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Relations between meromorphic solutions
and their derivatives of differential equations
and small functions
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Abstract - In this paper, we investigate relations between solutions, their
derivatives of the differential equation

O 4 B 7 f D o B f o (AT + Aze™) f =0,

and functions of small growth, where A; (2) (Z0) (j =1,2), Bi(2) (Z0)
(I=1,---,k—1) are meromorphic functions of finite order and b (I =
1,---,k—1), a; (j =1,2) are complex constants. We prove that every
meromorphic solution f # 0 to above differential equation whose poles are
of uniformly bounded multiplicities and its first and second derivative have
infinitely many fixed points. Our results extend the previous results due to
Chen and Shon, Peng and Chen.
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1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna value distri-
bution theory of meromorphic functions (see [10], [15]). In addition, we will
use notations o (f), o2 (f) to denote respectively the order and the hyper-
order of growth of a meromorphic function f(z), A(f), A(f), to denote
respectively the exponents of convergence of the zero-sequence and the se-
quence of distinct zeros of f(z). See ([2],[10],[13],[15]) for notations and
definitions.

To give estimates of fixed points, we define:

Definition 1.1. (see [2],[13],[15]) Let f be a meromorphic function and
let 21,20, , (|zj] =175, 0 <1y <o < --+) be the sequence of the distinct
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fixed points of f. The exponent of convergence of the sequence of distinct
fized points of f (z) is defined by

+oo
T(f)=inf¢7>0: Z|zj|_T < 400
j=1

Clearly,

IOgN (7“, #)
T logr

)

where N (r, ﬁ) is the integrated counting function of distinct fixed points

of f(2)in {z:]|z| <r}.
Consider the second order linear differential equation
14+ AL (2) el B+ Ay (2) Q) f =0, (1.1)

where P (z),Q (z) are nonconstant polynomials, A; (z), Ag (z) (Z 0) are en-
tire functions such that o (A;) < deg P (z), 0 (Ap) < deg @ (z). Gundersen
showed in [8, p. 419] that if deg P (z) # deg @ (2), then every nonconstant
solution of (1.1) is of infinite order. If deg P (z) = deg@ (z), then (1.1)
may have nonconstant solutions of finite order. For instance f (z) = e* + 1
satisfies f” 4+ e*f' —e*f = 0.

In [3], Chen and Shon have investigated the case when deg P (2) =
deg @ (z) and further proved the following results.

Theorem A (see [3]) Let A;(z)(#0) (j=0,1) be meromorphic func-
tions with o (A;) < 1 (j=0,1), a, b be nonzero complex numbers such
that arga # argh or a = ¢b (0 < ¢ < 1). Then every meromorphic solution
f(2) # 0 that satisfies the equation

'+ A (2) e f + Ag (2) e f =0 (1.2)

has infinite order.

In the same paper, Chen and Shon investigated the fixed points of
solutions, their 1st and 2nd derivatives, and the differential polynomials
and obtained the following result.

Theorem B (see [3]) Let A;(z) (j =0,1), a,b, c satisfy the additional hy-
potheses of Theorem A. Let dy,di,ds be complex constants that are not all

equal to zero. If f(z) #Z 0 is any meromorphic solution of equation (1.2),
then:
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(i) f, 1, f" all have infinitely many fixed points and satisfy
Af=2)=X(f'—2)=X(f"—2) =,
(ii) the differential polynomial
g(2) =dof" +dif' +dof

has infinitely many fized points and satisfies \ (g — z) = oo.

Recently in [12], Peng and Chen have investigated the order and hyper-
order of solutions of some second order linear differential equations and
proved the following result.

Theorem C (see [12]) Let Aj(z) (£0) (j =1,2) be entire functions with
o (Aj) <1, a1, ap be distinct nonzero complex numbers (suppose that |ai| <
lag|). If argaj # m or ay < —1, then every solution f (# 0) of the equation

f/l _|_ e—Zf/ _|_ (Ale(hz +A2€agz)f — 0

has infinite order and og (f) = 1.

In [9], the authors have investigated the order and hyper-order of solu-
tions of higher order linear differential equations with entire coefficients and
further proved the following result.

Theorem D (see [9]) Let Aj(z) (#0) (7 =1,2), Bi(2) (#0) (I=1,---,
k—1), Dy, (m=0,---,k—1) be entire functions satisfying the condition
max {0 (4;),0(B)),0(Dn)} <1,b (1=1,--- ,k—1) be complex constants
such that (i) argb; = arga; and by = caq1 (0< ¢ <1) (1 € I) and (ii)
by is a real constant such that by < 0 (I € I), where Iy # 0, Iy # 0,
Lnlhb=0, Ul ={1,2,--- ,k—1}, and a1, ay are complex numbers
such that ajag # 0, a1 # ag (suppose that |ai| < |ag|). If arga; # 7w or
a1 1s a real number such that a1 < & where ¢ = max{¢ :l €} and
b=min{b; : | € Iy}, then every solution f (£ 0) of the equation

£ 4 (Dt + Byoae?) 7670 oot (Dy 4 Biet?)

