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Abstract - Generally, modelling of the plastic response of porous solids
is done using stress-based plastic potentials. However, in order to gain
understanding of the combined effects of all invariants for general three-
dimensional loadings, a strain-rate based approach is required. In this paper,
this approach is used to investigate the dilatational response for porous
Tresca and von Mises solids for both compressive and tensile loadings. It is
demonstrated that the presence of voids in the respective matrices induces
dependence on all invariants, the noteworthy finding being the key role
played by the plastic flow of the matrix. If the matrix is governed by the
von Mises criterion, the shape of the cross-sections of the strain-rate surface
with the octahedral plane deviates slightly from a circle, and changes very
little as the absolute value of the mean strain rate increases. In contrast, if
the matrix obeys Tresca’s criterion, the cross-section evolves from a regular
hexagon to a smooth triangle with rounded corners. It is shown that the very
specific couplings between invariants dramatically affect damage evolution
in the respective porous materials.
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1. Introduction

Ziegler has shown in [28] that a strain-rate potential (SRP) can be associated
to any convex stress-potential. A strain-rate based approach is generally
adopted in crystal plasticity because it is much easier to calculate numeri-
cally a crystallographic SRP than to compute a crystallographic stress-based
plastic potential (e.g. see [25]).

It is worth noting that analytic expressions for strain-rate potentials
that are exact duals (i.e. work-equivalent) to stress-based potentials are
known only for classical isotropic yield criteria such as von Mises, Tresca, or
Drucker-Prager (see [22]), the orthotropic Hill (see [12]) criterion (see [14]),
the orthotropic criterion of Cazacu et al. (see [2]) (see [4]; [26]).

However, all these strain-rate based potentials apply only to fully-dense
materials for which the plastic flow can be considered to be incompressible.
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For real materials, which contain defects ( e.g. cracks, voids), the hypothesis
of plastic incompressibility does not apply any more. Based on rigourous
limit-analysis theorems, Rice and Tracey (see [21]) and Gurson (see [11])
have demonstrated that the presence of voids induces a dependence of the
mechanical response on the mean stress and as such the plastic flow is ac-
companied by volume changes.

Stress-based potentials have been developed to capture the character-
istics of such materials. However, most of these models are based on the
hypothesis that the matrix (void-free material) obeys von Mises yield crite-
rion. Examples include the classical Gurson (see [11]) model and its various
extensions (e.g. Tvergaard in [24], Gologanu in [9]). It is to be noted that
in all these models the effects of the mean stress and shear stresses are
decoupled. However, finite-element (FE) cell model calculations as well as
very recent full-field calculations for porous polycrystals with constituent
grains deforming by crystallographic slip have shown that there is a very
specific dependence of yielding with the signs of the mean stress and the
third-invariant of the stress deviator, JΣ

3 . Specifically, for tensile loadings
the response corresponding to JΣ

3 ≥ 0 is softer than that corresponding
to JΣ

3 ≤ 0 while for compressive loadings, the opposite holds true (e.g.
Richelsen and Tvergaard in [20]; Cazacu and Stewart in [3]; Lebensohn and
Cazacu in [15]; Alves et al. [1]).

For axisymmetric loadings, using micromechanical considerations Cazacu
et al. (see [5, 6]) developed analytical yield criteria for porous materials with
von Mises and Tresca matrix, respectively. These stress-based criteria ac-
count for the combined effects of the sign of the mean stress and of the
third-invariant of the stress deviator on the dilatational response. Most im-
portantly, it was explained by Revil-Baudard and Cazacu in [18] the role of
the third-invariant on void growth and void collapse. An excellent agree-
ment between the predictions of these models and and FE unit-cell model
calculations were reported in Alves et al. (see [1]) and Cazacu et al. (see
[7]), respectively.

However, to gain understanding of the combined effects of all invariants
for general three-dimensional loadings, a strain-rate based approach appears
is most appropriate. Revil-Baudard and Cazacu in [19], very recently de-
veloped strain-rate potentials for porous solids with von Mises and Tresca
matrix.

In this paper, the dilatational response according to these new SRPs
is investigated. The structure of the paper is as follows. We begin by
presenting the modeling framework. Next, the strain-rate potentials for
porous von Mises and Tresca solids are given. New and intriguing features
of the response of the porous material are revealed by analyzing the SRPs
projections in various planes and the predicted void evolution. Furthermore,
it is shown that the level of porosity in the material strongly influences the
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couplings between the invariants. Next, we revisit some aspects of Gurson’s
treatment. The implications of the approximations made by Gurson (see
[10, 11]) are discussed in relation to the exact strain-rate potentials for
porous solids with Tresca and von Mises matrix obtained by Revil-Baudard
and Cazacu in [19]. We conclude by summarizing the main findings of this
study.

Regarding notations, vector and tensors are denoted by boldface char-
acters. If A and B are second-order tensors, the contracted tensor product
between such tensors are defined as: A : B = AijBij , i, j = 1 . . . 3.

