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Abstract - This paper deals with a nonlinear multiobjective semi-infinite
programming problem involving generalized (C,α, ρ, d)-convex functions.
We obtain sufficient optimality conditions and formulate the Mond-Weir-
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1. Introduction

Semi-infinite means that we have finitely many decision variables
x = (x1, x2, . . . , xn) and the feasible set is defined by infinitely many in-
equality constraints. Due to a growing number of theoretical and practical
applications, semi-infinite programming has recently become one of the most
substantial research areas in applied mathematics and operations research.
There are many applications of semi-infinite programming in different fields
such as chebyshev approximation, robotics, mathematical physics, engineer-
ing design, optimal control, transportation problems, fuzzy sets, robust op-
timization etc. For more details on semi-infinite programming, we refer to
the survey papers [8-10, 12, 17, 22]. We also refer to the recent works of
Canovas et al. [2, 3].

Shapiro (see [21]) gave results on Lagrangian duality for convex semi-
infinite programming problems. Kanzi and Nobakhtian (see [13]) have es-
tablished necessary and sufficient optimality conditions for nonsmooth semi-
infinite programming problem under various constraints qualifications. Later,
Mishra et al. (see [19]) formulated the Wolfe and Mond-Weir-type dual
models and establish duality theorems for the nonsmooth semi-infinite pro-
gramming problem discussed in [13].
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The concept of (F, ρ)-convexity was introduced by Preda [20] as an ex-
tension of F -convexity (see [11]) and ρ-convexity (see [23]) to obtain some
duality results. Aghezzaf and Hachimi (see [1]) introduced some new classes
of generalized (F, ρ)-convexity for vector-valued functions and establish suf-
ficient optimality conditions and duality results for a nonlinear multiobjec-
tive programming problem. Liang et al. introduced in [14] the concept of
(F, α, ρ, d)-convexity which contains the class of (F, ρ)-convex functions and
obtained some optimality conditions and duality results for nonlinear frac-
tional programming problems. Later, Liang et al. (see [15]) extended the
results of [14] for a class of multiobjective fractional programming problems.
Yuan et al. (see [24]) defined (C,α, ρ, d)-convexity, which is a generalization
of (F, α, ρ, d)-convexity and establish optimality conditions and duality re-
sults for nondifferentiable minimax fractional programming problems involv-
ing the generalized convex functions. Chinchuluun et al. (see [4]) considered
optimality conditions and duality results for some multiobjective program-
ming, multiobjective fractional programming and multiobjective variational
programming problems with (C,α, ρ, d) type-I functions, see also [5-7, 25,
26]. Recently, Long (see [16]) has obtained optimality conditions and duality
results for nondifferentiable multiobjective fractional programming problems
using (C,α, ρ, d)-convexity.

In this paper, we obtain sufficient optimality conditions and formu-
late the Mond-Weir-type dual model for the nonlinear multiobjective semi-
infinite programming problem. We establish weak, strong and strict converse
duality theorems relating the primal problem and the Mond-Weir-type-dual
problem under (generalized) (C,α, ρ, d)-convexity and regularity conditions.

2. Preliminaries

Throughout this paper, let Rn be the n-dimensional Euclidean space and
Rn+ be the non-negative orthant of Rn. We adopt the following conventions
for vectors in the Euclidean space Rn

x 5 y ⇔ xi 5 yi, i = 1, . . . , n

x ≤ y ⇔ xi 5 yi, i = 1, . . . , n and x 6= y

x < y ⇔ xi < yi, i = 1, . . . , n.

We consider the following nonlinear multiobjective semi-infinite pro-
gramming problem:

(P) Min f(x)

Subject to gj(x) 5 0, j ∈ J ,

where J is an index set which is possibly infinite, f(x) = (f1(x), . . . , fp(x)),
fi(i ∈ {1, 2, . . . , p}) and gj(j ∈ J) are differentiable functions from a non-
empty open set X ⊆ Rn to R. We consider the set of feasible solutions for
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(P) as follows:

S = {x ∈ X | gj(x) 5 0, j ∈ J} .

For x0 ∈ S the index set of active constraints is denoted by I = {j ∈
J | gj(x0) = 0}. Let us assume that α : X × X → R+ \ {0}, ρ ∈ R and
d : X × X → R+ satisfies d(x, x0) = 0 if and only if x = x0. Let C :
X × X × Rn → R be a function which satisfies C(x,x0)(0) = 0 for any
(x, x0) ∈ X ×X.

