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1. Introduction and preliminaries

Fixed point theory focusses on the strategies for solving non-linear equa-
tions of the kind Tx = x in which T is a self mapping defined on a subset
of a metric space, a normed linear space, a topological vector space or some
pertinent framework.

Let A and B be two nonempty subsets of a metric space. In general
for nonself mapping T : A → B, the fixed point equation Tx = x may not
have a solution. In this case it is focused on the possibility of finding an
element x that is in closed proximity to Tx in some sense, i.e., to find an
approximate solution x ∈ A such that error d(x, Tx) is minimum, possibly
d(x, Tx) = dist(A,B).
A point p ∈ A is called best proximity point of T : A → B if d(p, Tp) =
dist(A,B), where

dist(A,B) := inf {d(x, y) : (x, y) ∈ A×B} .

In fact, best proximity point theorems have been studied to find necessary
conditions such that the minimization problem minx∈A d(x, Tx) , has at least
one solution.

A best proximity point becomes a fixed point if the underlying mapping
is a self-mapping. Therefore, it can be concluded that best proximity point
theorems generalize fixed point theorems in a natural way. In recent years,
existence of best proximity points of various nonself contractive mappings
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have been studied by several authors (cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 18, 19, 20, 21]).

Let A and B be two nonempty subsets of a metric space (X, d).
S. Basha introduced in [16] the concept of proximal contraction of first and
second kind as follows:

Definition 1.1. A mapping T : A→ B is said to be a proximal contraction
of first kind if there exists a non-negative number α < 1 such that, for all
u1, u2, x1, x2 ∈ A

d(u1, Tx1) = dist(A,B)

d(u2, Tx2) = dist(A,B)

}
⇒ d(u1, u2) ≤ αd(x1, x2) .

It can be observed that a self-mapping that is a proximal contraction of the
first kind reduces to a contraction.

Definition 1.2. A mapping T : A→ B is said to be a proximal contraction
of second kind if there exists a non-negative number α < 1 such that, for all
u1, u2, x1, x2 in A

d(u1, Tx1) = dist(A,B)

d(u2, Tx2) = dist(A,B)

}
⇒ d(Tu1, Tu2) ≤ αd(Tx1, Tx2) .

The requirement for a self-mapping T to be a proximal contraction of second
kind is that

d(T 2x1, T
2x2) ≤ αd(Tx1, Tx2)

for all x1, x2 in the domain of T . Conversely, any contraction self-mapping
is a proximal contraction of the second kind but converse is not true, it can
be seen in the following example.

Example 1.1. (see [16]) Consider R endowed with the Euclidean metric.
Let the self-mapping T : [0, 1]→ [0, 1] be defined as

Tx =

{
0 if x is rational

1 otherwise.

Then, T is a proximal contraction of the second kind but not a contraction.
Further, the above example exhibit that a self-mapping that is a proximal
contraction of second kind is not necessarily continuous.
Basha and Shahzad (see [17]) extended the above definitions to generalized
proximal contraction of first and second kind.

Definition 1.3. A mapping T : A→ B is said to be a generalized proximal
contraction of the first kind, if there exists non-negative numbers α, β, γ, δ
with α+ β + γ + 2δ < 1 such that the conditions
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d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B)

imply the inequality that

d(u1, u2) ≤ αd(x1, x2) + βd(x1, u1) + γd(x2, u2) + δ[d(x1, u2) + d(x2, u1)]

for all u1, u2, x1, x2 ∈ A.

If T is a self-mapping on A, then the requirement in the preceding definition
reduces to the following condition

d(Tx1, Tx2) ≤ αd(x1, x2) + βd(x1, Tx1) + γd(x2, Tx2)

+ δ[d(x1, Tx2) + d(x2, Tx1)].

Definition 1.4. A mapping T : A→ B is said to be a generalized proximal
contraction of the second kind if there exists non-negative numbers α, β, γ, δ
with α+ β + γ + 2δ < 1 such that the conditions

d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B)

imply the inequality that

d(Tu1, Tu2) ≤ αd(Tx1, Tx2) + βd(Tx1, Tu1) + γd(Tx2, Tu2)

+ δ[d(Tx1, Tu2) + d(Tx2, Tu1)]

for all u1, u2, x1, x2 ∈ A.