2. General framework

2.1. Strain-rate potentials for plastic incompressible materials

In the framework of the mathematical theory of plasticity the onset of plastic
flow is generally described by specifying a convex yield function, ϕ(σ), in the
stress space. Assuming associated flow rule, the plastic strain rate tensor d
is obtained by differentiation of ϕ(σ), i.e.

d = λ̇
∂ϕ

∂σ
, (2.1)

where σ is the Cauchy stress tensor, and λ̇ ≥ 0 stands for the plastic mul-
tiplier. The yield surface is defined as ϕ(σ) = σT , where σT is the uniaxial
yield in tension. Alternatively, a dual potential in the strain-rate space can
be defined (see [28, 14]) :

ψ(d) = λ̇, (2.2)

and the stresses are derived from ψ(d) as:

σ = σT
∂ψ

∂d
. (2.3)

The yield function ϕ(σ) is generally taken homogeneous of degree one with
respect to positive multipliers, so the plastic dissipation is:

π(d) = sup
σ

(σijdij) = λ̇σT , i, j = 1, . . . , 3, (2.4)

where C is the convex domain delimited by the yield surface. Note that
the functions ψ(d) and ϕ(σ) are dual potentials. If the plastic behaviour is
described by the von Mises criterion, i.e.

ϕMises(σ) =
√

(3/2)σ′ : σ′,

the associated strain-rate potential is: ψMises(d) =
√

(2/3)d : d = ε̇, where
ε̇ denotes the von Mises equivalent strain rate and σ′ the stress deviator.
Using Eq.(2.4), the plastic dissipation of a von Mises material is

πMises(d) = σT
√

(2/3)d : d. (2.5)
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If the plastic behaviour is described by Tresca’s criterion potential, then

ϕ(σ) = max (|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) ,

with σ1, σ2, and σ3 being the principal values of σ, and the associated strain-
rate potential is: ψTresca(d) = (|d1|+ |d2|+ |d3|) /2, with d1, d2 and d3 being
the principal values of d. Using Eq.(2.4), the Tresca plastic dissipation is:

πTresca(d) =
σT
2

(|d1|+ |d2|+ |d3|) . (2.6)

For an isotropic material (which means that ϕ(σ) of equation (2.1) is
an isotropic function), the principal directions of d and σ coincide. The
projections of the von Mises SRP (Eq. 2.5) and that of the Tresca SRP (Eq.
2.6) on the octahedral plane are shown in Fig. 1.

Figure 1. (a) Section of the von Mises strain-rate potential (SRP) (equation (2.5)) and

Tresca’s SRP (equation (2.6)) with the octahedral plane; (b) representation of their re-

spective duals in the stress space, i.e. the normalized von Mises and Tresca yield surfaces,

respectively.

2.2. Limit analysis framework for development of plastic potentials
for porous metallic materials

The kinematic approach of limit analysis of Hill-Mandel (see [13, 17]) offers
a rigorous framework for the development of plastic potentials for porous
solids. If the matrix (void-free material) is rigid-plastic, it has been shown
(see [23]) that there exists a strain-rate potential Π = Π(D, f) such that the
stress at any point in the porous solid is given by:

Σ =
∂Π(D, f)

∂D
with Π(D, f) = inf

d∈K(D)
〈π(d)〉Ω, (2.7)
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where Ω is a representative volume element composed of the matrix and
a traction-free void, while 〈 〉 denotes the average value over Ω; f is the
porosity (ratio between the volume of the void and the volume of Ω); π(d)
is the matrix’s plastic dissipation with d being the local plastic strain rate
tensor (see Eq. 2.4). Minimization is done over K(D), which is the set
of incompressible velocity fields compatible with homogeneous strain-rate
boundary conditions, i.e.

v = Dx, for any x ∈ ∂Ω. (2.8)

Revil-Baudard and Cazacu (in [19]) used this kinematic homogenization ap-
proach to obtain 3-D plastic potentials for porous solids. The limit analysis
was conducted for general 3-D states, i.e.

d = D1e1 ⊗ e1 +D2e2 ⊗ e2 +D3e3 ⊗ e3, (2.9)

with D1, D2, D3 being the eigenvalues (unordered) of D and (e1, e2, e3) its
eigenvectors. It was assumed that the voids are spherical and randomly
distributed in the matrix, so the strain-rate potential of the porous solid,
Π(D, f), is isotropic.

Thus, Π(D, f) depends on the strain-rate tensor D only through its
invariants: Dm = (D1 +D2 +D3)/3, and the second and third-invariant of
the deviator of D′, respectively, i.e.

Π(D, f) = Π(Dm, J2D, J3D), (2.10)

where J2D =
√

(D′1
2 +D′2

2 +D′3
2)/2 and J3D = D′1D

′
2D
′
3, with D′i = Di −

Dm, i = 1, . . . , 3.
To analyze the role played by the mean strain rate, Dm, on the di-

latational response, for a fixed value of the porosity f , the shape of the
cross-sections of the SRP with the deviatoric planes Dm = constant, need
to be determined. For this purpose it is convenient to introduce the Oxyz
frame, which is related to the principal frame (e1, e2, e3) by the following
relations:

ex =
1√
3

(e1 + e2 + e3), ey = − 1√
2

(e1 + e2), ez =
1√
6

(2e3 − e1 − e2).