The following definitions are taken from [4].

Definition 2.1. A function C : X ×X × Rn → R is said to be convex on
Rn if and only if for any fixed (x, x0) ∈ X ×X and for any y1, y2 ∈ Rn,

C(x,x0)(λy1 + (1− λ)y2) 5 λC(x,x0)(y1) + (1− λ)C(x,x0)(y2), ∀λ ∈ (0, 1).

Definition 2.2. (i) A differentiable function fi : X → R is said to be
(strictly) (C,αi, ρi, di)-convex at x0 ∈ X if and only if for any x ∈ X,

fi(x)− fi(x0)
αi(x, x0)

= (>)C(x,x0)(∇fi(x0)) + ρi
di(x, x0)

αi(x, x0)
.

(ii) The vector-valued function f : X → Rp is (C,α, ρ, d)-convex at x0 if
each of its components fi is (C,αi, ρi, di)-convex at x0.

(iii) The function f is said to be (C,α, ρ, d)-convex on X if and only if
it is (C,α, ρ, d)-convex at every point in X. In particular, f is said to be
strongly (C,α, ρ, d)-convex on X if and only if ρ > 0.

The following convention will be used: if f is a p-dimensional vector-
valued function, then the vector

(
C(x,x0)(∇f1(x0)), . . . , C(x,x0)(∇fp(x0))

)
will be denoted by C(x,x0)(∇f(x0)).

Example 2.1. (see [16]) Let X =
{
x | π4 ≤ x ≤

π
2

}
, ρ = −1, α(x, x0) = 1,

d(x, x0) =
√

(x− x0)2 and C(x,x0)(a) = a2(x− x0) for any (x, x0) ∈ X ×X.
Let f(x) = sin2 x. Then, it is easy to verify that f(x) is (C,α, ρ, d)-convex
at x0 = π

4 .

Definition 2.3. (i) A differentiable function fi : X → R is said to be
(strictly) (C,αi, ρi, di)-pseudo-convex at x0 ∈ X if and only if for any x ∈ X,

fi(x) < (5)fi(x0)⇒ C(x,x0)(∇fi(x0)) + ρi
di(x, x0)

αi(x, x0)
< 0.

(ii) The vector-valued function f : X → Rp is (C,α, ρ, d)-pseudo-convex
at x0 if each of its components fi is pseudo-convex at x0.
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Definition 2.4. (i) A differentiable function fi : X → R is said to be weak
strictly (C,αi, ρi, di)-pseudo-convex at x0 ∈ X if and only if for any x ∈ X,

fi(x) ≤ fi(x0)⇒ C(x,x0)(∇fi(x0)) + ρi
di(x, x0)

αi(x, x0)
< 0.

(ii) The vector-valued function f : X → Rp is weak strictly (C,α, ρ, d)-
pseudo-convex at x0 if each of its components fi is weak strictly (C,αi, ρi, di)-
pseudo-convex at x0.

Definition 2.5. (i) A differentiable function fi : X → R is said to be strong
(C,αi, ρi, di)-pseudo-convex at x0 ∈ X if and only if for any x ∈ X,

fi(x) ≤ fi(x0)⇒ C(x,x0)(∇fi(x0)) + ρi
di(x, x0)

αi(x, x0)
≤ 0.

(ii) The vector-valued function f : X → Rp is strong (C,α, ρ, d)-pseudo-
convex at x0 if each of its components fi is strong pseudo-convex at x0.

Definition 2.6. (i) A differentiable function fi : X → R is said to be
(C,αi, ρi, di)-quasi-convex at x0 ∈ X if and only if for any x ∈ X,

fi(x) 5 fi(x0)⇒ C(x,x0)(∇fi(x0)) + ρi
di(x, x0)

αi(x, x0)
5 0.

(ii) The vector-valued function f : X → Rp is (C,α, ρ, d)-quasi-convex
at x0 if each of its components fi is (C,αi, ρi, di)-quasi-convex at x0.

Definition 2.7. (i) A differentiable function fi : X → R is said to be weak
(C,αi, ρi, di)-quasi-convex at x0 ∈ X if and only if for any x ∈ X,

fi(x) ≤ fi(x0)⇒ C(x,x0)(∇fi(x0)) + ρi
di(x, x0)

αi(x, x0)
5 0.

