-0) there exists an $r \geq k+1$ and ω an extension of w to $L(Y_1, \ldots, Y_r)$, symmetric with respect to $X_{i_1}, \ldots, X_{i_m}, Y_1, \ldots, Y_r$, such that given ω' , any extension of it to $L'(Y_1,\ldots,Y_r)$, we get that ω' is symmetric with respect to Y_1, \ldots, Y_r . But, in particular, ω is symmetric with respect to Y_1, \ldots, Y_r and we know from [\[11,](#page-27-4) Lemma 3.4] that there must exist ω' , an extension of ω to $L'(Y_1,\ldots,Y_k)$, that extends \bar{u} , so we also have $\omega'(f) \neq \omega'(\pi f)$, which leads to a contradiction.

We can move on to the announced proposition.

Proposition 4.1. Let w be a symmetric extension of v, from K to $K(X_1, \ldots, X_n)$, a fixed algebraic closure $K(X_1, \ldots, X_n)$ and \bar{w} an extension of w to $K(X_1,\ldots,X_n)$.

Then w is symmetrically-open with respect to X_1, \ldots, X_n if and only if either $n < 2$, or $n \geq 2$ and there exists $\epsilon \in G_2$ an upper bound of the set $\mathcal{M}_1 = {\overline{w(X_1 - a)/a \in \overline{K}}}$, such that, for any $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_2,\ldots,i_n)\in I} f_{i_2,\ldots,i_n} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n}, \text{ with } f_{i_2,\ldots,i_n} \in K[X_1]
$$

where I is a finite set of $(n-1)$ -uples of indices, we get:

$$
w(F) = \inf_{(i_2,\ldots,i_n)\in I} \bigl(u_1(f_{i_2,\ldots,i_n}) + (i_2+\ldots+i_n)\cdot \epsilon\bigr).
$$

Proof.

" \Rightarrow " For $n < 2$ there is nothing to prove. Let's suppose w is symmetrically open and let $n \geq 2$. According to [\(L4.1.2\)](#page-13-1), \bar{w} extends the symmetry of

$$
\Box
$$

w. Let's fix X_{n+1}, X_{n+2}, \ldots an array of elements that are transcendental and algebraically independent over $K(X_1, \ldots, X_n)$. Let $L := K(X_1, \ldots, X_{n-1})$.

For any $\rho \in L$ let's denote the closure of $L(\rho)$ in with L_{ρ} , which is normal finite extension of L. According to [\(L4.1.1\)](#page-13-0) there exists $r_{\rho} \geq 1$ and ω_{ρ} an extension of w to $L(X_1, \ldots, X_n)$, symmetric with respect to $X_1, \ldots, X_{n+r_\rho}$, such that, given any ω' , an extension of it to $L_{\rho}(X_n, \ldots, X_{n+r_{\rho}})$, we get that ω' is symmetric with respect to $X_1, \ldots, X_{n+r_\rho}$. Let \bar{w}_ρ be the common extension of \bar{w} and ω_{ρ} to $K(X_1, \ldots, X_n)(X_{n+1}, \ldots, X_{n+r_{\rho}})$, which we know it ex-ists, [\[11,](#page-27-4) Lemma 3.4]. Therefore, the restriction of $\bar{\omega}_{\rho}$ to $L_{\rho}(X_n, \ldots, X_{n+r_{\rho}})$, is symmetric with respect to $X_n, \ldots, X_{n+r_\rho}$. We have:

$$
\overline{w}(X_n - X_1) = \overline{\omega}_{\rho}(X_{n+1} - X_n) = \overline{\omega}_{\rho}(X_{n+1} - \rho + \rho - X_n)
$$

\n
$$
\geq \overline{\omega}_{\rho}(X_n - \rho) = \overline{w}(X_n - \rho)
$$

and this holds for any $\rho \in \overline{L}$, independently of the choice of r_{ρ} and ω_{ρ} .

Let $\mathcal{M}_i = {\bar{w}(X_i - \rho)/\rho \in K(X_1, ..., X_{i-1})}$, with $i \in \{1, ..., n\}$. Obviously, $\bar{w}(X_n-X_1) \in \mathcal{M}_n$. From the discussion above, we have $\bar{w}(X_n-X_1) =$ $\sup \mathcal{M}_n$ and let's denote by ϵ this value. Moreover, we have:

$$
\epsilon = \bar{w}(X_n - X_1) = \bar{w}(X_2 - X_1) = w(X_2 - X_1) \in \mathcal{M}_2
$$

and, since $\mathcal{M}_2 \subseteq \mathcal{M}_n$, it follows that $\epsilon = \sup \mathcal{M}_2$, so ϵ is an upper bound also of \mathcal{M}_1 . Now, as sup $\mathcal{M}_2 \in \mathcal{M}_2$, we derive, according to [\[4\]](#page-27-0), that u_2 , the extension of u_1 from $K(X_1)$ to $K(X_1, X_2)$ is either a r.t.-extension, when $\mathbf{Q}G_1 = \mathbf{Q}G_2$, or a r.a.f-extension, when otherwise.