(2.11)
Consider an arbitrary state represented by a point P (D1, D2, D3) belonging
to the SRP isosurface Π(D, f) = constant. Since the Ox-axis coincides
with the hydrostatic axis, the plane that contains the state P and is parallel
to the Oyz-plane contains all the states belonging to the SRP with the
same Dm. Thus, the intersection of the SRP with the deviatoric plane
Dm = constant is obtained by expressing the SRP in the (xyz) coordinates
and then imposing Dx = constant. Indeed, the SRP of a porous solid can
be expressed as:

Π(D, f) = Π(Dm, D
′
1, D

′
2, D

′
3, f) = Π(Dx, Dy, Dz, f),
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Dx =
√

3Dm

Dy = (D′2 −D′1)

√
2

2
(2.12)

Dz =

√
3

2
D′3.

Thus, any point P (D1, D2, D3) belonging to the intersection of the SRP
locus with any deviatoric plane is characterized by the polar coordinates,
(R, γ) (see also Figure 2(a)):

R = |OP | =
√
D′21 +D′22 +D′23 =

√
2J2D, (2.13a)

while γ denotes the angle between ey and OP , so

tan(γ) =
Dz

Dy
=
√

3
D′3

D′2 −D′1
, (2.13b)

and any state D belonging to the SRP surface is solely defined by (Dm, R, γ).

Figure 2. (a) Definition of the polar coordinates (R, γ), representing any state

P (D1, D2, D3) belonging to the intersection of any strain-rate potential isosurface with

any deviatoric plane (plane of normal the hydrostatic axis) (b) General symmetry prop-

erties of the cross-section of the strain-rate potential of an isotropic material.

Let fi be the projections of the eigenvectors ei, i = 1, . . . , 3 on a devia-
toric plane. Obviously, f3 = ez (see equation (2.11) and Figure 2(a)). For
a porous solid that is isotropic, the SRP has three-fold symmetry so it is
sufficient to determine R = R(γ) only in the sector −π

6 ≤ γ ≤
π
6 . The sector

−π
6 ≤ γ ≤ π

6 corresponds to the following ordering of the principal values
of D′: D′2 ≥ D′3 ≥ D′1 (see equation (2.13) and Figure 1(b)). In particular,
the sub-sector −π

6 ≤ γ ≤ 0 corresponds to states on the SRP for which
(D′2 ≥ 0, D′3 ≤ 0, D′1 ≤ 0), so the third-invariant J3D > 0 while the sub-
sector 0 ≤ γ ≤ π

6 corresponds to states for which (D′2 ≥ 0, D′3 ≥ 0, D′1 ≤ 0)



A new approach to ductile damage 65

so J3D < 0 (see also Figure 2(b)). Axisymmetric states correspond to ei-
ther γ = −π

6 (D′1 = D′3 < D′2) or γ = π
6 (D′2 = D′3 > D′1). Note that for

−π
6 ≤ γ ≤

π
6 , D′1, D

′
2, D

′
3 can be expressed as:

D′1 = −R(γ)√
6

(√
3 cos γ + sin γ

)
D′2 =

R(γ)√
6

(√
3 cos γ − sin γ

)
(2.14)

D′3 =
2R(γ)√

6
sin γ

with sin 3γ = −27

2
· J3D

(J2D)
3
2

(see equation (2.13)).

The angle γ is related to the dimensionless parameter ν introduced by
Drucker (see [8]),

ν =
D′int

D′min −D′max

, (2.15)

where Dmin = min(D′1, D
′
2, D

′
3), Dmax = max(D′1, D

′
2, D

′
3) while Dint is the

intermediate principal value.

3. Three-dimensional strain-rate potentials for porous solids with
von Mises and Tresca matrices containing spherical voids

For spherical void geometry an appropriate representative volume element
(RVE) is a hollow sphere. Let a denote its inner radius and b = af−

1
3 its

outer radius. In Revil-Baudard and Cazacu ([19] ) the limit analysis was
conducted for 3-D conditions for both tensile and compressive states. Use
was made of the trial velocity field v, deduced by Rice and Tracey in [21],

v = vv + vS, (3.1)

where vv describes the expansion of the cavity while vS is associated to
changes in the shape of the cavity. Imposing the boundary conditions and
the constraint of matrix incompressibility, i.e.:

v(x = ber) = Dx and div (v) = 0,

where x is the Cartesian position vector that denotes the current position
in the RVE and er is the radial unit vector, it follows that:

vv =

(
b3

r2

)
Dmer and vS = D′x, (3.2)

where r =
√
x2

1 + x2
2 + x2

3 is the radial coordinate.
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If the plastic flow in the matrix is governed by either von Mises or Tresca
criterion, the exact solution of the problem of a hollow sphere subjected to
hydrostatic states is the same (see [16]). This solution is the term vv =(
b3

r2

)
Dmer given by equation (3.2). Thus, for purely hydrostatic states, the

mechanical response of a porous Tresca or a porous Mises solid is also the
same.

Since the velocity v is incompressible and compatible with homogeneous
strain rate boundary conditions (equation (3.2)), Hill-Mandel lemma applies.
Thus, an upper-bound estimate of the exact plastic potential of porous solid
with von Mises matrix is:

Π+
Mises(D, f) =

σT

V

∫
Ω
πMises(d)dV, (3.3)

with V = 4πb3/3, Ω is the domain occupied by the matrix, and πMises(d)
is the local plastic dissipation associated to the von Mises criterion (see
equation (2.5)) for d = 1

2(∇v +∇vT ) and v given by equation (3.1), i.e.