(ii) The vector-valued function f : X → Rp is weak (C,α, ρ, d)-quasi-
convex at x0 if each of its components fi is weak (C,αi, ρi, di)-quasi-convex
at x0.

Definition 2.8. A feasible point x0 ∈ S is said to be an efficient solution for
problem (P) if and only if there exists no point x ∈ S such that f(x) ≤ f(x0).

Definition 2.9. A feasible point x0 ∈ S is said to be a weak efficient so-
lution for problem (P) if and only if there exists no point x ∈ S such that
f(x) < f(x0).

We note that every efficient solution is weak efficient, however, the converse
is not always true.
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3. Optimality conditions

We state the following necessary optimality conditions for the nonlinear
multiobjective semi-infinite programming problem (P):

Theorem 3.1. (Necessary optimality conditions) Let x0 be an efficient so-
lution for (P) and I(x0) 6= ∅. If (P) satisfies a suitable constraint qualifica-
tion (see [18]) at x0 then there exist ū ∈ Rp, v̄ = (v̄j)j∈I , such that

ȳT∇f(x0) + v̄T∇g(x0) = 0,

v̄T g(x0) = 0,

ū = 0, v̄ = 0 and vj 6= 0 for finitely many j ∈ I.

Theorem 3.2. Assume that there exist a feasible solution x0 for (P) and
vectors ū ∈ Rp and v̄ = (v̄j)j∈J , such that

ūT∇f(x0) + v̄T∇g(x0) = 0, (3.1)

v̄T g(x0) = 0,

ū > 0, v̄ = 0 and vj 6= 0 for finitely many j ∈ I.

Let f be strong (C,α1, ρ1, d1)-pseudo-convex at x0 and gI be (C,α2, ρ2, d2)-
quasi-convex at x0 with

p∑
i=1

ūiρ
1
i

d1i (x, x0)

α1
i (x, x0)

+
∑
j∈I

v̄jρ
2
j

d2j (x, x0)

α2
j (x, x0)

= 0. (3.2)

Then x0 is an efficient solution for (P).

Proof. Suppose that x0 is not an efficient solution for (P). Then there
exists a feasible solution x ∈ S such that

f(x) ≤ f(x0).

As gI(x0) = 0, hence

gI(x) 5 gI(x0).

Since f is strong (C,α1, ρ1, d1)-pseudo-convex at x0 and gI is (C,α2, ρ2, d2)-
quasi-convex at x0, it follows from the definitions that

C(x,x0)(∇f(x0)) + ρ1
d1(x, x0)

α1(x, x0)
≤ 0

and

C(x,x0)(∇gI(x0)) + ρ2I
d2I(x, x0)

α2
I(x, x0)

5 0.
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Using the facts that ū > 0, v̄ = 0 and C is convex, from the above inequal-
ities, we can conclude that

C(x,x0)

(
1

τ
ūT∇f(x0)+

1

τ
v̄TI ∇gI(x0)

)
+

1

τ
ūTρ1

d1(x, x0)

α1(x, x0)
+

1

τ
v̄TI ρ

2
I

d2I(x, x0)

α2
I(x, x0)

<0,

where τ =
∑p

i=1 ūi +
∑

j∈I v̄j .
Now from equation (3.1) and since C(x,x0) = 0, this implies,

p∑
i=1

ūiρ
1
i

d1i (x, x0)

α1
i (x, x0)

+
∑
j∈I

v̄jρ
2
j

d2j (x, x0)

α2
j (x, x0)

< 0,

which contradicts (3.2). Hence, x0 is an efficient solution for (P). 2

Example 3.1. Consider the following problem:

(P1) min f(x)
Subject to gj(x) 5 0, j ∈ J ,
x ∈ R,

where F : X(= R) → R2 and gj : X(= R) → R, j ∈ J are the functions
defined as:

f(x) = (f1(x), f2(x)) = (x2 − 2x, x3 − x2)

and
g1(x) = x2(x− 2),

g2(x) = x3 + x,

gk(x) = x+
1

k
, k = 3, 4, . . . .

Again, let C : R×R×R→ R be a function defined by C(x,x0)(a) = a(x−x0).
The set of feasible solutions for the problem (P1) is

S = {x ∈ R | gj(x) 5 0} = {x ∈ R |x 5 0}.