In both cases, the pair (X_1, ϵ) is a definition pair for u_2 and is minimal since deg_{X₂} $X_1 = 1$.

Consequently, given what we know from [\[4\]](#page-27-0) and [\[10\]](#page-27-2), it follows that, for any $F \in K[X_1, X_2]$ written as:

$$
F = \sum_{i_2=0}^{s_2} f_{i_2} \cdot (X_2 - X_1)^{i_2}, \text{ with } f_{i_2} \in K[X_1]
$$

we get

$$
w(F) = \inf_{i_2} (u_1(f_{i_2}) + i_2 \cdot \epsilon).
$$

Now, let $K' = K(X_1, X_2)$ and let's reconsider w and \bar{w} with respect to $X_3, \ldots, X_n, X_{n+1}$. Obviously, w remains symmetric and \bar{w} extends its symmetry.

Furthermore, since

$$
\epsilon = \sup \mathcal{M}_n = \sup \mathcal{M}_{n-1} = \ldots = \sup \mathcal{M}_3 \in G_2
$$

we deduce that $\mathbf{Q}G_2 = \mathbf{Q}G_3 = \ldots = \mathbf{Q}G_n$ because, if this wasn't true and we took $\mathbf{Q}G_{i-1} \neq \mathbf{Q}G_i$, with the smallest $i \geq 3$ validating this, then there would exist $\rho \in \overline{K(X_1,\ldots,X_{i-1})}$ that would make $\bar{w}(X_i-\rho) \notin \mathbf{Q}G_{i-1}$ and, therefore

$$
\bar{w}(X_1 - \rho) = \bar{w}(X_1 - X_i + X_i - \rho) = \bar{w}(X_i - \rho)
$$

but this is not possible since $\bar{w}(X_1 - \rho) \in \mathbf{Q}G_{i-1}$.

We have proven, thus, that freedeg $(w) = 0$, with respect to X_3, \ldots, X_n . Using [\(2.3\)](#page-2-0) we derive that w is a r.t.s.-extension with respect to X_3, \ldots, X_n and, given any $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_2,\ldots,i_n)\in I} f_{i_2,\ldots,i_n} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n}, \text{ with } f_{i_2,\ldots,i_n} \in K[X_1]
$$

where I is a finite set of $(n-1)$ -uples of indices, we get:

$$
w(F) = \inf_{(\cdot, i_2, \dots, i_n) \in I} \left(u_2 \left(\sum_{i_2 1 \text{ such that } (i_2, i_3, \dots, i_n) \in I} f_{i_2, \dots, i_n} \cdot (X_2 - X_1)^{i_2} \right) + \dots + \left(i_3 + \dots + i_n \right) \cdot \epsilon \right) =
$$

$$
\inf_{(i_2, \dots, i_n) \in I} \left(u_1(f_{i_2, \dots, i_n}) + (i_2 + \dots + i_n) \cdot \epsilon \right).
$$

" \Leftarrow " If $n = 1$, we are free to choose a value ϵ , upper bound for \mathcal{M}_1 . This value will be automatically in G_2 , once we put $w'(X_2 - X_1) = \epsilon$. So we may consider, directly, the case $n \geq 1$ and let's choose X_{n+1} transcendental over $K(X_1, \ldots, X_n)$. Let's define w' as the extension of w to $K(X_1, \ldots, X_{n+1})$ given by the pair (X_1, ϵ) , which is minimal because $\deg_{X_{n+1}} = 1$.

Therefore, for any $F \in K[X_1, \ldots, X_{n+1}]$ written as:

$$
F = \sum_{(i_2,\dots,i_{n+1}) \in I} f_{i_2,\dots,i_{n+1}} \cdot (X_2 - X_1)^{i_2} \cdot \dots \cdot (X_{n+1} - X_1)^{i_{n+1}},
$$

with $f_{i_2,\dots,i_{n+1}} \in K[X_1]$ (4.1)

where I is a finite set of *n*-uples of indices, we get

$$
w'(F) = \inf_{(i_2,\ldots,i_{n+1})\in I} \bigl(u_1(f_{i_2,\ldots,i_{n+1}}) + (i_2+\ldots+i_{n+1})\cdot \epsilon\bigr).
$$