πMises(d) = σT

√√√√ (2/3)
(
D′2

1 +D′2
2 +D′2

3

)
+

4D2
m(b/r)6 − 4Dm(b/r)3

(
D′2

1 x
2
1 +D′2

2 x
2
2 +D′2

3 x
2
3

) . (3.4)

For general 3-D states, the integral given by equation (3.3) cannot be
amenable to an exact analytic calculation.

However, very recently Cazacu et al. have shown in [5] that for axisym-
metric states the integrals expressing the SRP can be calculated explicitly,
without making the approximations considered by Gurson (see [10, 11]).

For all other loadings, numerical integration methods need to be used.
As already mentioned, it is sufficient to evaluate this SRP in the sector
−π

6 ≤ γ ≤
π
6 .

The integral expressing the von Mises SRP can be put in the form:

Π+
Mises(D, f)=

σT
V

∫
Ω

2σT

√
(R2/6) +D2

m(b/r)2 − 4RDm(b/r)3F (γ, x2
i )/(r2/

√
6)dV

(3.5)

with F (γ, x2
1, x

2
2, x

2
3) =

√
3(x2

2 − x2
1) cos γ + (2x2

3 − x2
1 − x2

2) sin γ.
The integration is further simplified by making a change of coordinates

from the coordinate system (e1, e2, e3) of the eigenvectors of D and Carte-
sian coordinates (x1, x2, x3) to spherical coordinates. For axisymmetric load-
ings, the integral estimated numerically was compared to the exact results,
the differences being negligible (less than 10−7).

As an example, in Figure 3 is shown a 3-D isosurface of the von Mises
porous solid corresponding to a porosity f = 5% for both tensile (Dm =
tr (D) > 0) and compressive (Dm < 0) states. First, let us note that the
presence of voids induces a strong influence of the mean strain rate Dm. In
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Figure 3. The 3-D surface for a porous solid with von Mises matrix according to equation

(3.3) for both tensile mean strain rate (Dm = tr(D) > 0) and compressive (Dm < 0)

states. Note that this convex surface contains all the points (Dm, R, γ) that produce the

same plastic dissipation for the porous solid. Initial porosity: f = 0.05.

contrast to the SRP for the fully dense material, the SRP for f = 5% is
closed on the hydrostatic axis.

To fully assess the effects of all invariants of the strain-rate, D, on the
plastic response of the porous solid, the cross-sections of the same 3-D iso-
surface with several deviatoric planes Dm = constant are considered (see
Figure 3).

Note that the intersection with the plane Dm = 0, is a circle. This is to
be expected since states for which Dm = 0 correspond to purely deviatoric
loadings for which the plastic dissipation of the porous solid coincides with
that of the matrix (von Mises behavior). The cross-sections with all the
other deviatoric planes Dm = constant, have three-fold symmetry with
respect to the origin, and deviate from a circle. This indicates that the third-
invariant J3D = D′1D

′
2D
′
3 affects the plastic response of a porous solid with

von Mises matrix. As an example, in Figure 4 is plotted R(γ) (normalized
by R(γ = −π

6 )) for the cross-section corresponding to Dm = 6.0 · 10−4s−1

and Dm = 0 (matrix behavior), respectively. The cross-section Dm = 0 is
a circle, so: R(γ) = R(γ) = −π

6 i.e. it is a straight line. As concerns the
cross-section Dm = 6.0 · 10−4s−1, note the influence of the third-invariant
J3D (or γ) as evidenced by the deviation of R(γ)/R(γ = −π

6 ) from a straight
line. The most pronounced difference is between the axisymmetric states,
i.e. between R(γ = −π

6 ) and R(γ = π
6 ). The noteworthy result is that

this holds true irrespective of the level of Dm i.e. the shape of the cross-
sections are similar and the most pronounced deviation from a circle is for
axisymmetric states (see also Figure 4).

A remarkable property of the exact plastic potentials (stress-based and
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Figure 4. Cross-sections of the 3-D isosurface of a porous von Mises material with several

deviatoric planes Dm = constant: outer cross-section represents the intersection with the

plane Dm = 0 while the inner cross-section corresponds to Dm = 9 · 10−4s−1. Initial

porosity: f = 0.05.

strain-rate based) of a porous solid with von Mises matrix is their centro-
symmetry. This property is preserved by Π+

Mises(D, f). This means that for
any porosity f : Π+

Mises(Dm, R, γ) = Π+
Mises(−Dm, R,−γ), i.e. the surface

is symmetric with respect to the origin (see also equation (3.5) and Figure
3). To further illustrate this noteworthy property, in Figure 5 are shown
the cross-sections of the same 3-D isosurface Π+

Mises(D, f) = 6.0 · 10−3 (f =
0.05) with a deviatoric plane corresponding to a positive mean strain rate
(Dm = 6 · 10−4s−1, interrupted line) and a compressive mean strain rate
(Dm = −6·10−4s−1, solid line), respectively. The symmetry of the respective
cross-sections with respect to the origin is clearly seen. For example, for
loadings corresponding to J3D > 0 ( i.e. −π

6 < γ < 0) to produce the same
plastic dissipation R(γ) (or

√
2J2D) must be higher for compressive states

(Dm < 0 - interrupted line) than for tensile states (Dm > 0 - solid line).
The reverse holds true for loadings corresponding to J3D < 0 (0 < γ < π

6 ).
For a given Dm, in order to reach the same plastic dissipation in the

porous solid: for Dm > 0, R(γ) is a monotonically decreasing function of
γ (see also Figure 4) while for Dm < 0, R(γ) must be a monotonically
increasing function of γ.