It is easy to verify that fi (i = 1, 2) are strong (C,αi, ρi, di)-pseudo-convex
at x0 = 0 with ρi = 0, α(x, x0) = 1 and di(x, x0) = 1. Also, gj(j ∈ J)
are (C,αj , ρj , dj)-quasi-convex at x0 = 0, with ρj = 0, αj(x, x0) = 1 and
dj(x, x0) = 1.

Clearly, x0 = 0 is a feasible solution for (P1) and it satisfies the as-
sumptions of Theorem 3.2, where ū =

(
1
2 , 1
)
, v̄ = (1, 1, 0, 0, . . . , 0, . . .). For

x0 = 0, the index set of active constraints for (P1) is I = {j ∈ J | gj(x0) =
0} = {1, 2}.

We observe that there exists no point x ∈ S such that f(x) ≤ f(x0).
Hence, x0 = 0 is an efficient solution for (P1) (Figure 1).

In Theorem 3.2, we require that ū > 0. In order to relax this condition,
we need to put some other generalized convexity conditions on f and gI .
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Figure 1. Plot for the objective function f(x) = (f1(x), f2(x)).

Theorem 3.3. Assume that there exist a feasible solution x0 for (P) and
vectors ū ∈ Rp and v̄ = (v̄j)j∈J , v̄j ∈ R such that

ūT∇f(x0) + v̄T∇g(x0) = 0,

v̄T g(x0) = 0,

ū ≥ 0m v̄ = 0 and vj 6= 0 for finitely many j ∈ I.

Let f be weak strictly (C,α1, ρ1, d1)-pseudo-convex at x0 and gI be (C,α2, ρ2, d2)-
quasi-convex at x0 with

p∑
i=1

ūiρ
1
i

d1i (x, x0)

α1
i (x, x0)

+
∑
j∈I

v̄jρ
2
j

d2j (x, x0)

α2
j (x, x0)

= 0.

Then x0 is an efficient solution for (P).

Proof. Suppose that x0 is not an efficient solution for (P). Then there
exists a feasible solution x ∈ S such that

f(x) ≤ f(x0).

As gI(x0) = 0, hence
gI(x) 5 gI(x0).

Since f is weak strictly (C,α1, ρ1, d1)-pseudo-convex at x0 and gI is (C,α2, ρ2, d2)-
quasi-convex at x0, it follows from the definitions that

C(x,x0(∇f(x0)) + ρ1
d1(x, x0)

α1(x, x0)
< 0
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and

C(x,x0)(∇gI(x0)) + ρ2I
d2I(x, x0)

α2
I(x, x0)

5 0.

The rest of the proof is similar to that of Theorem 3.2. 2

Theorem 3.4. Assume that there exist a feasible solution x0 for (P) and
vectors ū ∈ Rp and v̄ = (v̄j)j∈J , v̄j ∈ R such that

ūT∇f(x0) + v̄T∇g(x0) = 0,

v̄T g(x0) = 0,

ū ≥ 0, v̄ ≥ 0 and v̄j 6= 0 for finitely many j ∈ I.

Let f be weak (C,α1, ρ1, d1)-quasi-convex at x0 and gI be strictly (C,α2, ρ2, d2)-
pseudo-convex at x0 with

p∑
i=1

ūiρ
1
i

d1i (x, x0)

α1
i (x, x0)

+
∑
j∈I

v̄jρ
2
j

d2j (x, x0)

α2
j (x, x0)

= 0.

Then x0 is an efficient solution for (P).

Proof. Suppose that x0 is not an efficient solution for (P). Then there
exists a feasible solution x ∈ S such that

f(x) ≤ f(x0).

As gI(x0), hence

gI(x) 5 gI(x0).

Since f is weak (C,α1, ρ1, d1)-quasi-convex at x0 and gI is strictly (C,α2, ρ2, d2)-
pseudo-convex at x0, it follows from the definitions that

C(x,x0)(∇f(x0)) + ρ1
d1(x, x0)

α1(x, x0)
5 0

and

C(x,x0)(∇gI(x0)) + ρ2I
d2I(x, x0)

α2
I(x, x0)

< 0.