A mapping that is generalized proximal contraction of the second kind is not
necessarily a generalized proximal contraction of the first kind, as illustrated
in the next example given by [17].

Example 1.2. Consider the space R2 with Euclidean metric. Let A =
{(−1, x) : x ∈ R} and B = {(1, x) : x ∈ R}. Let T : A→ B be defined as

T ((−1, x)) =

{
(1, 1) if x is rational

(1,−1) otherwise

Then, T is a generalized proximal contraction of the second kind but not
a generalized proximal contraction of the first kind. Further, it can be
observed that the generalized proximal contractions are not necessarily con-
tinuous.

Motivated by the above studies, we now define notion of K−rational
proximal contraction of first and second kind:

Definition 1.5. A mapping T : A→ B is said to be a K−rational proximal
contraction of the first kind if there exist nonnegative real numbers α, β, γ, δ
and ω with α+ β + δ + γ + 2ω < 1, such that the conditions

d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B)

imply that
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d(u1, u2) ≤ αd(x1, x2) + β
d(x1, u1)d(x1, u2) + d(x2, u2)d(x2, u1)

d(x1, u2) + d(x2, u1)
+γd(x1, u1)

+ δd(x2, u2) + ω[d(x1, u2) + d(x2, u1)]

for all u1, u2, x1, x2 ∈ A, and d(x1, u2) + d(x2, u1) 6= 0.

Note that, if β = 0, then from the Definition 1.5 we get the definition of the
generalized proximal contraction of the first kind.

Definition 1.6. A mapping T : A → B is said to be a K−rational proxi-
mal contraction of the second kind if there exist nonnegative real numbers
α, β, γ, δ and ω with α+ β + γ + δ + 2ω < 1, such that the conditions

d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B)

imply the inequality

d(Tu1, Tu2) ≤ αd(Tx1, Tx2)

+ β
d(Tx1, Tu1)d(Tx1, Tu2) + d(Tx2, Tu2)d(Tx2, Tu1)

d(Tx1, Tu2) + d(Tx2, Tu1)

+ γd(Tx1, Tu1) + δd(Tx2, Tu2) + ω[d(Tx1, Tu2) + d(Tx2, Tu1)]

for all u1, u2, x1, x2 ∈ A and d(Tx1, Tu2) + d(Tx2, Tu1) 6= 0.

Note that, if β = 0, then from the Definition 1.6 we get the definition of the
generalized proximal contraction of the second kind with.

2. Main results

We now establish existence, uniqueness and convergence theorems for K−
rational proximal contraction of the first kind.

Theorem 2.1. Let A and B be nonempty, closed subsets of a complete
metric space (X, d) such that B is approximatively compact with respect to
A. Suppose that A0 and B0 are non-empty and T : A → B is a mapping
satisfying the following conditions:

(i) T is a K−rational proximal contraction of the first kind.

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A,B).
Further, for each fixed x0 ∈ A0, there is a sequence {xn}, defined by the
relation d(xn+1, Txn) = dist(A,B), converges to the best proximity point x
of the mapping T .

Proof. Let x0 be a fixed element in A0. Since T (A0) ⊆ B0, Tx0 ∈ B0 so,
there exists an element x1 ∈ A0 such that



Best proximity points 109

d(x1, Tx0) = dist(A,B).

Again, since Tx1 ∈ B0, it follows that there is x2 ∈ A0 such that

d(x2, Tx1) = dist(A,B).

Continuing this process, we can derive a sequence {xn} in A0, such that

d(xn+1, Txn) = dist(A,B),

for every nonnegative integer n.
Since T is a K−rational proximal contraction of the first kind, we have

d(xn, xn+1) ≤ αd(xn−1, xn)

+ β
d(xn−1, xn)d(xn−1, xn+1) + d(xn, xn+1)d(xn, xn)

d(xn−1, xn+1) + d(xn, xn)

+ γd(xn−1, xn)+δd(xn, xn+1)+ω[d(xn−1, xn+1)+d(xn, xn)]

≤ αd(xn−1, xn) + β
d(xn−1, xn)d(xn−1, xn+1)

d(xn−1, xn+1)

+ γd(xn−1, xn)+δd(xn, xn+1)+ω[d(xn−1, xn)+d(xn, xn+1)]

= αd(xn−1, xn) + βd(xn−1, xn) + γd(xn−1, xn) + δd(xn, xn+1)

+ ω[d(xn−1, xn) + d(xn, xn+1)]

=
α+ β + γ + ω

1− δ − ω
d(xn−1, xn).