+ (Do + Ae? + A26a22) f=0
satisfies o (f) = +oo and o2 (f) = 1.
The main purpose of this paper is to extend and improve the results

of Theorem C to higher order linear differential equations. In fact we will
prove the following results.
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Theorem 1.1 Let A;(z) (#0) (j =1,2), Bi(2) (#0) (I=1,---,k—1)

be meromorphic functions with
maX{J(Aj) (.7 = 172)70(31) (l =1, k- 1)} <1,

by (1=1,---,k—1) be complex constants such that (i) by = cia1 (0 < ¢; < 1)
(1l € I) and (ii) by is a real constant such that by < 0 (1 € Iz), where I # (),
L #0, 1 NI, =0, LUI, ={1,2,--- ,k—1}, and a1, ay are complex
numbers such that ajas # 0, a1 # ag (suppose that |aq| < |ag|). If argay #
m or ai 1s a real number such that a1 < % where ¢ = max {c;,l € I} and
b = min {b;, [l € Iy}, then every meromorphic solution f (% 0) whose poles

are of uniformly bounded multiplicities of the equation
f(k) + Bk_lebkflzf(k—l) 4t Bleblzf/ 4+ (Alealz + A26a221) f =0 (13)
satisfies o (f) = +oo and o2 (f) = 1.

Theorem 1.2 Let Aj(z) (j=1,2), Bi(2) I=1,---,k—1), a1, a2, b
(l=1,--- ,k — 1) satisfy the additional hypotheses of Theorem 1.1. If ¢ (# 0)
is a meromorphic function with order o (p) < 1, then every meromorphic
solution f (£ 0) whose poles are of uniformly bounded multiplicities of equa-
tion (1.3) satisfies

AMFf=0)=X(f'—¢)=A(f"—¢) =cx.

Remark 1.1 In order to prove Theorem 1.2, we establish two Lemmas 2.12-
2.13 from linear algebra, and use them to prove that the equations (4.7) and
(4.21) are non-homogeneous equations.

Setting ¢ (z) = z in Theorem 1.2, we obtain the following corollary.

Corollary 1.1 Let Aj(z) (j=1,2), Bi(2) I=1,---,k—1), a1, a2, Y
(l=1,--- ,k — 1) satisfy the additional hypotheses of Theorem 1.1. If f (# 0)
s any meromorphic solution whose poles are of uniformly bounded multiplic-
ities of equation (1.3), then f, f' f" all have infinitely many fixved points
and satisfy

T =7 (1) =7 (") = 0.
2. Preliminary lemmas

We define the linear measure of a set E' C [0, 4+00) by m(F) = 0+°° xe(t)dt
and the logarithmic measure of a set F' C (1,+00) by Im(F) = [;7 X%(t)dt,
where x 7 is the characteristic function of a set H.
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Lemma 2.1 (see [7]) Let f be a transcendental meromorphic function with
o(f) =0 < +o00. Let € > 0 be a given constant, and let k, j be integers
satisfying k > j > 0. Then, there exists a set F1 C [—g, 37”) with linear
measure zero, such that, if ¢ € [—%,37”) \ E1, then there is a constant
Ry = Ry (v0) > 1, such that for all z satisfying argz = 1 and |z| > Ry, we

have

< |Z’(k—j)(<f—1+6) ]

® (2)
79 (2)

Lemma 2.2 (see [3], [11]) Consider g(z) = A(z)e**, where A(z) #Z 0 is
a meromorphic function with order o (A) = a < 1, a is a complex constant,
a = |a| e (¢ € [0,27)). Set By = {0 € [0,27) : cos (¢ + 0) = 0}, then Es is
a finite set. Then for any given ¢ (0 < e <1 — a) there is a set E3 C [0, 2m)
that has linear measure zero such that if z = re®, 6 € [0,27)\ (E2 U E3),
then we have when r is sufficiently large:

(i) If cos(p +6) >0, then

exp{(1—¢)d(az,0)r} <|g(z)| <exp{(1+¢)d(az,0)r}.
(ii) If cos(p+6) <0, then
exp{(1+¢)d(az,0)r} <|g(z)| <exp{(l1—¢)d(az,0)r},

where ¢ (az,0) = |a|cos (¢ + ).

Lemma 2.3 (see [12]) Suppose that n > 1 is a natural number. Let Pj (z) =
ajnz™ +--- (j = 1,2) be nonconstant polynomials, where ajq (¢ =1,---,n)
are complex numbers and ainas, # 0. Set z = ret?, ajn = |ajn] et | 0; €
[—Z.38), 6(P},0) = |ajn|cos (0; + nb), then there is a set By C [—£,3T)
that has linear measure zero. If 01 # 6o, then there exists a ray argz = 0,
0 (=%, 5=)\ (E4U Es), such that

5(P1,0)>0,5(Py,0) <0

or

5(P1,9) <0,(5(P2,9) > 0,

where Ey = {0 € [—%, g—g) 10 (Py,0) = 0} is a finite set, which has linear
measure zero.

Remark 2.1 (see [12]) We can obtain, in Lemma 2.3, if 0 € (=%, ) \

2n° 2n
(E4 U Es) is replaced by 6 € (£, 3%) \ (E4 U E5), the same result.
Lemma 2.4 (see [3]) Let f(z) be a transcendental meromorphic function
of order o (f) = a < +o00. Then for any given € > 0, there is a set Eg C

[—g, 37”) that has linear measure zero such that if 6 € [—%, 37”) N\Ls, then
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there is a constant Ry = Ry (0) > 1, such that for all z satisfying argz = 6
and |z| > Ry, we have

exp {—r*T} < |f (2)] < exp {r*Te}.

Using mathematical induction, we can easily prove the following lemma.