The rest of the proof is similar to that of Theorem 3.2. 2

Since an efficient solution is also weak efficient solution, Theorem 3.2,
Theorem 3.3 and Theorem 3.4 are still valid for weak efficiency. However,
we can weaken the convexity assumptions for weak efficient solutions.
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Theorem 3.5. Assume that there exist a feasible solution x0 for (P) and
vectors ū ∈ Rp and v̄ = (v̄j)j∈J , v̄j ∈ R such that

ūT∇f(x0) + v̄T∇g(x0) = 0,

v̄T g(x0) = 0,

ū ≥ 0, v̄ ≥ 0 and vj 6= 0 for finitely many j ∈ I.

Let f be (C,α1, ρ1, d1)-pseudo-convex at x0 and gI be (C,α2, ρ2, d2)-quasi-
convex at x0 with

p∑
i=1

ūiρ
1
i

d1i (x, x0)

α1
i (x, x0)

+
∑
j∈I

v̄jρ
2
j

d2j (x, x0)

α2
j (x, x0)

= 0.

Then x0 is a weak efficient solution for (P).

Proof. Suppose that x0 is not a weak efficient solution for (P). Then there
exists a feasible solution x ∈ S such that

f(x) < f(x0).

As gI(x0) = 0, hence
gI(x) 5 gI(x0).

Since f is (C,α1, ρ1, d1)-pseudo-convex at x0 and gI is (C,α2, ρ2, d2)-quasi-
convex at x0, it follows from the definitions that

C(x,x0)(∇f(x0)) + ρ1
d1(x, x0)

α1(x, x0)
< 0

and

C(x,x0)(∇gI(x0)) + ρ2I
d2I(x, x0)

α2
I(x, x0)

5 0.

The rest of the proof is similar to that of Theorem 3.2. 2

4. Duality

In this section we formulate the following Mond-Weir-type dual problem
(MWD) for the nonlinear multiobjective semi-infinite programming problem
(P) and establish weak, strong and strict converse duality theorems.

(MWD) Maxf(y) = (f1(y), f2(y), . . . , fp(y))

Subject to

p∑
i=1

ui∇fi(y) +
∑
j∈J

vj∇gj(y) = 0, (4.1)

v̄T g(y) = 0, v = (vj)j∈J , vj ∈ R+ and vj 6= 0 for finitely many j ∈ J
p∑
i=1

ui = 1, ui > 0(i = 1, 2, . . . , p), y ∈ X ⊆ Rn,
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where fi, gj are differentiable functions from a nonempty open set X ⊆ Rn
to R.

Theorem 4.1. (Weak duality) Let x0 be a feasible solution for (P) and
(y0, u, v) be a feasible solution for (MWD), and let any of the following
hold:

(a) f be (C,α1, ρ1, d1)-convex at y0, g be (C,α2, ρ2, d2)-convex at y0 and

p∑
i=1

uiρ
1
i

d1i (x0, y0)

α1
i (x0, y0)

+
∑
j∈J

vjρ
2
j

d2j (x0, y0)

α2
j (x0, y0)

= 0. (4.2)

(b) f be strong (C,α1, ρ1, d1)-pseudo-convex at y0 and vT g be (C,α2, ρ2, d2)-
quasi-convex at y0 and

p∑
i=1

uiρ
1
i

d1i (x0, y0)

α1
i (x0, y0)

+ ρ2
d2(x0, y0)

α2(x0, y0)
= 0. (4.3)

(c) uT f be (C,α1, ρ1, d1)-pseudo-convex at y0 and vT g be (C,α2, ρ2, d2)-
quasi-convex at y0, and

ρ1
d1(x0, y0)

α1(x0, y0)
+ ρ2

d2(x0, y0)

α2(x0, y0)
= 0. (4.4)

Then the following cannot hold,

f(x0) ≤ f(y0). (4.5)

Proof. (a) Let x0 and (y0, u, v) be the feasible solutions for (P) and
(MWD), respectively. It follows that∑

j∈J
vjgj(x0) 5 0 5

∑
j∈J

vjgj(y0).

By the (C,α2, ρ2, d2)-convexity of g, we get

0 =
∑
j∈J

vj
gj(x0)− gj(y0)
α2
j (x0, y0)

=
∑
j∈J

vjC(x0,y0)(∇gj(y0)) +
∑
j∈J

vjρ
2
j

d2j (x0, y0)

α2
j (x0, y0)

.