It then follows that

d(xn, xn+1) ≤ λd(xn−1, xn),

where λ = α+β+γ+ω
1−δ−ω < 1. So that, {xn} is a Cauchy sequence and since

space is complete and A is closed, the sequence {xn} converges to some
x ∈ A.
Further,

d(x,B) ≤ d(x, Txn)

≤ d(x, xn+1) + d(xn+1, Txn)

= d(x, xn+1) + dist(A,B)

≤ d(x, xn+1) + d(x,B).

Taking as n→∞, we have

d(x,B) ≤ lim
n→∞

d(x, Txn) ≤ d(x,B),

hence d(x, Txn) → d(x,B). Since B is approximatively compact with re-
spect to A, the sequence {Txn} has a subsequence {Txnk

} converging to
some element y ∈ B. It follows that,
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d(x, y) = lim
k→∞

d(xnk+1, Txnk
) = dist(A,B),

hence x must be a member of A0. Since T (A0) ⊆ B0, hence Tx ∈ B0, then
by definition of xn there exists v ∈ A such that

d(v, Tx) = dist(A,B). (2.1)

Next, we prove that x = v. Since T is a K−rational proximal contraction of
the first kind, we get

d(v, xn+1) ≤ αd(x, xn) + β
d(x, v)d(x, xn+1) + d(xn, xn+1)d(xn, v)

d(x, xn+1) + d(xn, v)

+ γd(x, v) + δd(xn, xn+1) + ω[d(x, xn+1) + d(xn, v)]. (2.2)

Letting n→∞ in (2.2), we get

d(v, x) ≤ (γ + ω)d(v, x),

which implies d(v, x) = 0, that is x = v. Then it follows form (2.1), that

d(x, Tx) = d(v, Tx) = dist(A,B).

Now, to prove the uniqueness of the best proximity point, assume that u is
another best proximity point of T so that d(u, Tu) = dist(A,B). Since T is
a K− rational proximal contraction of the first kind, we have

d(x, u) ≤ αd(x, u) + β
d(x, x)d(x, u) + d(u, u)d(u, x)

d(x, u) + d(u, x)
+ γd(x, x) + δd(u, u)

+ ω[d(x, u) + d(u, x)]

≤ (α+ 2ω)d(x, u).

Since α+ 2ω < 1 , above inequality implies that d(x, u) = 0, that is x = u,
Hence, T has a unique best proximity point. This completes the proof. 2

By taking β = 0 in Theorem 2.1, we obtain the following result, due to
Basha and Shahzed [17, Theorem 3.1].

Corollary 2.1. Let A and B be two nonempty, closed subsets of a complete
metric space (X, d) such that B is approximatively compact with respect to
A. Suppose that A0 and B0 are non-empty and T : A → B satisfying the
following conditions:

(i) T is a generalized proximal contraction of the first kind.

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A,B).
Further, for any fixed x0 ∈ A0, there is a sequence {xn}, defined by the
relation d(xn+1, Txn) = dist(A,B), converges to the best proximity point x.
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The preceding best proximity point theorem subsumes the following re-
sult which serves as a non self mapping analogue of famous Banach contrac-
tion principle.

Corollary 2.2. (see [17]) Let A and B be two nonempty, closed subsets
of a complete metric space (X, d) such that B is approximatively compact
with respect to A. Suppose that A0 and B0 are non-empty and T : A → B
satisfying the following conditions:

(i) There exists a nonnegative real number α < 1 such that, for all u1, u2,
x1, x2 ∈ A, the condition

d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B)

imply that d(u1, u2) ≤ αd(x1, x2);

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A,B).
Further, for any fixed x0 ∈ A0, there is a sequence {xn}, defined by the
relation d(xn+1, Txn) = dist(A,B), converges to the best proximity point x
of the mapping T .