Let's notice that w', as extension of w, from $K(X_1, \ldots, X_n)$ to $K(X_1, \ldots, X_n)(X_{n+1})$ may be either a r.t.-extension or a r.a.f.-extension, the latter being valid only if $n = 1$ and $\epsilon \notin \mathbf{Q}G_1$. But, in both cases, (see [\[4\]](#page-27-0) and [\[10\]](#page-27-2)), ϵ is an upper bound of \mathcal{M}_n , which means that, in particular, for any $r \in \overline{K}$, we get:

$$
w'(X_{n+1}-X_1)=\epsilon\geq \bar{w}'(X_1-r)
$$

Using the definition of w' we derive that $w'(X_i - X_j) = \epsilon$ for each $i \neq j$ in $\{1, \ldots, n+1\}.$

Further, it is obvious that w' is symmetric with respect to X_i, X_{n+1} for each $i \geq 2$ therefore, in order to check the symmetry of w', it is enough (cf. Lemma [3.1\)](#page-4-3) to check the inversion of X_{n+1} with X_1 . Let, thus, $F \in$ $K[X_1, \ldots, X_{n+1}]$ and let's analyze the polynomial $\pi F \in K[X_1, \ldots, X_{n+1}]$ obtained from F by inverting X_{n+1} with X_1 . Let's consider \bar{w}' that extends \overline{w} on $K(X_1, \ldots, X_{n+1}).$

We have

$$
w'(\pi F) = w' \left(\sum_{(i_2, \dots, i_n, i_{n+1}) \in I} f_{i_2, \dots, i_n, i_{n+1}}(X_{n+1}) \cdot (X_2 - X_{n+1})^{i_2} \cdot \dots \cdot \cdot (X_n - X_{n+1})^{i_n} \cdot (X_1 - X_{n+1})^{i_{n+1}} \right)
$$

which may be written, further, denoting by $J_{i_2,\dots,i_{n+1}}$ the set $\{1, \ldots, \deg f_{i_2,\ldots,i_{n+1}}\},\$ with $r_{i_2,\ldots,i_{n+1};j}$ being the roots of $f_{i_2,\ldots,i_{n+1}},$ where $j \in J_{i_2,\dots,i_{n+1}}$ and denoting by $a_{i_2,\dots,i_{n+1}}$ the coefficient of the term of maximal degree

$$
w'(\pi F) = \bar{w}' \left(\sum_{(i_2,\dots,i_{n+1}) \in I} \left(a_{i_2,\dots,i_{n+1}} \cdot \left(\prod_{j \in J_{i_2,\dots,i_{n+1}}} (X_{n+1} - r_{i_2,\dots,i_{n+1};j}) \right) \cdot (X_2 - X_{n+1})^{i_2} \cdot \dots \cdot (X_1 - X_{n+1})^{i_{n+1}} \right) \right)
$$

which, by replacing $X_{n+1} - r_{i_2,...,i_{n+1};j} = X_{n+1} - X_1 + X_1 - r_{i_2,...,i_{n+1};j}$ becomes:

$$
w'(\pi F) = \overline{w}' \left(\sum_{(i_2,\ldots,i_{n+1}) \in I} \sum_{H \subset J_{i_2,\ldots,i_{n+1}}} \left(a_{i_2,\ldots,i_{n+1}} \cdot \left(\prod_{j \in J_{i_2,\ldots,i_{n+1}} - H} (X_1 - r_{i_2,\ldots,i_{n+1};j}) \right) \cdot (X_2 - X_{n+1})^{i_2} \cdot \ldots \cdot (X_1 - X_{n+1})^{i_{n+1} + card(H)} \right) \right)
$$
(4.2)

Considering the fact that, for any $i \neq j$ in $\{1, \ldots, n+1\}$ and any $r \in \overline{K}$, we get

$$
w'(X_i - X_j) = \epsilon \ge \overline{w}'(X_1 - r)
$$

it follows that each term of the double summation in [\(4.2\)](#page-18-0) has its valuation greater or equal to $w'(F)$:

$$
\overline{w}' \left(a_{i_2, \dots, i_{n+1}} \cdot \left(\prod_{j \in J_{i_2, \dots, i_{n+1}} - H} (X_1 - r_{i_2, \dots, i_{n+1};j}) \right) \right)
$$
\n
$$
\overline{w}' \left(a_{i_2, \dots, i_{n+1}} \cdot \left(\prod_{j \in J_{i_2, \dots, i_{n+1}}} (X_1 - r_{i_2, \dots, i_{n+1};j}) \right) \right) \ge
$$
\n
$$
\overline{w}' \left(a_{i_2, \dots, i_{n+1}} \cdot \left(\prod_{j \in J_{i_2, \dots, i_{n+1}}} (X_1 - r_{i_2, \dots, i_{n+1};j}) \right) \right)
$$
\n
$$
\cdot (X_2 - X_{n+1})^{i_2} \cdot \dots \cdot (X_1 - X_{n+1})^{i_{n+1}} \right) =
$$
\n
$$
w'(f_{i_2, \dots, i_{n+1}} \cdot (X_2 - X_{n+1})^{i_2} \cdot \dots \cdot (X_1 - X_{n+1})^{i_{n+1}}) =
$$
\n
$$
u_1(f_{i_2, \dots, i_{n+1}}) + (i_2 + \dots + i_{n+1}) \cdot \epsilon \ge w'(F)
$$

We deduce, thus, that $w'(\pi F) \geq w'(F)$. We are left with the reverse inequality.