An upper-bound estimate of the overall plastic potential of porous solid
with Tresca matrix is:

Π+
Tresca(D, f) =

σT
V

∫
Ω
πTresca(d) dV, (3.6)
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Figure 5. Evolution of R(γ) (normalized by R = R(−π
6

) for the cross-section of the surface

of the porous Mises material with the deviatoric planes Dm = 6 · 10−4s−1 and Dm = 0

(von Mises behavior), respectively. Initial porosity: f = 0.05.

where πTresca(d) is the local plastic dissipation associated to the Tresca
criterion,

πTresca(d) = σT (|d1|+ |d2|+ |d3|) (3.7)

where d1, d2, d3 are the principal values (unordered) of the strain-rate field
d, corresponding to the velocity field given by equation (3.2).

A major difficulty in obtaining a closed-form expression of the Tresca
SRP is that πTresca(d) depends on the sign of each of the principal values
of the local strain-rate tensor, d (see equation (3.7)). This is a direct con-
sequence of the Tresca’s criterion being dependent on the third-invariant of
the stress deviator.

Only for axisymmetric loadings, the signs of the principal values d1, d2, d3

for d can be determined analytically. For these loadings, very recently
Cazacu et al. showed in [6] that the integrals expressing the overall plastic
dissipation Π+

Tresca(D, f) could be calculated explicitly, without any approx-
imation (for more details about the calculations, the reader is referred to
[6]). As already mentioned, for purely hydrostatic loadings (i.e. D = DmI)
Π+

Tresca(D, f) = Π+
Mises(D, f) = 2σT |Dm| ln f .

For general 3-D states the overall plastic dissipation Π+
Tresca(D, f) (equa-

tion (3.6)) can be estimated only numerically. For axisymmetric loadings,
the numerical values are very close to the analytical ones (error less than
10−7).

As an example, in Figure 6 is shown a normalized (σT = 1) 3-D isosurface
of the porous Tresca solid corresponding to a porosity f = 5% for states
characterized by (Dm > 0) and (Dm < 0), respectively. Specifically, this
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Figure 6. Cross-sections of the surface of the porous von Mises material, Π+

Mises
(D, f) =

6.0 · 10−3 (f = 0.05) with the deviatoric planes Dm = 6 · 10−4s−1 (interrupted line) and

Dm = −6 · 10−4s−1 (solid line). Note the centro-symmetry of the cross-sections due to

the invariance of the plastic response to the transformation (Dm,D
′) −→ (−Dm,−D′).

Initial porosity: f = 0.01.

convex surface contains all states Dm, R, γ) that produce the same plastic
dissipation Π+

Tresca(D, f) = 6.0 · 10−3 for the porous solid. The presence of
voids induces a strong influence of the mean strain rate Dm on the plastic
dissipation, the SRP for the porous Tresca material being closed on the
hydrostatic axis.

To investigate the effects of all invariants on the response of the porous
Tresca solid, the cross-sections of the same 3-D isosurface with deviatoric
planes Dm = constant are considered (see Figure 7). Note that the inter-
section with the plane Dm = 0 is a regular hexagon. This is to be expected
since states for which Dm = 0 correspond to purely deviatoric loadings for
which the plastic dissipation of the porous solid coincides with that of the
matrix.

It is very interesting to note the very strong influence of Dm on the
plastic behavior of the porous Tresca material, the shape of the cross-sections
changing drastically with the level of Dm = constant. Due to the presence
of voids, all cross-sections are smoothed out, their shape evolving from a
hexagon (Dm = 0) to a triangle with rounded corners (e.g. the innermost
cross-section ). Note that the evolution of R with γ is very specific and
depends strongly on Dm as shown in Figure 7.

To better assess the importance of this coupling between all invariants,
in Figure 8 is plotted R(γ) (normalized by R(γ = −π

6 )) for cross-sections
corresponding to Dm = constant (in the range Dm = 0 to Dm = 9.0 · 10−4).
Since Tresca’s criterion depends on both J2D and J3D, even the cross-section
corresponding to Dm = 0 is not a circle.

Furthermore, for Dm = 0, the analysis of the evolution of R with γ shows
that it has a maximum at γ = 0 (i.e. states corresponding to J3D = 0) while
the minima correspond to the axisymmetric states, i.e. γ = −π

6 and γ = π
6 .
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Figure 7. The 3-D surface for a porous solid with Tresca matrix according to equation

(3.6) for both tensile (Dm = tr(D) > 0) and compressive (Dm < 0) states. Note that

this convex surface contains all the points (Dm, R, γ) corresponding to the same plastic

dissipation Π+

Tresca
(D, f) = 6.0 · 10−3 for the porous solid. Initial porosity: f = 0.05.

Note also that only for Dm = 0 (i.e. matrix behavior) R(γ = −π
6 ) =

R(γ = π
6 ), i.e. the plastic dissipation is the same for the axisymmetric

state corresponding to J3D > 0 and the axisymmetric state corresponding
to J3D < 0. Note the strong influence of Dm on the variation of R with γ.