Lemma 2.5 Let f(z) = g(z) /d(z), where g(z) is a transcendental entire
function, and let d(z) be the canonical product (or polynomial) formed with
the non-zero poles of f(z). Then we have

1
f == [g“” + D19V + Dyag™™? + -+ Dyg' + Dnyog]
and
(n) (n) (n—1) (n72) q
ff:gg_‘_Dn,nlg +D"»“*2g +Dn1 +Dn0’

where D, ; are defined as a sum of finite numbers of terms of the type

A\ dm) In
Y Cijiei <d> )

(J1-Jn)

Cjjy-j, are constants, and j + j1 + 2jo + - - + nj, = n.

Lemma 2.6 (see [1]) Let Ao, A1, -+, Ax—1, F # 0 be finite order meromor-
phic functions. If f(z) is an infinite order meromorphic solution of the
equation

FO 4+ A fED e A f - Aof = F
then f satisfies X (f) = A(f) = o (f) = .

The following lemma, due to Gross (see [6]), is important in the factor-
ization and uniqueness theory of meromorphic functions, playing an impor-
tant role in this paper as well.

Lemma 2.7 (see [6],[15]) Suppose that fi (2), fa(2), -+, fu(2) (n > 2) are
meromorphic functions and g1 (2),92(2),- -+ , gn (2) are entire functions sat-
isfying the following conditions:

(i) ng( ) e ) = 0;

(ii )gj( ) — gk (2) are not constants for 1 < j <k <mn;

(ii) For 1 < j <m, 1 <h<k<n, T(rf) = ofT(ren® %)}
(r — oo, r ¢ E7), where E7 is a set with finite linear measure.

Then fj(z)=0(j=1,---,n).
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Lemma 2.8 (see [14]) Suppose that fi1(z), fa(z), -+, fn(2)(n>2) are
meromorphic functions and g1 (2),92(2),- -+ , gn (2) are entire functions sat-
isfying the following conditions:

(0) () = 32 15 ()0

(i) If 1 <j<n+1,1<k <n, the order of f; is less than the order of
e Ifn>21<j<n+1,1<h<k<n, and the order of fj is less
than the order of e9h9k,

Then fj(2) =0 (j =1,2,--- ,n+1).

Lemma 2.9 (see [7]) Let f(z) be a transcendental meromorphic function,
and let o > 1 be a given constant. Then there exist a set Eg C (1,00) with
finite logarithmic measure and a constant B > 0 that depends only on «
and i,j (0 <i < j<k), such that for all z satisfying |z| =r ¢ [0,1] U Ejg,
we have

f(j)(z)
FO(2)

Lemma 2.10 (see [8]) Let ¢ : [0,+00) — R and ¢ : [0,400) — R be
monotone non-decreasing functions such that ¢ (r) < (r) for all v ¢ Eq U
[0,1], where Eg C (1,+00) is a set of finite logarithmic measure. Let v > 1
be a given constant. Then there exists an r1 = r1 () > 0 such that ¢ (r) <
WY (yr) for all r > ry.

<B {T(‘”’f) (log® 1) log T'(arr, f)}j_i .

- r

Lemma 2.11 (see [4]) Let k > 2 and Ao, A1, -, Ax—1 be meromorphic
functions. Let 0 = max{o (4;),j=0,---,k—1} and assume that all poles
of f are of uniformly bounded multiplicity. Then every transcendental mero-
morphic solution f of the differential equation

PO+ A f5Y 4 Anf - Aof =0
satisfies o9 (f) < o.

Lemma 2.12 Let ay,a2 be two compler numbers such that aias # 0 and
a1 # ay. Letd; (i=1,---,p), d} (j=1,---,q) be real constants, where d; <
0 and dj < 0. Let n > 2 be an integer and o, B, o', B, v (i=1,---,p),
v; (3 =1,---,q) be real numbers such that « >0, >0, &/ >0, ' >0,
i 2 0) ’Y; Z 0; (aaIB) 7é (070)} (0/75,) 7& (070)7 0 < O[+B+/71+ : +’Yp S n;
0< o+ 47+ -+, <n and max{a, 8¢/, f'} < n. If argas # =
or ay < d, where d:min{di (i=1,--- p),d;» =1, ,q)} and na; =
aay + Bag +y1di + -+ Ypdp, then nag # o'ay + [ag +y1d) + -+ v,dy.
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Proof. Suppose that naz = o/ay + B'az +v1d| + - - + y,d;, then we have
the system

{ nap = aai + fag +y1di + - - + Ypdp, (2.1)

naz = o’ay + B'ag +ypdy + -+ dy.
Sinced < d; (i=1,---,p) and d < dg (j=1,---,q), then there exist con-

stants ¢; (0 < ¢; < 1) and c;- (0 < c;- < 1) such that d; = ¢;d and d} = c;-d.
The system (2.1) becomes

(n —a)a; — Pag = 7d,
{ e, (22)

where v = y1c1 + -+ +ypcp and o = 1) + -+ ey Set d =a+ B4y
and &' = o’ + 3 ++'. We can see that

d=a+B+yia+ -+ <at+f+y+--+p<n
and
=o'+ +nN+ -+ <d+8 +71+ -+, <n
The determinant A of the system (2.2) is defined as follows

n—a —f

A= - n-p

=(n-a)(n—p)—-dp. (2.3)

Case 1: If o/ =0, then A = (n—«a)(n—p4") > 0.