(4.6)
Now, suppose that (4.5) holds. Again, by the assumption on fi(i = 1, 2, . . . , p),
we have

fi(x0)− fi(y0)
α1
i (x0, y0)

= C(x0,y0)(∇fi(y0)) + ρ1i
d1i (x0, y0)

α1
i (x0, y0)

. (4.7)

Let us denote

τ =

p∑
i=1

ui +
∑
j∈J

vj .
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It follows from equations (4.1), (4.2), (4.5)−(4.7) and the convexity of
C(x0,y0)(·) that

0 >

p∑
i=1

ui
τ

fi(x0)− fi(y0)
α1
i (x0, y0)

+
∑
j∈J

vj
τ

gj(x0)− gj(y0)
α2
j (x0, y0)

=
p∑
i=1

ui
τ

(
C(x0,y0)(∇fi(y0))

)
+
∑
j∈J

vj
τ

(
C(x0,y0)(∇gj(y0))

)
+

p∑
i=1

ui
τ
ρ1i
d1i (x0, y0)

α1
i (x0, y0)

+
∑
j∈J

vj
τ
ρ2j
d2j (x0, y0)

α2
j (x0, y0)

= C(x0,y0)

1

τ

 p∑
i=1

ui∇fi(y0) +
∑
j∈J

vj∇gj(y0)


+

1

τ

 p∑
i=1

uiρ
1
i

d1i (x0, y0)

α1
i (x0, y0)

+
∑
j∈J

vjρ
2
j

d2j (x0, y0)

α2
j (x0, y0)

 ,

= 0,

which gives a contradiction. Hence, the proof of part (a) is complete.

(b) Suppose that (4.5) holds. That is f(x0) ≤ f(y0), From the feasibility
conditions of (P) and (MWD), we have

∑
j∈J

vjgj(x0) 5 0 5
∑
j∈J

vjgj(y0).

Thus, by the assumptions on f and vT g we get

C(x0,y0) (∇f(y0)) + ρ1
d1(x0, y0)

α21(x0, y0)
5 0

and

C(x0,y0)

∑
j∈J

vj∇gj(y0)

+ ρ2
d2(x0, y0)

α2(x0, y0)
5 0.

Let us denote

τ =

p∑
i=1

ui + 1.
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It follows from the above two inequalities, equation (4.3) and the convexity
of C(x0,y0)(·) that

0 >

p∑
i=1

ui
τ

(
C(x0,y0)(∇fi(y0))

)
+

1

τ

C(x0,y0)

∑
j∈J

vj∇gj(y0)


+

p∑
i=1

ui
τ
ρ1i
d1i (x0, y0)

α1
i (x0, y0)

+
1

τ
ρ2
d2(x0, y0)

α2(x0, y0)

= C(x0,y0)

1

τ

 p∑
i=1

ui∇fi(y0) +
∑
j∈J

vj∇gj(y0)


+

p∑
i=1

ui
τ
ρ1i
d1i (x0, y0)

α1
i (x0, y0)

+
1

τ
ρ2
d2(x0, y0)

α2(x0, y0)

= 0,

which gives a contradiction. Hence, the proof of part (b) is complete.

(c) Suppose that (4.5) holds. That is f(x0) ≤ f(y0). Also, from the
feasibility conditions of (P) and (MWD), we have∑

j∈J

vjgj(x0) 5 0 5
∑
j∈J

vjgj(y0).

Thus, by the assumptions on uT f and vT g, we get

C(x0,y0)

(
p∑

i=1

ui∇fi(y0)

)
+ ρ1

d1(x0, y0)

α1(x0, y0)
< 0

and

C(x0,y0)

∑
j∈J

vj∇gj(y0)

+ ρ2
d2(x0, y0)

α2(x0, y0)
5 0.