Indeed, with increasing Dm the maximum of R(γ) is no longer at γ = 0,
but shifts towards the axisymmetric case corresponding to γ = −π

6 (D1 =
D3 < D2 and J3D > 0); on the other hand, the minimum of R(γ) is always
obtained for γ = −π

6 (axisymmetric state corresponding to J3D < 0). An-
other specificity of the dilatational response of a porous Tresca solid is that
irrespective of the cross-section Dm = constant, there are two states with
the same R: the axisymmetric state γ = −π

6 and another state say γ = γ1;
the value of γ1 depending on Dm (e.g. for Dm = 0, γ1 = π

6 , the higher Dm

the lower is γ1).

As already mentioned, Π+
Tresca(D, f) is centro-symmetric. This means

that for any porosity f : Π+
Tresca(Dm, R, γ, f) = Π+

Tresca(−Dm, R,−γ, f).

To illustrate this remarkable property, in Figure 9 are shown the cross-
sections of the same 3-D isosurface Π+

Tresca(D, f) = 6.0·10−3 (f = 0.51) with
the deviatoric planes Dm = 7 · 10−4s−1 and Dm = 9 · 10−4s−1, respectively
(interrupted lines) as well as the cross-sections with the planes Dm = −7 ·
10−4s−1 and Dm = −9 ·10−4s−1, respectively (solid lines). The symmetry of
all cross-sections with respect to the origin is clearly seen. For example, for
states corresponding to J3D > 0 (−π

6 < γ < 0) to produce the same plastic
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Figure 8. Cross-sections of the 3-D isosurface of porous Tresca material (equation (3.7))

with several deviatoric planes Dm = constant: Outer cross-section represents Dm = 0

(matrix behavior) Initial porosity: f = 0.05. Note the drastic change in the shape of the

cross-section from a regular hexagon to a smooth triangle.

dissipation, R (or J2D) must be higher for compressive states (Dm < 0 -
interrupted line) than for tensile states (Dm > 0 - solid line). The reverse
holds true for loadings corresponding to J3D < 0 (0 < γ < π

6 ).
It is also very interesting to compare the behaviour of porous solids with

Mises and Tresca matrix, respectively. For a porous Tresca solid the shapes
of the cross-sections with deviatoric planes are strongly dependent on the
level of Dm, whereas for a porous Mises the shape of the cross-sections are
similar irrespective of the level of Dm.

4. Discussion on the role of the plastic flow of the matrix on the
dilatational response

The most widely used plastic potential for isotropic porous solids contain-
ing randomly distributed spherical voids was proposed by Gurson in [11].
This yield criterion was derived by conducting limit analysis on a hollow
sphere made of a rigid-plastic material obeying von Mises yield criterion
using the trial velocity field deduced by Rice and Tracey in [21] (i.e. equa-
tion (3.2)). In his analysis, Gurson (see [10, 11]) assumed that the cou-
pled effects between the mean strain rate Dm and D′ (i.e. the cross-term
Dm(b/r)3

(
D′1x

2
1 +D′2x

2
2 +D′3x

2
3

)
in the expression of πMises(d) given by

equation (3.4)) can be neglected, i.e.

π(d)Mises ' σT
√

4D2
m(b/r)6 + (2/3)R2.
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Figure 9. Shape of the cross-sections revealed by the evolution of R(γ) (normalized by

R(−π
6

) corresponding to several deviatoric planes Dm = constant for the porous Tresca

material. Initial porosity: f = 0.05.

With this approximation, the SRP of a porous von Mises solid takes the
following expression:

ΠGurson(D, f) = 2|Dm|


√

1 + 6D2
m/R

2 −
√
f2 + 6D2

m/R
2

(Dm/R)
√

6
+

+ ln

(
1

f
·

(Dm/R)
√

6 +
√
f2 + 6D2

m/R
2

(Dm/R)
√

6 +
√

1 + 6D2
m/R

2

)
 .
(4.1)

Note that ΠGurson(D, f) is the exact dual of the classic stress-based
potential of Gurson (see [11]).

For axisymmetric states, Cazacu et al. have shown in [6] that if the
same simplifying hypothesis considered by Gurson in [10, 11] is made when
evaluating the local plastic dissipation associated to Tresca’s criterion given
by equation (3.7), the truncated expression of the overall plastic dissipation
at which one arrives coincides with ΠGurson(D, f) given by equation (4.1).
This means that neglecting couplings between the mean strain rate and D′

(normal and shear effects) the specificities of the plastic flow of the matrix
are erased. It is worth comparing the strain-rate potential for a porous Mises
material obtained by Gurson in [10] (i.e. equation (4.1)) with the exact 3-D
strain-rate potential for a porous Mises material given by equation (3.3),
and the strain-rate potential for a porous Tresca material given by equation
(3.6). Note that:

Since Gurson’s SRP was obtained by truncating the overall plastic dis-
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Figure 10. Comparison between the shapes of the cross-sections of the exact SRP for a

porous von Mises material (equation (3.3), blue solid line), and the SRP for a porous Tresca

material (equation (3.7)) (red solid line) corresponding to the same porosity f = 0.05

and the same level of plastic energy 6.0 · 10−3. The cross-sections correspond to: (a)

Dm = 2 · 10−4s−1; (b) Dm = 6 · 10−4s−1. Initial porosity: f = 0.05. Note that of the two

potentials, the porous Tresca SRP is the least dissipative (red solid line).

sipation (see equation (4.1)), it is necessarily interior to the exact SRP,
which is Π+

Mises (given by equation (3.3)). Irrespective of the level of Dm,
Tresca’s SRP is exterior to the surfaces corresponding to von Mises matrix.
This means that Gurson’s SRP is the most dissipative of the three SRP’s,
since in order to reach the same value of the plastic dissipation, the norm
of the loading, R(γ), is lower than for a porous Mises (equation (3.3)) or
porous Tresca (equation (3.6)). On the other hand, Tresca’s SRP is the least
dissipative potential.