Case 2: If /8 # 0,ie.,a’ #0and 8 #0. By d < n and ¢ < n, we
have n —a > B+~ and n— 3 > o +9. Thus A > S, where S =
B+7) (@ +4")—dpB.

Subcase 2.1: If y 20 and v #0ory=0and 7 # 0 or v # 0 and 7/ = 0,
then S > 0. Hence A > 0.

Subcase 2.2: y=+'=0. Hence § = a+ S and & =o' + .

) If§ <nand & <n,thenn—a > and n— " > o'. By this and (2.3),
weget A=(n—a)(n—p)—dp>0.

ii) If 6 =n and & < n, then n —a = B and n — ' > o'. By this and (2.3),
we get A= (n—p)—dB>pa —a'/8=0. Thus A > 0.

iii) If § <n and ' =n, then n — a > B and n — ' = /. By this and (2.3),
we get A= (n—a)d —d'f>pa —d/f=0. Thus A > 0.

iiii) If 6 = n and & = n, then n —a = § and n — ' = /. By this and (2.3),
we get A = 0.

a) For all cases when A > 0, by (2.2), we can get a; = Ld, where

7(”‘5’)‘*‘57'.

L:
A
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We know that v (n — ')+ > 0. By usingy = —a—f and v = d'—o/—f’,
we can obtain

fy(n—ﬂ’)—i—ﬁ'y’—A:(n—ﬁ’)é—nﬁ—i—ﬂé’—i—nﬁ’—nz

<n(n-p)—-nB+nB+np —n®>=0.

Thus 0 <y (n—p")+ 6y <A, hence 0 < L <1.

(1) When L = 0, we have a; = 0, which is a contradiction.

(179) When 0 < L < 1, we have a1 = Ld. If arga; # 7 or a; < d, then
a1 # cd (0 < ¢ < 1). Therefore a; = Ld is a contradiction.

b) For the Subcase 2.2 (iiii) we have A = 0, then by (2.2), we get a1 = ag,
which is a contradiction. a

Lemma 2.13 Let a1 be complex number such that aq # 0. Let further d;
(t=1,---,p) be real constants such that d; < 0. Let n > 2 be an integer
and «, v; (i=1,---,p) be real numbers such that 0 < o < n, v > 0
and 0 < a+y1 + .+ < n. If argay # m or a1 < d where d =
min{d; :i=1,---,p}, then na; # car +n1di + -+ + Ypdp.

Proof. Suppose that na; = aay +y1dy + - - - + ypdp, then we have
L i 4 4 i)
aql = —- P .
1 n— o 71d1 Vplp

Since d < d; (i=1,---,p), then there exist constants ¢; (0 < ¢; < 1)
(i=1,---,p) such that d; = ¢;d. By this, we get a3 = L'd where

:7101+-~+7pcp
n—ao '

L/

We know that 0 < vyier + - +vpcp <71+ -+ 7 < n — «, hence we get
0< L' <1.

(i) When L' = 0, we have a; = 0, which is a contradiction.

(17) When 0 < L' < 1, we have a; = L'd. If arga; # 7 or a; < d, then
a1 # cd (0 < ¢ < 1). Therefore a; = L'd is a contradiction. O

3. Proof of Theorem 1.1

First step. We prove that o (f) = +oo. First of all we prove that equation
(1.3) can not have a meromorphic solution f # 0 with o (f) < 1. Assume
there exists a meromorphic solution f # 0 with o (f) < 1. By the conditions
of Theorem 1.1 we can see that a1 # ag, by (I =1,--- ,k—1). Hence, we
can rewrite (1.3) in the following form

AL fe™? + Agfe®® 4 By fkVebe-1z 4o 4 B etz = — ) (3.1)
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By Lemma 2.7 and Lemma 2.8, we get A1 = 0, which is a contradiction.
Therefore o (f) > 1.

Now, assume that f # 0 is a meromorphic solution whose poles are of
uniformly bounded multiplicities of equation (1.3) with 1 < o (f) =0 <
+oo. From equation (1.3), we know that the poles of f (z) can occur only
at the poles of A; (j = 1,2) and B; (I = 1,--- ,k — 1). Note that the
multiplicities of poles of f are uniformly bounded, and thus by [5], we have

N

2 -1
N(va)§M1N<Taf)§Ml ZN<T5A])+ N(TaBl)
j=1 =1

< Mmax{N (r,A4;) (j=1,2),N(r,B)(l=1,--- ,k—1)},

where M; and M are some suitable positive constants. This gives A (%) <

a = maX{U(Aj) (.7: 172)7U(Bl> (l: L. ak_l)} < L Let f = g/d,
d be the canonical product formed with the nonzero poles of f(z), with

o(d)=X(d)=A <%) = < a <1, gbe an entire function and 1 < o (g) =

o (f) = 0 < oo. Substituting f = ¢g/d into (1.3), by Lemma 2.5 we can get

k)

g(kil)
— + [Bk—lebk_lz + Dk,k—l}
g

(k—2)

+ [Bk—zeb’“‘” + Dy j—2 + Bk—lebk_lsz—17k—2} g

k-1 gk=3)
+ | Brose®™ ¥ + Dyip_s+ Y Bie"Dyy_s
i=k—2
k-1 1
bsz biz g(S)
+oo 4 | Bee®* + Do+ > Bie""Dig
i=s+1 19
k-1 1 .
+ oo+ | Boe?* + Dy o + Z Bie"*D; o 7
i=3 19
k-1 J
+ Bleblz + Dk71 + Z BiebiZDZ’J] —
i=2 g
k-1
+ 3 Bie"*Dig + Dy + Are™* + Age®* = 0. (3.2)
i=1