We now establish a result for K−rational proximal contraction of the second
kind.

Theorem 2.2. Let A and B be nonempty, closed subsets of a complete
metric space (X, d) such that A is approximatively compact with respect to
B. Suppose that A0 and B0 are non-empty and T : A → B is a satisfying
the following conditions:

(i) T is a continuous K− rational proximal contraction of the second kind;

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A,B).
Further, for any fixed x0 ∈ A0, there is a sequence {xn}, defined by the
relation d(xn+1, Txn) = dist(A,B), converges to the best proximity point x
of the mapping T .
If p is another best proximity point of T , then Tx = Tp, and so T is constant
on the set of all best proximity points of T .

Proof. As in the proof of Theorem 2.1, we can find a sequence {xn} in A0

such that

d(xn+1, Txn) = dist(A,B),
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for all non-negative integer n. Since T is a K− rational proximal contraction
of the second kind, we get

d(Txn, Txn+1) ≤ αd(Txn−1, Txn)

+ β
d(Txn−1, Txn)d(Txn−1, Txn+1) + d(Txn, Txn+1)d(Txn, Txn)

d(Txn−1, Txn+1) + d(Txn, Txn)

+ γd(Txn−1, Txn) + δd(Txn, Txn+1)

+ ω[d(Txn−1, Txn+1) + d(Txn, Txn)]

≤ αd(Txn−1, Txn) + β
d(Txn−1, Txn)d(Txn−1, Txn+1)

d(Txn−1, Txn+1)

+ γd(Txn−1, Txn) + δd(Txn, Txn+1)

+ ω[d(Txn−1, Txn) + d(Txn, Txn+1)]

= αd(Txn−1, Txn) + βd(Txn−1, Txn) + γd(Txn−1, Txn)

+ δd(Txn, Txn+1) + ω[d(Txn−1, Txn) + d(Txn, Txn+1)]

=
α+ β + γ + ω

1− δ − ω
d(Txn−1, Txn).

Set λ = α+γ+ω
1−β−δ−ω , then λ < 1 and it follows that

d(Txn, Txn+1) ≤ λd(Txn−1, Txn).

So that, {Txn} is a Cauchy sequence and, since (X, d) is complete and B is
closed, the sequence {Txn} converges to some y ∈ B.
Further,

d(y,A) ≤ d(y, xn+1) ≤ d(y, Txn) + d(Txn, xn+1)

≤ d(y, Txn) + dist(A,B)

= d(y, Txn) + d(y,A).

Letting n→∞, we obtain

d(y,A) ≤ lim
n→∞

d(y, xn+1) ≤ d(y,A),

hence d(y, xn)→ d(y,A). Since A is approximatively compact with respect
to B, the sequence {xn} has a subsequence {Txnk

} converging to some
element x ∈ A. By continuity of T , we have

d(x, Tx) = lim
k→∞

d(xnk+1, Txnk
) = dist(A,B),

i.e., x is a proximity point of T . Let us assume that p is another best
proximity point of T then

d(p, Tp) = dist(A,B).
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Since T is a K− rational proximal contraction of the second kind, we get

d(Tx, Tp) ≤ α(Tx, Tp) + β
d(Tx, Tx)d(Tx, Tp) + d(Tp, Tp)d(Tx, Tp)

d(Tx, Tp) + d(Tx, Tp)

+ γd(Tx, Tx) + δd(Tp, Tp) + ω[d(Tx, Tp) + d(Tx, Tp)].
(2.3)

From (2.3), we get

d(Tx, Tp) ≤ (α+ 2ω)d(Tx, Tp),

Since α + 2ω < 1, above inequality implies that d(Tx, Tp) = 0, that is
Tx = Tp. This completes the proof. 2

Taking β = 0 in Theorem 2.2, we get following.

Corollary 2.3. (see [17, Theorem 3.4]) Let A and B be two nonempty,
closed subsets of a complete metric space (X, d) such that A is approxima-
tively compact with respect to B. Also suppose that A0 and B0 are non-empty
and T : A→ B is a mapping satisfying the following conditions:

(i) T is a continuous generalized proximal contraction of the second kind.