Of the terms of F, whose valuation is equal to $w'(F)$, let's chose one of minimal degree in X_{n+1} :

$$
f_{l_2,\dots,l_n,l_{n+1}} \cdot (X_2 - X_1)^{l_2} \cdot \dots \cdot (X_n - X_1)^{l_n} \cdot (X_{n+1} - X_1)^{l_{n+1}},
$$
 with
$$
w'(F) = u_1(f_{l_2,\dots,l_n,l_{n+1}}) + (l_2 + \dots + l_n + l_{n+1}) \cdot \epsilon
$$
 and
$$
l_{n+1}
$$
 is minimal validating this property.

Now, we need to write also πF under the form [\(4.1\)](#page-17-0). In order to do this, we will need to set:

$$
X_{n+1} - r_{i_2,\dots,i_{n+1};j} = (X_{n+1} - X_1) + (X_1 - r_{i_2,\dots,i_{n+1};j})
$$
 and

$$
X_i - X_{n+1} = (X_i - X_1) + (X_1 - X_{n+1})
$$
 for $2 \le i \le n$

and to make the replacements in [\(4.2\)](#page-18-0). It is not necessary to perform all the calculations, because we are interested only in those terms that sum up for the *n*-uple (l_2, \ldots, l_{n+1}) , meaning those of the form:

$$
F_{l_2,\dots,l_{n+1},i_2,\dots,i_{n+1},H} =
$$

$$
a_{i_2,\dots,i_{n+1}} \cdot \left(\prod_{j \in J_{i_2,\dots,i_{n+1}-H}} (X_1 - r_{i_2,\dots,i_{n+1};j}) \right)
$$

$$
\cdot (X_2 - X_1)^{l_2} \cdot \dots \cdot (X_n - X_1)^{l_n} \cdot (X_{n+1} - X_1)^{l_{n+1}} \cdot (-1)^{l_{n+1}}
$$

with $i_2 \geq l_2, \ldots, i_n \geq l_n, i_{n+1} \leq l_{n+1}, H \subseteq J_{i_2, \ldots, i_{n+1}}$ and $i_{n+1} + i_2 - l_2 +$ $... + i_n - l_n + \text{card}(H) = l_{n+1}.$

If we denote by \bar{u}_1 the restriction of \bar{w}' to $\bar{K}(X_1)$, then we have:

$$
\overline{w}'(F_{l_2,\dots,l_{n+1},i_2,\dots,i_{n+1},H}) =
$$
\n
$$
v(a_{i_2,\dots,i_{n+1}}) + \sum_{j \in J_{i_2},\dots,i_{n+1}-H} \overline{u}_1(X_1 - r_{i_2,\dots,i_{n+1},j}) +
$$
\n
$$
(i_2 + \dots + i_{n+1}) + \operatorname{card}(H)) \cdot \epsilon \ge
$$
\n
$$
v(a_{i_2,\dots,i_{n+1}}) + \sum_{j \in J_{i_2},\dots,i_{n+1}} \overline{u}_1(X_1 - r_{i_2,\dots,i_{n+1},j}) + (i_2 + \dots + i_{n+1}) \cdot \epsilon =
$$
\n
$$
u_1(f_{i_2,\dots,i_{n+1}}) + (i_2 + \dots + i_{n+1}) \cdot \epsilon \ge w'(F)
$$

with the last inequality being strict if $i_{n+1} < l_{n+1}$. This means that there exists one and only one term equal to $w'(F)$ among those that sum up for the *n*-uple (l_2, \ldots, l_{n+1}) , namely $F_{l_2,\ldots,l_{n+1},l_2,\ldots,l_{n+1},\phi}$. Thus, we get the reverse inequality:

$$
w'(\pi F) = \inf_{(l_2,\dots,l_{n+1})\in I} \bar{w}' \left(\sum_{i_2,\dots,i_{n+1},H} F_{l_2,\dots,l_{n+1},i_2,\dots,i_{n+1},H} \right) \leq w'(F)
$$