By Lemma 2.4, for any given ¢ (0 < & < 1—a), there is a set Fg C [—73, 37”)

that has linear measure zero such that if 6 € [—%, 37”) N\ Fg, then there is
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a constant Ry = Rp(0) > 1, such that for all z satisfying argz = 6 and
|z| > R1, we have

|Bi ()] <exp{r*te} (I=1,---,k—1). (3.3)
By Lemma 2.1, for any given & (0 < £ < min { }szﬂ ,1—a, ﬁ}), there
exists a set B C [—g, 37”) of linear measure zero, such that if 8 € [—g, 37’7)\

E4, then there is a constant Ry = Ry (6) > 1, such that for all z satisfying
arg z = 6 and |z| = r > Ry, we have

(4)
gg (;E)Z) S rk)(071+€)’ ] — 1’ e 7]{;’ (34)
d9 ()| _ kp-1ve)
W ST 7.7:]-7'”7]{: (35)
and .
d Ji d" J2 d(k) Jk
Disl=| X i <d) (d) (d
(91-dk)
d' Ji d"’ J2 k) Jk
= Z Cin-al |71 17| T
(d1-+7%)
< Z |ij1“‘jk| rj1(571+€)7"2j2(ﬁil+€) .- 'Tkjk(ﬁflﬂ':)
(91--d%)
- Z ‘ijl-"jk|T(j1+2j2+m+kjk)(ﬁ_1+6)- (3.6)
(J1-3k)

By j1+ -+ kjr =k —j <k and (3.6), we have

| Dy | < MrFO=1H), (3.7)
where M > 0 is a some constant. Let z = re?, a1 = |a1| e, ay = |asg| ™2,
01,00 € [-Z,3%). We know that & (bz,0) = 6(qarz,0) = ¢d(a12,0)
(l € Il) .

Case 1: argaj # 7, which is 61 # .

(i) Assume that 6; # 2. By Lemma 2.2 and Lemma 2.3, for the above ¢,
there is a ray arg z = 0 such that 6 € (=5, %) \ (E1 UE4U E5 U Eg) (where
FE4 and Ej5 are defined as in Lemma 2.3, F1 UE4UFE5U Ejg is of linear measure
zero), and satisfying

d(a12,6) >0, 6 (azz,0) <0
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or
0(a1z,0) <0, 6 (azz,0) > 0.

a) When 6 (a1z,0) > 0, 6 (azz,0) < 0, for sufficiently large r, we get by
Lemma 2.2
|A1e?| > exp{(1 —€) 0 (a1z,0)r}, (3.8)

|A2e??| < exp{(l —¢)0d (azz,0)r} < 1. (3.9)
By (3.8) and (3.9) we have

|A1e? 4+ Age®®| > |A1eM?| — |A2e™??| > exp{(1 —¢)d (a12,0)r} — 1

>(1—-o0o(1))exp{(1—¢)d(ar1z,0)r}. (3.10)
By (3.2), we get
g(k) b g(kil)
’Alealz +A2€a22’ S 2|4+ HBk—le k—1% + ‘Dk,k—1|]
g(k_Q)
+ Hquebk‘QZ + | Dy g—2| + ‘kaleb’“‘lz ‘Dkfl,k72|]
k-1 gh=3)
+ ’kaseb’“‘sz + [ Dy 3| + Z ’Biebiz |D; j—3
i=k—2
k—1 7] g(s)
oot | [Boeh® | 1Disl + Y | Bie®| 1D
i=s+1 119
k—1 i q"
+---+ ‘Bzebw + |Dg,2| + Z ‘Bz‘ebiz [Digl | |~
i=3 19
k—1 g k-1
+ ‘Blebm + ‘Dk,l‘ + Z ‘Bi@biz |Di,1 E + Z ’Biebiz |Di,0| + |Dk70| .
=2 =1

(3.11)
For [ € I, we have

)Bl (2) "% < exp{(1+4¢)cd(ar12,0)r} < exp{(1+¢)cd(arz,0)r}.

(3.12)

For [ € I, we have

‘Bl () eb* < exp {r***} exp {byr cos 0} < exp {r**°},

(3.13)

= By (2)] |
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because by < 0 and cosf > 0. Substituting (3.4), (3.7), (3.10), (3.12) and
(3.13) into (3.11), we obtain

(I—-o0(1))exp{(1 —¢)d(arz,0)r}

< Myr™2exp {r**} exp {(1 +¢) ¢d (a12,0) 7}, (3.14)

where M; > 0 and M > 0 are some constants. From (3.14) and 0 < ¢ <
l1—c t
Fita Ve ge

(1—0(1))exp {12_65 (a1z,8) r} < M2 exp {rote}. (3.15)

By d (a12,6) > 0 and o + & < 1 we know that (3.15) is a contradiction.
b) When 6 (a12,0) < 0, 0 (azz,68) > 0, for sufficiently large r, we get by
Lemma 2.2

|A1e™® + Ag2e™*| > (1 — o (1)) exp{(1 —¢€)d (agz,0)r}. (3.16)

For [ € I, we have

‘Bl (z) ebr*

<exp{(l—¢)gd(a1z,0)r} < 1. (3.17)
Substituting (3.4), (3.7), (3.13), (3.16) and (3.17) into (3.11), we obtain
(1—o0(1))exp{(1 —¢)6(azz0)r} < MirM2exp {rote}. (3.18)

By d (a2z,6) > 0 and o + ¢ < 1 we know that (3.18) is a contradiction.