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A,B).
Further, for any fixed x0 ∈ A0, there is a sequence {xn}, defined by the
relation d(xn+1, Txn) = dist(A,B), converges to the best proximity point x
of the mapping T , and T is constant on the set of all best proximity points
of T .

Taking β = γ = δ = 0 in the Theorem 2.1, we get following result.

Corollary 2.4. Let A and B be two nonempty, closed subsets of a complete
metric space (X, d) such that A is approximatively compact with respect to
B. Suppose that A0 and B0 are non-empty and T : A → B is a mapping
satisfying the following conditions:

(i) There exists a nonnegative real number α < 1 such that, for all u1, u2,
x1, x2 ∈ A, the condition

d(u1, Tx1) = dist(A,B) and d(u2, Tx2) = dist(A,B)

imply that d(Tu1, Tu2) ≤ αd(Tx1, Tx2).

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that d(x, Tx) = dist(A,B).
Further, for any fixed x0 ∈ A0, there is a sequence {xn}, defined by the
relation d(xn+1, Txn) = dist(A,B), converges to the best proximity point x
and T is constant on the set of all best proximity points of T .
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If we consider T to be K−rational proximal contraction of the first kind
as well as K− rational proximal contraction of a second kind, then the
assumption of approximately compactness of the domain or the co-domain
of the mapping can be dropped.

Theorem 2.3. Let A and B be nonempty, closed subsets of a complete
metric space (X, d). Suppose that A0 and B0 are non-empty and T : A→ B
is a mapping satisfying the following conditions:

(i) T is a K− rational proximal contraction of the first as well as a K−
rational proximal contraction of a second kind;

(ii) T (A0) ⊆ B0.

Then there exists a unique element x ∈ A such that

d(x, Tx) = dist(A,B),

and the sequence {xn} converges to the best proximity point x, were x0 is
any fixed element in A and d(xn+1, Txn) = dist(A,B) for all n ≥ 0.

Proof. Proceeding as in the point of the Theorem 2.1, we find a sequence
{xn} in A0 such that

d(xn+1, Txn) = dist(A,B),

for all nonnegative integer n. As in Theorem 2.1, we can show that the
sequence {xn} is a Cauchy sequence, and hence converges to some x ∈ A.
As in Theorem 2.2, it can be claimed that the sequence {Txn} is a Cauchy
sequence and hence converges to some y ∈ B. So, we get

d(x, y) = lim
n→∞

d(xn+1, Txn) = dist(A,B).

Therefore, x becomes an element of A0. Since T (A0) ⊆ B0, we have
d(u, Tx) = dist(A,B) for some u ∈ A.
Since T is a K− rational proximal contraction of the first kind, we obtain

d(u, xn+1) ≤ αd(x, xn) + β
d(x, u)d(x, xn+1) + d(xn, xn+1)d(xn, u)

d(x, xn+1) + d(xn, u)

+ γd(x, u) + δd(xn, xn+1) + ω[d(x, xn+1) + d(xn, u)].

Letting n→∞, we get

d(u, x) ≤ (γ + ω)d(u, x),

since (γ + ω) < 1, it implies that d(u, x) = 0, i.e. u = x. Thus it follows
that

d(x, Tx) = d(u, Tx) = dist(A,B),
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hence x is a best proximity point of T . We can prove the uniqueness of the
best proximity point of the mapping T as in Theorem 2.1.
This completes the proof. 2

Example 2.1. Consider the complete metric space X = R2 with the Eu-
clidean metric. Suppose that

A = {(x, y) : x ∈ [−2,−1] ∪ [1, 2], y ∈ [−1, 1]}

and
B = {(0, y) : y ∈ [−1, 1]}.

Now define a mapping T : A→ B as below:

T (x, y) =

{
(0, x+ 1) if x ≤ −1,

(0, x− 1) if x ≥ 1,

for all (x, y) ∈ A.
Then

dist(A,B) = 1,

A0 = {(±1, a) : a ∈ [−1, 1]}
B0 = {(0, 0)} ,

also T (A0) = {(0, 0)} ⊆ B0.
Set u1 = (1,−1), u2 = (−1, 1), x1 = (−2, 0) and x2 = (2, 0). Then, we have

Tu1 = (0, 0), Tu2 = (0, 0), Tx1 = (0,−1) and Tx2 = (0, 1) .