Let τ = 2. Now, it follows from the above two inequalities, equation (4.4)
and the convexity of C(x0,y0)(·) that

0 >
1

τ
C(x0,y0)

(
p∑

i=1

ui∇fi(y0)

)
+

1

τ

C(x0,y0)

∑
j∈J

vj∇gj(y0)


+

1

τ
ρ1
d1(x0, y0)

α1(x0, y0)
+

1

τ
ρ2
d2(x0, y0)

α2(x0, y0)

= C(x0,y0)

1

τ

 p∑
i=1

ui∇fi(y0) +
∑
j∈J

vj∇gj(y0)


+

1

τ

(
ρ1
d1(x0, y0)

α1(x0, y0)
+ ρ2

d2(x0, y0)

α2(x0, y0)

)
= 0,

which gives a contradiction. Hence, the proof of part (c) is complete. 2
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Theorem 4.2. (Strong duality) Let x0 ∈ S be an efficient solution for (P)
and assume that (P) satisfies a suitable constraint qualification (see [18]).
Then there exist ū ∈ Rp+, ū > 0, v̄ = (v̄j)j∈J , vj ∈ R+, such that (x0, ū, v̄) is
a feasible solution for (MWD). Furthermore, if the assumptions of Theorem
4.1 are satisfied, then (x0, ū, v̄) is an efficient solution for (MWD) and the
objective values of (P) and (MWD) are equal.

Proof. As x0 ∈ S is an efficient solution for (P) and a suitable constraint
qualification (see [18]) is satisfied, by Theorem 3.1, there exist ū ∈ Rp+,
ū > 0, v̄ = (v̄j)j∈J , vj ∈ R+, such that (x0, ū, v̄) is a feasible solution for
(MWD). If (x0, ū, v̄) is not an efficient solution for (MWD), then there exists
a feasible solution (x∗, u∗, v∗) for (MWD), such that

(f1(x0), . . . , fp(x0)) ≤ (f1(x
∗), . . . , fp(x

∗)),

which contradicts Theorem 4.1. Hence, the proof is complete. 2

Theorem 4.3. (Strict converse duality) Let x0 and (x∗, u∗, v∗) be the ef-
ficient solutions for (P) and (MWD), respectively. If the assumptions of
Theorem 4.2 are satisfied and f is strictly (C,α1, ρ1, d1)-convex at x∗, then
x0 = x∗.

Proof. We proceed by contradiction. Let x0 6= x∗. By strong duality
theorem, there exist ū ∈ Rp+, ū > 0, v̄ = (v̄j)j∈J , v̄j ∈ R+ such that
(x0, ū, v̄) is an efficient solution for (MWD). Hence,

f(x0) = f(x∗). (4.8)

Since x0 and (x∗, u∗, v∗) are the feasible solutions for (P) and (MWD), re-
spectively, it follows that∑

j∈J
v∗j gj(x0) 5 0 5

∑
j∈J

v∗j gj(x
∗). (4.9)

By the (C,α2, ρ2, d2)-convexity of g we get

0 ≥ q
∑
j∈J

v∗j
gj(x0)− gj(x∗)
α2
j (x0, x

∗)
=
∑
j∈J

v∗jC(x0,x∗)(∇gj(x
∗)) +

∑
j∈J

v∗j ρ
2
j

d2j (x0, x
∗)

α2
j (x0, x

∗)
.

(4.10)

Again, by the assumption on fi (i = 1, 2, . . . , p), we have

fi(x0)− fi(x∗)
α1
i (x0, x

∗)
> C(x0,x∗)(∇fi(x

∗)) + ρ1i
d1i (x0, x

∗)

α1
i (x0, x

∗)
. (4.11)

Let us denote

τ =

p∑
i=1

u∗i +
∑
j∈J

v∗j .
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It follows from equations (4.8)−(4.11) and the convexity of C(x0,x∗)(·) that

0 >

p∑
i=1

u∗i
τ

(
C(x0,x∗)(∇fi(x

∗))
)

+
∑
j∈J

v∗j
τ

(
C(x0,x∗)(∇gj(x

∗))
)

+

p∑
i=1

u∗i
τ
ρ1i
d1i (x0, x

∗)

α1
i (x0, x

∗)
+
∑
j∈J

v∗j
τ
ρ2j
d2j (x0, x

∗)

α2
j (x0, x

∗)

= C(x0,x∗)

1

τ

 p∑
i=1

u∗i∇fi(x∗) +
∑
j∈J

v∗j∇gj(x∗)


+

1

τ

∑
i=1

6pu∗i ρ
1
i

d1i (x0, x
∗)

α1
i (x0, x

∗)
+
∑
j∈J

v∗j ρ
2
j

d2j (x0, x
∗)

α2
j (x0, x

∗)


= 0,

which gives a contradiction. Therefore, x0 = x∗. 2
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