(ii) Assume that #; = 6. By Lemma 2.3, for the above e, there is a ray
argz = 0 such that 0 € (—3,%) \ (E1UE4U E5 U Eg) and 6 (a;2,6) > 0.
Since |a1]| < |az|, a1 # a2 and 07 = 69, it follows that |a1| < |az|, thus
d (agz,0) > 0 (a12,0) > 0. For sufficiently large r, we have by Lemma 2.2

|A1e“?| < exp{(l+¢)d(arz,0)r}, (3.19)
|A2e??| > exp {(1 —€) d (azz,0)r}. (3.20)
By (3.19) and (3.20) we get
|A1eM? + Age®?| > |Age®?®| — |A1e™7]
>exp{(l —¢)d(azz,0)r} —exp{(1+¢)d(ar12,0)r}

=exp{(1+¢)d(a1z,0)r}[exp{nr} —1], (3.21)

where

n=(1-¢)d(azz,0)— (1+¢)d(arz0).



48 BENHARRAT BELAIDI AND HABIB HABIB

Since 0 < € < IZ;HZH, it follows that

n=(1—-c¢)lag|cos (02 +0) — (1 +¢)|ai|cos (61 + 0)

= (1—¢)|az|cos (61 +6) — (1+¢)]|ai|cos (01 + 0)
— [(1 =€) azl — (1 +2) ar ]} cos (6: + 0)
= [|ag| — |a1| — € (Jaz| + |a1])] cos (01 + 6) > 0.
Then, by n > 0 we get from (3.21) that

|A1e” 4+ Age®*| > (1 —o(1))exp{[(1 +¢€)d (a12,8) +n]r}. (3.22)
Substituting (3.4), (3.7), (3.12), (3.13) and (3.22) into (3.11), we obtain
(1 —o(1)exp {[(1+¢)d(arz,0) +nlr}

< Myr™2 exp {ra+€}exp{(1 +e)cd (arz,0)r}. (3.23)
By (3.23), we have

(1—o(1))exp{[(1+¢)(1—c)é(aiz,0) +n]r} < Myr™ exp {roFe} .
(3.24)
By 0 (a1z,0) > 0,7 > 0 and a+¢ < 1 we know that (3.24) is a contradiction.

Case 2: a1 < &, which is #; = 7.

(i) Assume that 6; # 6o, then 0y # 7. By Lemma 2.3, for the above ¢,
there is a ray argz = 6 such that § € (=3,%) \ (E1UE4U E5U Eg) and
0 (agz,68) > 0. Because cosf > 0, we have 6 (a12,0) = |a1|cos (61 +60) =

— |a1| cos @ < 0. For sufficiently large r, we obtain by Lemma 2.2
|A1eM% + Age®?| > (1 —0(1))exp{(1 — &) d (agz,0)r}. (3.25)
Using the same reasoning as in Case 1(i), we can get a contradiction.

(ii) Assume that 6; = 6o, then 0; = 0 = 7.

By Lemma 2.3, for the above &, there is a ray argz = 6 such that 0
(Z,32)\ (E1 U E4 U E5 U Eg), then cos6 < 0, & (a1z,6) = |a1| cos (61 + 0)
—lai|cos@ > 0, 6 (azz,8) = |az| cos (62 + ) = — |ag| cos@ > 0. Since |a;|
las], a1 # ag and 67 = 09, it follows that |a1| < |ag|, thus ¢ (azz,0)
d (a1z,0), for sufficiently large r, we get (3.19), (3.20) and (3.22) hold. For
[ € I, we have

€
<
>

‘Bl (z) eb?

= 1By ()| "2

< exp {r*"*} exp {b;r cos 0}

< exp {r*"*} exp {br cos 6} (3.26)
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because by < 0, b =min{b; : [ € Iz} and cosf < 0. Substituting (3.4), (3.7),
(3.12), (3.22) and (3.26) into (3.11), we obtain

(1—o(1))exp{[(1 +¢)d(a12,0) +n]r}

< M2 exp {rete}exp{(1+¢)cd (ar2,0) r}exp {brcos6}. (3.27)
From (3.27), we have

(I—-o(1))exp{yr} < MirM2 exp {ro‘+€} , (3.28)
where v = (14+¢)(1 —¢)6(a12,0) +n — bcosh. Since n > 0, cosf < 0,
d(a1z,0) = —lai|cosb, a1 < 1fc and b < 0, then it follows that

y=—(14¢)(1—c)lai|cosf —bcost +n

=—[1+¢e)(l—c)l|ai|+b]cost+n

0|
1—c¢

=—[-(1+e)b+blcosh+n=mn+bscost > 0.

>—|(14+¢)(1—¢) +b| cosf+n

By a4 < 1 and vy > 0, we know that (3.28) is a contradiction. Concluding
the above proof, we obtain o (f) = o (g) = +oc.