Further,
d(x1, Tu1) = 1, d(x2, Tu2) = 1

hence,
d(x1, Tu1) = d(x2, Tu2) = dist(A,B) .

Set α = 1
4 , β = 1

8 , γ = 1
16 , δ = 1

10 , and ω = 1
20 , then

α+ β + γ + δ + 2ω =
51

80
< 1 .

After a simple calculations, we can see that

d(u1, u2) � αd(x1, x2) + β
d(x1, u1)d(x1, u2) + d(x2, u2)d(x2, u1)

d(x1, u2) + d(x2, u1)
.

Hence, T is not a K− rational proximal contraction of the first kind.
Again,

d(Tx1, Tx2) = 2, d(Tu1, Tu2) = 0, d(Tx1, Tu1) = 1,

d(Tx2, Tu2) = 1, d(Tx1, Tu2) = 1, d(Tx2, Tu1) = 1,
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hence

d(Tu1, Tu2) ≤αd(Tx1, Tx2)

+ β
d(Tx1, Tu1)d(Tx1, Tu2) + d(Tx2, Tu2)d(Tx2, Tu1)

d(Tx1, Tu2) + d(Tx2, Tu1)
,

i.e., T is a K−rational proximal contraction of the second kind.

We now give an example of K− rational proximal contraction which is
not a generalized proximal contraction studied by Basha and Shehzad in [17].

Example 2.2. Let X = R2 with the metric

d((x, y), (x
′
, y

′
)) = max{|x− x′ |, |y − y′ |}

and let A = {(x, 0) : 0 ≤ x ≤ 1} and B = {(x, 1) : 0 ≤ x ≤ 1}. Then
dist(A,B) = 1, A0 = A and B0 = B. define a mapping T : A → B by
T (x, 0) =

(
x
2 , 1
)
. We can see that T (A0) ⊂ B0. Set α = 1

60 , β = 1
2 , γ = 1

30 ,
δ = 1

30 , and ω = 1
6 then α + β + δ + γ + 2 · ω = 55

60 < 1. Pick u1 = (0, 0),
u2 =

(
1
2 , 0
)
, x1 = (1, 0) and x2 = (1, 0), then

Tu1 = (0, 1), Tu2 =

(
1

4
, 1

)
, Tx1 =

(
1

2
, 1

)
Tx2 =

(
1

2
, 1

)
, d(x1, Tu1) = d(x2, Tu2) = dist(A,B) = 1 .

Also,

d(x1, x2) = 0, d(u1, u2) =
1

2
, d(x1, u1) = 1,

d(x2, u2) =
1

2
, (x1, u2) =

1

2
, d(x2, u1) = 1.

We can see that

d(u1, u2) ≤αd(x1, x2) +
βd(x1, u1)d(x1, u2) + d(x2, u2)d(x2, u1)

d(x1, u2) + d(x2, u1)
,

hence T is a K− rational proximal contraction of the first kind. But,

d(u1, u2) �αd(x1, x2) + γd(x1, u1) + δd(x2, u2) + ω[d(x1, u2) + d(x2, u1)] ,

hence T is not a generalized proximal contraction of the first kind. Now
turn to the proximal contraction of second kind.

d(Tx1, Tx2) = 0, d(Tu1, Tu2) =
1

4
, d(Tx1, Tu1) =

1

2
,

d(Tx2, Tu2) =
1

4
, d(Tx1, Tu2) =

1

4
, d(Tx2, Tu1) =

1

2
.
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Then, we have

d(Tu1, Tu2) ≤ αd(Tx1, Tx2)

+
βd(Tx1, Tu1)d(Tx1, Tu2) + d(Tx2, Tu2)d(Tx2, Tu1)

d(Tx1, Tu2) + d(Tx2, Tu1)
.

Hence T is a K− rational proximal contraction of the second kind, also

d(Tu1, Tu2) �αd(Tx1, Tx2) + γd(Tx1, Tu1)

+ δd(Tx2, Tu2) + ω[d(Tx1, Tu2) + d(Tx2, Tu1)].

Hence T is not a generalized proximal contraction of the second kind.
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