We conclude that $w'(\pi F) = w'(F)$, therefore w' is symmetric with respect to X_1, \ldots, X_{n+1} . By induction, choosing X_{n+2}, X_{n+3}, \ldots and reasoning similarly, we get a chain of symmetric extensions, leading to the conclusion that w is a symmetrically-open extension with respect to X_1, \ldots, X_n . \Box

Corollary 4.1. With the notations above we have:

 $(C4.1.1)$ The dual statement of $(D4.2.1)$ also stands: for any symmetricallyopen extension with respect to X_1, \ldots, X_n there exists an extension of it, symmetrically-open with respect to X_1, \ldots, X_i , for all $i > n$, with $\text{tr. deg}(K(X_1, ..., X_i): K) = i.$

 $(C4.1.2)$ For a chain of symmetrically-open extensions, built using $(C4.1.1)$, there exists a chain of extensions to the algebraic closures (of the fields each of the extensions in the original chain are defined on), such that their symmetry is also extended.

(C4.1.3) A symmetric extension is symmetrically-open if and only if it may be extended to a symmetric valuation on $K(X_1, \ldots, X_{n+1})$ that has an extension further to $K(X_1, \ldots, X_{n+1})$ which extends its symmetry.

(C4.1.4) If $n \geq 3$, a symmetrically-open extension cannot be ultrasymmetric with respect to X_1, \ldots, X_n .

(C4.1.5) If w is symmetrically-open with respect to X_1, \ldots, X_n then:

$$
0 \le \text{freedeg } w \le 2;
$$

\n
$$
n - 2 \le \text{tr. deg}(k_w : k_v) \le n;
$$

\n
$$
n - 1 \le \text{freedeg } w + \text{tr. deg}(k_w : k_v) \le n.
$$

Proof. [\(C4.1.1\)](#page-20-0), [\(C4.1.2\)](#page-20-1) The statements are obvious from the closed-form of the symmetrically open extensions, corroborated with Proposition [3.2](#page-5-0)

[\(C4.1.3\)](#page-20-2) The implication " \Rightarrow " is obvious due to [\(C4.1.2\)](#page-20-1), so we'll focus on the reverse implication.

Let w' be the extension of w to $K(X_1,\ldots,X_{n+1})$ and \bar{w}' its extension to $\overline{K(X_1,\ldots,X_{n+1})}$. In the proof made for the " \Rightarrow " implication in Proposition [4.1](#page-15-0) we have, directly:

$$
\bar{w}(X_n - X_1) = \bar{w}'(X_{n+1} - X_n) = \bar{w}'(X_{n+1} - \rho + \rho - X_n) \\
\geq \bar{w}'(X_n \rho) = \bar{w}(X_n - \rho)
$$

for any $\rho \in \overline{K(X_1,\ldots,X_{n-1})}$ wherefrom the proof follows similarly.

[\(C4.1.4\)](#page-20-3) If we consider w as a valuation on $K(X_1)(X_2, X_3)$, it is symmetrically open with respect to X_2, X_3 . From Proposition [4.1](#page-15-0) it follows that w might be written as for Corollary [3.1](#page-11-0) with:

$$
K \to K(X_1);
$$

\n
$$
a \to X_1;
$$

\n
$$
g \to X - X_1;
$$

\n
$$
\delta \to \epsilon = w(X_2 - X_1) = w(X_3 - X_1).
$$

Therefore, according to (2.4) , w is a r.t.s.-extension with respect to X_2 , X_3 . Now, using $(D4.1.2)$, we conclude that w is not ultrasymmetric.

[\(C4.1.5\)](#page-21-0) For $n \leq 2$, the first two statements are obvious. If $n \geq 3$, we use the same arguments as above to derive that w , as a valuation on $K(X_1)(X_2, X_3, \ldots, X_n)$, is a r.t.s.-extension with respect to X_2, X_3, \ldots, X_n and, considering (2.2) and (2.3) , we conclude that:

$$
0 = \text{freedeg}_{X_2, \dots, X_n} w \ge \text{freedeg } w - 1 \text{ and:}
$$

$$
n - 1 = \text{tr. deg}(k_w : k_{u_i}) \le \text{tr. deg}(k_w : k_v).
$$

We are left with the last inequality. From [\[4\]](#page-27-0) we know that all the intermediary extensions from K_{i-1} to K_i (with $1 \leq i \leq n$) may be classified as r.t., r.a.t. or r.a.f. As tr. $deg(k_w : k_v)$ represents the number of intermediary extensions that are r.t.-extensions and w represents the number of intermediary extensions that are r.a.f.-extensions it remains to be proved that there cannot exist more than one intermediary extension that is r.a.t.-extension, namely the first of the intermediary extensions.