The noteworthy result revealed is the very strong influence of the plastic
flow of the matrix on the response of a porous solid. If the matrix obeys
the von Mises criterion the shape of the cross-sections of the porous solid
changes very little as Dm increases, but if the matrix behavior is described
by Tresca’s criterion the shape of the cross-section evolves from a hexagon to
a triangle with rounded corners. Although the difference between the yield
surfaces of a porous solid with von Mises matrix and that with a Tresca
matrix becomes less important with increasing Dm (see Fig.10), it strongly
affects void evolution. This will be further examined in the next section.

5. Role of plastic flow of the matrix on void evolution

In this section, the influence of the yield criterion describing the plastic
flow of the matrix on void evolution in the porous solid is investigated by
comparing the predictions of the porous Tresca criterion and the porous von
Mises criterion. Figs.11 show the predicted void evolution as a function of
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Figure 11. Void volume fraction evolution as a function of the plastic dissipation for

axisymmetric loadings (γ = −π/6) such that the ratio between the mean strain rate Dm

and R(γ) is fixed: (a) loading paths at positive mean strain rate Dm > 0; initial porosity:

f=0.001, (b) loading paths at negative mean strain rate Dm > 0; initial porosity: f=0.2.
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the plastic dissipation corresponding to axisymmetric loadings such that the
ratio Dm/R(γ = −π/6) is fixed. Calculations are shown for both positive
and negative mean strain-rate. The initial porosity is f0 = 0.001. The rate
of void growth (which corresponds to loadings at positive mean strain rate
Dm) or collapse ( which corresponds to loadings at negative mean strain rate
Dm) is much faster in a porous solid with Tresca matrix than in a porous
solid with von Mises matrix. The differences in the rate of void growth are
significant. For example, at a plastic dissipation egal to 0.15, for a strain
rate loading such that Dm/R(γ = −π/6) = 0.18, according to the porous
von Mises f = 0.062 while according to the porous Tresca SRP, f =0.067. For
a strain rate loading path defined by Dm/R(γ = −π/6) = 0.18, according to
the porous von Mises f = 0.076 while according to the porous Tresca SRP,
f =0.081.

Both the porous Mises SRP and the porous Tresca SRP involve a very
specific dependence on the third invariant, J3D, (or on the loading parameter
γ), as shown in Fig. 5 and Fig. 8, respectively. As already mentionned, for
a porous Mises solid, the maxiamal influence of the parameter γ is that
between axisymmetric states, while for a porous Tresca solid, the manner in
which the third invariant, J3D influences the dilational response depends on
both the level of the mean strain rate and that of the void volume fraction
(see also Fig.13 and Table 2). As an example. Fig. 12 shows the evolution
of the void volume fraction as a function of the plastic dissipation for a
porous Tresca solid for loadings at a fixed strain ratio Dm/R(γ) = 0.06 for
different values of the parameter γ = {−π/6,−π/12, 0, π/12, π/6}. For this
type of loading, the rate of void growth is the fastest for shear strain-loading
( γ = 0) while the lowest rate of void growth is obtained for γ = π/6 (that
is axisymmetric loadings at J3D < 0).

To further illustrate the dependence on the third invariant, J3D of the
dilational response of a porous Mises solid and a porous Tresca solid, Fig. 13
shows the plastic dissapation needed to reach a given void volume fraction
for loadings at fixed strain ratio Dm/R(γ) corresponding to different values
of γ = {−π/6,−π/12, 0, π/12, π/6} at fixed strain-rate loading Dm/R. If the
mean-strain rate is positive (i.e. void growth), for a porous Mises solid, the
plastic work that must be dissipated to reach a given void volume fraction
wil be smallest for axisymmetric loadings with J3D > 0 (i.e. γ = −π/6)
and the largest one for axisymmetric loadings with J3D < 0 (i.e. γ = π/6)
(see also Table 1). This conclusion is consistent with that drawn previously
(see Fig. 5). It is to be noted that the very specific couplings between the
third invariant and the mean strain-rate (i.e. the centro-symmetry of the
SRP) has strong consequences on void evolution. For negative mean strain-
rate, for a porous Mises solid, the plastic dissipation necessary to reach the
same void volume fraction will be the smallest for axisymmetric loadings
with J3D > 0 (γ = −π/6) and the largest for axisymmetric loadings with
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Figure 12. Evolution of the void volume fraction as a function of the plastic dissipation

for a porous Tresca solid subjected to loadings at fixed strain ratio Dm/R(γ) = 0.06 for

different values of the parameter γ = {−π/6,−π/12, 0, π/12, π/6}

J3D < 0 (γ = −π/6).