Second step. We prove that oo (f) = 1. By
max {O‘ (A" + Aze™®) 0 (Bleblz) l=1,-,k— 1)} =1
and Lemma 2.11, we obtain o2 (f) < 1. By Lemma 2.9, we know that there

exists a set Eg C (1,+00) with finite logarithmic measure and a constant
B > 0, such that for all z satisfying |z| = r ¢ [0,1] U Eg, we get

‘f(j)(z) <B[T@r P GG=1,-- k). (3.29)

f(z)

By (1.3), we have

£ Flr=D)

f

‘Alealz +A2€a2z‘ < + ‘Bk_lebk,lz

+ -+ ‘Bleblz

r
7l

(3.30)
Case 1: arga; # 7
(i) (01 # 02) In first step, we have proved that there is a ray arg z = 6 where
0c(-%,%)\ (E1UEsU E5s U Eg), satisfying

d(a12,6) > 0,6 (azz,0) <0 or d(a12,0) <0,6 (azz,0) > 0.
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a) When 6 (a1z,0) > 0, § (azz,0) < 0, for sufficiently large r, we get (3.10)
holds. Substituting (3.10), (3.12), (3.13) and (3.29) into (3.30), we obtain for
all z = re satisfying |z| =7 ¢ [0,1]UEs, 0 € (=%, 2)\(E1 U E4U E5 U E)

T 202
(I—-0(1))exp{(1 —¢)d(arz,0)r}
< Mexp {r*™}exp{(1+¢)cd(ar2,0)r} [T (2r, PP, (3.31)
where M > 0 is a some constant. From (3.31) and 0 < £ < 52=5<, we get

2(14c)
(I1—0(1))exp {12_65 (a1z,0) ’I“} < Mexp {r***} [T(2r, AP (3.32)

Since 0 (a12,6) > 0, a + ¢ < 1, then by using Lemma 2.10 and (3.32), we
obtain o3 (f) > 1, hence o9 (f) = 1.

b) When 6 (a12,0) <0, § (a2z,60) > 0, using a proof similar to the above, we
can also get o3 (f) = 1.

(ii) (61 = 62) In first step, we have proved that there is a ray arg z = 6 where
9c(-%,%)\(E1UE4U Es U Eg), satisfying 6 (azz,0) > 6 (a12,6) > 0 and
for sufficiently large r, we get (3.22) holds. Substituting (3.12), (3.13),
(3.22) and (3.29) into (3.30), we obtain for all z = re' satisfying |z| = r ¢
[0, 1] UFg, 0 € (—g,%) \ (F1UE4UE5U Eg)

(1—0(1))exp{[(1+¢)d(arz,0)+n]r}

< Mexp {r*"} exp{(1 +¢)cd (a12,6) r} [T(2r, HFE (3.33)
By (3.33), we have

(1=0 (1)) exp{[(1+&) (1-) 6 (ar2,0) + 1] r} < M exp {r+} [T(2r, .
(3.34)

Since 0 (a12,6) > 0, 7 > 0 and o + ¢ < 1, then by using Lemma 2.10 and
(3.34), we obtain oo (f) > 1, hence o9 (f) = 1.

Case 2: a1 < %_C.

(1) (61 # 69) In first step, we have proved that there is a ray arg z = 0 where
0 € (—%,%)\(E1 U E4 U E5 U Eg), satisfying 6 (azz,6) > 0 and § (a12,6) < 0
and for sufficiently large r, we get (3.25) holds. Using the same reasoning
as in second step (Case 1 (i)), we can get oo (f) = 1.

(ii) (61 = 62) In first step, we have proved that there is a ray arg z = 6 where
0 € (5,25) \ (E1UE4U E5 U Eg), satistying 6 (a2z,6) > 6 (a12,6) > 0 and
for sufficiently large r, we get (3.22) holds. Substituting (3.12), (3.22),
(3.26) and (3.29) into (3.30), we obtain for all z = re? satisfying |z| = r ¢
0,1 UEs, 6 € (3,%F) \ (E1UE4 U E5 U Eg)
(1—o(1))exp{[(1+¢)d(a12,0) +n]r}

< Mexp {r*"} exp{(1 +¢)cd (a12,6) r} exp {br cos 6} [T(2r, FFE
(3.35)
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From (3.35), we have
(1 o) exp {71} < Mexp [+ [T2r, A, (3.36)

where y = (1+¢) (1 —c¢)d (a12,0)+n—bcosh. Since v > 0, a+¢ < 1, then
by using Lemma 2.10 and (3.36), we obtain o9 (f) > 1, hence o9 (f) = 1.
Concluding the above proof, we obtain that every meromorphic solution
f ( 0) whose poles are of uniformly bounded multiplicities of (1.3) satisfies
o2 (f) = 1. The proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Set Ry (2) = A1e®? + Age®? and R, (2) = Bjeb* (j=1,--- ,k—1). As-
sume f (# 0) is a meromorphic solution whose poles are of uniformly bounded
multiplicities of equation (1.3), then o (f) = +o0o by Theorem 1.1. Set
go(z2) = f(2) — v(z). We have go(z) is a meromorphic function and
o (g0) = o (f) = co. Substituting f = go + ¢ into (1.3), we have

k k—
9y + Ry_1gy ™Y -+ Rogly + Rugh + Rogo

= - SO(k) + Rk—lSO(k_l) + o+ Ro” + Ry’ + Rogo] . (4.1)
We can rewrite (4.1) in the following form
a8+ hog—195 " - 4 hoagl + hogh + hopgo = ho, (4.2)
where
ho = = [ + Reo1o® ™D -+ Rag” + R + Rog)
We prove that hg £ 0. In fact, if hg = 0, then
o™ + R 1o + o 4 Rog” + Ri' + Royp = 0.