Let's analyze the only intermediary extension that is important not to be a r.a.t.-extension, namely the extension from $K(X_1)$ to $K(X_1, X_2)$. Suppose, by reduction ad absurdum, that it is a r.a.t.-extension. Then the set

$$
\mathcal{M}_2 = \{ \bar{w}(X_2 - \rho) / \rho \in \overline{K(X_1)} \}
$$

wouldn't have an upper bound inside.

From Proposition [4.1](#page-15-0) we know that there exists $\epsilon \in G_2$, an upper bound for $\mathcal{M}_1 \subseteq \mathcal{M}_2$, such that, for any $F \in K[X_1, X_2]$ written as $F = \sum$ i∈I f_i .

 $(X_2 - X_1)^i$, with $f_i \in K[X_1]$ where I is a finite set of indices, we get

$$
u_2(F) = \inf_{i \in I} (u_1(f_i) + i \cdot \epsilon).
$$

Let $\{\epsilon_j\}_{j\in J}$ be a strictly increasing sequence of elements in \mathcal{M}_2 , where J is a countable set. As M_2 doesn't have a largest element, we may assume, without any loss of generality, that $\epsilon_0 = \epsilon$. We choose, for each $j \in J$, an element ρ_i in $K(X_1)$, of minimal degree over $K(X_1)$, such that $u_2(X_2-\rho_i)$ = ϵ_j . For $j=0$ we choose $\rho_0=X_1$.

Let $\{u'_j\}_{j\in J}$ be the sequence of r.t.-extensions from $K(X_1)$ to $K(X_1, X_2)$ defined by the minimal pairs (ρ_j, ϵ_j) . From [\[4,](#page-27-0) Theorem 5.1] it follows that this sequence is an ordered system of r.t.-extensions that has u_2 as its limit:

$$
u_2(F) = \sup_{j \in J} (u'_j(F)),
$$
 for all $F \in K(X_1, X_2)$.

But this leads to:

$$
u_2(F) = u'_0(F) = \sup_{j \in J} (u'_j(F))
$$

which means that the ordered system of r.t.-extensions is stationary, which contradicts the assertion that $\{\epsilon_j\}_{j\in J}$ is a strictly increasing sequence.

✷

5. Characterization of the symmetrically-open extensions

We can now present the main result of this paper, that allows a complete classification of the symmetrically-open extensions in two classes, depending on the existence of a r.a.f.-extension among the intermediary extensions. Additionally, the following theorem states that any extension in the second category (having a r.a.f.-extension among the intermediary ones) may be reduced, in fact, to a sequence of extensions from the first category.

Theorem 5.1. Let w be a symmetrically-open extension of a valuation v , from K to $K(X_1,\ldots,X_n)$, with $n \geq 2$, a fixed algebraic closure $K(X_1, \ldots, X_n)$ and \bar{w} that extends the symmetry of w to $\overline{K(X_1, \ldots, X_n)}$. Then w may be in one of the following possible situations:

(I) freedeg $w + \text{tr.deg}(k_w : k_v) = n$ and, in this case, w is defined by a triplet (a, δ, ϵ) , in which we have $a \in \overline{K}$, $\delta \in Z \times \mathbf{Q}G_v$ and $\epsilon \in Z \times Z \times Z$ $\mathbf{Q}G_v, \epsilon > \delta$ such that, for any $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_1,\dots,i_n)\in I} f_{i_1,\dots,i_n} \cdot g^{i_1}(X_2 - X_1)^{i_2} \cdot \dots \cdot (X_n - X_1)^{i_n},
$$

with $f_{i_1,\dots,i_n} \in K[X_1], \deg f_{i_1,\dots,i_n} < \deg g$

where I is a finite set of n-uples of indices and $g \in K[X_1]$ is the minimal monic polynomial of a over K , we get:

$$
w(F) = \inf_{(i_1,\ldots,i_n)\in I} \left(\bar{v}(f_{i_1,\ldots,i_n}(a)) + i_1 \cdot \gamma + (i_2 + \cdot i_n) \cdot \epsilon \right),
$$

$$
with \ \gamma = \sum_{a' \in \bar{K}, g(a') = 0} \inf \left(\delta_a, \bar{v}(a' - a) \right)
$$

(II) freedeg w + tr. deg($k_w : k_v$) = n – 1 and, in this case, w is the limit of an ordered system of extensions of type (I) , that have in their definition the same value for ϵ .

Proof. From [C4.1.5](#page-21-0) we know that $n-1 \leq$ freedeg $w + \text{tr. deg}(k_w : k_v) \leq n$ so the cases [\(I\)](#page-23-0) and [\(II\)](#page-23-1) are, indeed, the only possible ones.