The same studies have been conducted for a porous Tresca solid (see
Table 2). As already mentionned, for a porous Tresca solid, the influence of
the third invariant JD3 on the dilatational response depends on the initial
void volume fraction and on the mean strain-rate Dm. As a example, for low
mean strain-rate Dm/R(γ) = 0.06, the smallest and largest plastic dissipa-
tion necessary to reach a given void volume fraction are obtained for shear
loading ( γ = 0) and for axisymmetric loadings with JD3 < 0 (γ = π/6), re-
spectively. On the other hand, for Dm/R(γ) = 0.18, the smallest and largest
plastic dissipation necessary to reach the same given void volume fraction
are obtained for axisymmetric loadings at γ = −π/6 and for loading at
γ = π/12, respectively. It is to be noted that the centro-symmetry property
of the porous Tresca SRP implies that if the sign of the mean strain-rate
changes (i.e. Dm/R(γ) = −0.18) , the maximal and minimal plastic dissi-
pation is now obtained for γ = −π/12 and γ = π/6, respectively.

6. Summary and Conclusions

The aim of this paper was to investigate the properties of the 3-D plastic
potentials for porous solids with Tresca and von Mises, matrices respectively.

The role of the plastic flow of the matrix on the dilatational response
was analyzed for general 3-D conditions for both compressive and tensile
states.
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Loading
Porous Mises SRP

γ = −π/6 γ = −π/12 γ = 0 γ = π/12 γ = π/6

Dm/R = 0.06 0.4533 0.4536 0.4542 0.4548 0.4550
Dm/R = 0.18 0.2370 0.2373 0.2380 0.2386 0.2389
Dm/R = −0.06 1.2229 1.2225 1.2214 1.2201 1.2195
Dm/R = −0.18 0.8059 0.8056 0.8046 0.8036 0.8031

Table 1. Plastic dissipation necessary to reach a given void volume fraction f for loadings

at fixed strain ratio Dm/R(γ) and for differents values of γ according to the porous von

Mises SRP. For loadings at positive mean strain-rate, f = 100f0 (with f0 = 0.001); for

loadings at negative mean strain-rate, f = 0.01f0 (with f0 = 0.2.

Loading
Porous Tresca SRP

γ = −π/6 γ = −π/12 γ = 0 γ = π/12 γ = π/6

Dm/R = 0.06 0.4384 0.4284 0.4163 0.4352 0.4417
Dm/R = 0.18 0.2217 0.2220 0.2258 0.2292 0.2254
Dm/R = −0.06 1.1950 1.1875 1.1546 1.1752 1.1887
Dm/R = −0.18 0.7850 0.7944 0.7893 0.7835 0.7794

Table 2. Plastic dissipation necessary to reach a given void volume fraction f for loadings

at fixed strain ratio Dm/R(γ) and for differents values of γ according to the porous Tresca

SRP. For loadings at positive mean strain-rate, f = 100f0 (with f0 = 0.001); for loadings

at negative mean strain-rate, f = 0.01f0 (with f0 = 0.2.
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Figure 13. Plastic dissipation necessary to reach a given void volume fraction f for loadings

at fixed strain ratio Dm/R(γ) and for differents values of γ according to the porous

von Mises SRP and the porous Tresca SRP. For loadings at positive mean strain-rate,

f = 100f0 (with f0 = 0.001); for loadings at negative mean strain-rate, f = 0.01f0 (with

f0 = 0.2.
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It has been shown that if the matrix is described by the von Mises
criterion:

• The plastic response of the porous solid depends on all three invariants
of the strain-rate tensor D.

• The coupling between the invariants of D′ i.e. between R(=
√

2J2D)
and γ (measure of

√
2J2D and J3D) is very specific:

– for Dm > 0, R(γ) is a monotonically decreasing function of γ

– for Dm < 0, R(γ) is a monotonically increasing function of γ

• The strongest effect of the third-invariant is for axisymmetric states
i.e. between R(γ = π

6 ) and R(γ = −π
6 ).

Therefore, the most influence of the parameter γ (or J3D) on void growth
or void collapse) occurs for axisymmetric states. It is very worth noting
that the same conclusions concerning the influence of the third-invariant on
void evolution were drawn by Rice and Tracey in [21] for the case of large
hydrostatic stresses.

It has been shown that if the plastic behavior of the matrix is described
by Tresca’s criterion:

• The shapes of the cross-sections of the 3-D surfaces with deviatoric
planes are strongly dependent on the level of Dm.

As the absolute value of Dm increases, the shape changes from a reg-
ular hexagon (Dm = 0) to a triangle with rounded corners.

• The level of porosity is key in how fast the shape changes with the
mean strain rate Dm. If the level of porosity is small, the cross-sections
smooth out slower than in the case when the level of porosity in the
matrix is higher.

• For Dm = 0 (i.e. Tresca behavior) the maximum ofR(γ) is at γ = 0
(J3D = 0), the minima being for axisymmetric states.

For Dm > 0: the maximum of R(γ) is not at γ = 0 anymore, but shifts
toward the axisymmetric case corresponding to γ = −π

6 (D1 = D3 <
D2 and J3D > 0); on the other hand, the minimum of R(γ) is always
obtained for γ = π

6 (axisymmetric state corresponding to J3D < 0).
The reverse holds true for Dm < 0.

• While in the case of the porous Mises solid, the most pronounced differ-
ence in the response is between the axisymmetric states (i.e. between
R(γ = π

6 ) and R(γ = −π
6 ), for a porous Tresca no general conclusions

can be drawn because the specific expression of R(γ) depends both on
the level of porosity and the level of Dm .
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