In case [\(I\)](#page-23-0) all the intermediary extensions from K_{i-1} to K_i (with $1 \leq i \leq$ n) are r.t.-extensions or r.a.f.-extensions. Looking at the first of them, we notice that there exist $a \in \overline{K}$ and $\delta \in Z \times \mathbf{Q}G_v$ such that, for any $f \in K[X_1]$ written as:

$$
f = \sum_{i_1 \in I_1} f_{i_1} \cdot g^{i_1}, \text{ with } f_{i_1} \in K[X_1], \deg f_{i_1} < \deg g
$$

where I_1 is a finite set of indices and $g \in K[X_1]$ is the minimal monic polynomial of a over K , we get:

$$
u_1(f) = \inf_{i_1 \in I_1} (\bar{v}(f_{i_1}(a)) + i_1 \cdot \gamma), \text{ with } \gamma = \sum_{a' \in \bar{K}, g(a') = 0} \inf (\delta_a, \bar{v}(a' - a)). \tag{5.1}
$$

We also note that:

$$
w(X_1 - a) = u_1(X_1 - a) = \delta \in \mathcal{M}_1.
$$

From Proposition [4.1](#page-15-0) we know that there exists $\epsilon \in G_2$, upper bound of \mathcal{M}_1 (so $\epsilon \geq \delta$), such that, for any $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_2,\ldots,i_n)\in I} f_{i_2,\ldots,i_n} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n}, \text{ with } f_{i_2,\ldots,i_n} \in K[X_1]
$$

where I is a finite set of $(n-1)$ -uples of indices, we get

$$
w(F) = \inf_{(i_2,...,i_n)\in I} (u_1(f_{i_2,...,i_n}) + (i_2 + \ldots + i_n) \cdot \epsilon).
$$

By applying [5.1](#page-23-2) for f_{i_2,\dots,i_n} in the parenthesis above, we derive exactly the wanted formula:

$$
w(F) = \inf_{(i_1,\dots,i_n)\in I} (\bar{v}(f_{i_1,\dots,i_n}(a)) + i_1 \cdot \gamma + (i_2 + \dots + i_n) \cdot \epsilon).
$$
 (5.2)

Let's now consider case [\(II\)](#page-23-1). As we discussed at Corollary [4.1,](#page-20-4) the extension u_1 of v, from K to $K(X_1)$, is a r.a.t.-extension. Then the set \mathcal{M}_1 doesn't have a maximal element.

Let $\{\delta_j\}_{j\in J}$ be an increasing sequence of elements in \mathcal{M}_1 , where J is a countable set and let's choose, for each $j \in J$, an element a_j in K, of minimal degree over K, such that we would have $u_1(X_1 - a_j) = \delta_j$. Let's denote by g_j the minimal monic polynomial of a_j . Let $\{u'_j\}_{j\in J}$ be the sequence of the r.t.-extensions from K to $K(X_1)$ defined by the minimal pairs (a_i, δ_i) . It follows from [\[4,](#page-27-0) Theorem 5.1] that this is an ordered system of r.t.-extensions that has u_1 as limit:

$$
u_1(f) = \sum_{j \in J} (u'_j(f)),
$$
 for any $f \in K(X_1)$.

From Proposition [4.1](#page-15-0) we know that there exists $\epsilon \in G_2$, an upper bound of \mathcal{M}_1 (so $\epsilon \geq \delta_j$ for each $j \in J$), such that, for any $F \in K[X_1, \ldots, X_n]$ written as:

$$
F = \sum_{(i_2,\ldots,i_n)\in I} f_{i_2,\ldots,i_n} \cdot (X_2 - X_1)^{i_2} \cdot \ldots \cdot (X_n - X_1)^{i_n}, \text{ with } f_{i_2,\ldots,i_n} \in K[X_1]
$$

where I is a finite set of $(n-1)$ -uples of indices, we have:

$$
w(F) = \inf_{(i_2,\dots,i_n)\in I} \left(u_1(f_{i_2,\dots,i_n}) + (i_2 + \dots + i_n) \cdot \right) =
$$

=
$$
\inf_{(i_2,\dots,i_n)\in I} \left(\sup_{j\in J} \left(u'_j(f_{i_2,\dots,i_n}) \right) + (i_2 + \dots + i_n) \cdot \epsilon \right) =
$$

=
$$
\inf_{(i_2,\dots,i_n)\in I} \sup_{j\in J} \left(u'_j(f_{i_2,\dots,i_n}) + (i_2 + \dots + i_n) \cdot \epsilon \right).
$$
 (5.3)

As u'_{j_1} is dominated by u'_{j_2} for any $j_1 < j_2$, the quantity in parenthesis forms an increasing sequence in G_w , so the infimum commutes with supremum and we may rewrite (5.3) :

$$
w(F) = \sup_{j \in J} \inf_{(i_2, ..., i_n) \in I} (u'_j(f_{i_2, ..., i_n}) + (i_2 + ..., i_n) \cdot \epsilon).
$$

For each $j \in J$ let w_j be the extension of u'_j from $K(X)$ to $K(X_1, \ldots, X_n)$ defined by:

$$
w_j(F) = \inf_{(i_2,\dots,i_n)\in I} (u'_j(f_{i_2,\dots,i_n}) + (i_2 + \dots + i_n) \cdot \epsilon).
$$

=
$$
\inf_{(i_1,\dots,i_n)\in I_j} (\bar{v}(f_{i_1,\dots,i_n}(a_j)) + i_1 \cdot \gamma_j + (i_2 + \dots + i_n) \cdot \epsilon)
$$

where γ_j is given by:

$$
\gamma_j = \sum_{a' \in \bar{K}, g_j(a') = 0} \inf(\delta_j, \bar{v}(a' - a_j)) = u'_j(g_j)
$$

and the set I_j is defined as

$$
I_j = \{(i_1, \ldots, i_n) / (i_2, \ldots, i_n) \in I \text{ and } 0 \leq i_1, (i_1 \cdot \deg g_j) \leq \deg f_{i_2, \ldots, i_n}\}\
$$

since we wrote each f_{i_2,\dots,i_n} as

$$
f_{i_2,\dots,i_n} = \sum_{i_1=0}^{k_{i_2,\dots,i_n,j}} f_{i_1,i_2,\dots,i_n} \cdot (g_j)^{i_1}, \text{ where } k_{i_2,\dots,i_n,j} = \left\lfloor \frac{\deg(f_{i_2,\dots,i_n})}{\deg(g_j)} \right\rfloor.
$$

We obtained, thus, [\(5.2\)](#page-24-1) for each w_j and, since $\{u'_j\}_{j\in J}$ is an ordered system of r.t.-extensions that has u_1 as limit, we conclude that $\{w_j\}_{j\in J}$ is an ordered system of extensions of type [\(I\)](#page-23-0) that verifies $w = \sup_{i \in J} w_i$ and all the extensions in the ordered system have the same value for ϵ .

 \Box

The following table describes all the possibilities of definition for a symmetrically open extension of v, from K to $K(X_1, \ldots, X_n)$, avoiding the complex issues with algebraic geometry and specifying the formulas for the valuation group, the residual field and the properties of the extension of each identified type.

References

- [1] V. ALEXANDRU and N. POPESCU, Sur une classe de prolongements à $K(X)$ d'une valuation sur une corp K, Rev. Roumaine Math. Pures Appl., 5 (1988), 393-400.
- [2] V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, J. Math. Kyoto Univ., 24 (1988), 579-592.
- [3] V. Alexandru, N. Popescu and A. Zaharescu, Minimal pairs of definition of a residual transcendental extension of a valuation, J. Math. Kyoto Univ., 30 (1990) 207-225.
- [4] V. ALEXANDRU, N. POPESCU and A. ZAHARESCU, All valuations on $K(x)$, J. Math. Kyoto Univ., 30 (1990) 281-296.
- [5] N. BOURBAKI, Algebre Commutative, Herman, Paris, 1964.
- [6] G. Groza, N. Popescu and A. Zaharescu, All Non-Archimedean Norms on $K[X1, ..., Xr]$, *Glasg. Math. J.*, **52** (2010), 1-18, [http://dx.doi.org/10.1017/s0017089509990115.](http://dx.doi.org/10.1017/s0017089509990115)
- [7] S.K. KHANDUJA, On valuations of $K(x)$, Proc. Edinb. Math. Soc., 35 (1992) 419-426, [http://dx.doi.org/10.1017/s0013091500005708.](http://dx.doi.org/10.1017/s0013091500005708)
- [8] J. Ohm, Simple transcendental extensions of valued fields, J. Math. Kyoto Univ., 22 (1982), 201-221.
- [9] N. POPESCU and C. VRACIU, On the extension of a valuation on a field K to $K(X)$, Rend. Semin. Mat. Univ. Padova, 96 (1996), 1-14.
- [10] N. POPESCU and A. ZAHARESCU, On a class of valuations on $K(x)$, 11th National Conference of Algebra, Constanta, 1994, An. Stiint, Univ. "Ovidius" Constanta Ser. Mat., II (1994), 120-136.
- [11] C. Visan, Symmetric Extensions of a Valuation on a Field K to $K(X1, ..., Xn)$, Int. J. Algebra, 6, 26 (2012), 1273-1288.

Cătălina Vişan

University of Bucharest, Faculty of Mathematics and Computer Science 14 Academiei Street, 010014 Bucharest, Romania E-mail: catalina.visan@gmail.com