Hence, ¢ # 0 is a solution of equation (1.3) with o (¢) = +o0o by Theorem
1.1, it is a contradiction. Hence, ho # 0 is proved. By Lemma 2.6 and (4.2)
we know that A(go) = A (f —¢) =0(g0) =0 (f) = 0.

Now we prove that A (f' — ¢) = co. Set g1 (2) = f'(2) — ¢ (2), then g1 (2)

is a meromorphic function and o (91) = o (f') = o (f) = co. Differentiating
both sides of equation (1.3), we have

FEY 4 Ry f® 4 (Ry_y + Ry—a) %Y 4+ (Ry_y + Ry_3) f2

4+ 4 (R + Ro) f" + (Ry+ R) f" + (Ry+ Ro) /' + Ryf = 0. (4.3)
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By (1.3), we have
1
f=—% [0+ R fE o Bof” R (4.4)
Substituting (4.4) into (4.3), we have

R R _
FED 4 (Rkl - RO> F® + <R§€1 + Ry — Rk1RO> FE
0 0

/ /
+ 2_2 + Rj_3 — Rk72& f(k72) N Ré + Ry — R3& f///
Ry Ro

/ /

R
+(%+Rr4ﬁ£>ﬂ+<ﬁ+RwJﬁ£>f:0 (4.5)

We can denote equation (4.5) by the following form

FED e O fhy o f D b by f A ha f o f =0, (4.6)

where o
hii=Ri +Ri—Riy1—=> (i=0,1,--+ ,k—2),
Ry
Rl
h _ :Ri _70.
1,k—1 E—1 Ry

Substituting fU*1) = g%j) + ¢ (j=0,--- k) into (4.6), we get

g 4 h k108 + hgag TP b sl hiagh + hiogs = b, (47)
where
hi = — ™ 4 hy gD 4 hl,k—280(k_2) + oo+ hig@” + hiag' + hl,osﬁ] .
We can get,
Ni (Z) .
hi = =0,1,--- ,k—1), 4.8
W)= 7 ) (48)
where
No = R{Ro + R} — R\ Ry, (4.9)
N;=R; Ry+ RiRy— Ris1R) (i=1,2,--- k—2), (4.10)
Nip_1=Rp_1Ry — R6. (4.11)
Now we prove that hy # 0. In fact, if by = 0, then 2 = 0. Hence, by (4.8)

[
we get

(k) (k—1) (k—2) " /
%Ro—l-so Np_1+ Nk,Q—F---—i—%NQ—F%Nl—l-NO:O. (412)
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Obviously, % (j =1,---,k) are meromorphic functions with o (%) < 1.
By (4.9) — (4.11) we can rewrite (4.12) in the form
k—1 k—1
fl,(]ealz + f2’06a22 + Z fl,ie(al—i_bi)z + Z f2,i€(a2+bi)z
i=1 i=1
+ 24 Agel@taz)z 4 p2p2mz 4 A2o2022 _ () (4.13)
where f1, f2; (i =0,1,--- ,k — 1) are meromorphic functions of order less

than 1. Set I ={2a1, 2aa, a1+aq, a1, az, a1+b;, as+b; (i=1,---  k—1)}. It
is clear that 2a; # a1, a1+ a9, 2a2 and by Lemma 2.13 we have 2a1 # a1 +b;
(=1, k—1).
(i) If 2a; # a9, ag +b; (i =1,--- k — 1), then we can rewrite (4.13) in the
form
A2e*7 4 Z age® =0,
Belry
where I't € I\ {2a:} and ag (8 € I'1) are meromorphic functions of order
less than 1. By Lemma 2.7 and Lemma 2.8, we get A; = 0, which is a
contradiction.
(ii) If 2a; = 7 such that v €{ag, a2 +b; (i=1,--- ,k—1)}, then by Lemma
2.12 we have 2ag # 3 for all 5 € I'\ {2az2}. Hence, we can rewrite (4.13) in
the form
A3e?12% 4 Z age® =0,
Bel2
where I'y C I\ {2a2} and ag (8 € I'y) are meromorphic functions of order
less than 1. By Lemma 2.7 and Lemma 2.8, we get Ao = 0, it is a contra-
diction. Hence, h; # 0 is proved. By Lemma 2.6 and (4.7) we know that

AMg)) =A(f'—¢)=0(q) =0 (f) = 0.

Now we prove that A (f” — ¢) = co. Set g2 (2) = f" (2) — ¢ (2), then go (2)
is a meromorphic function and o (g2) = o (f”) = o (f) = oo. Differentiating
both sides of equation (1.3), we have

FED LRy ) 4 (2R, + Ry—o) f® 4 (R)_; + 2R}, _o + Ry_3) f*

+ (Ry_y+2Ry_5+ Ri—4) f* 2 + ...+ (R + 2R, + Ry) f"
+ (RY + 2R} + Ro) " + (R} +2R}y) f' + Ry f = 0. (4.14)
By (4.4) and (4.14), we have

/!
FEFD Ry fEHD 4 <2R2_1 Rz~ ZO> s
0

!/
+ <R%1 +2R)_y+ Ri—3 — R ?) Fo=D
0
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R/l Rl/
o4 (R + 2Ry + Ry — Ry=2 ) fW + ( R + 2Ry + Ry — R3==2 ) "
Ro RO
R// R//
+ <Rg + 2R} + Ry — R2RD> 7+ ( !+ 2R} — RlRO> f'=0. (4.15)
0 0
Now we prove that R} + Ry — Rl% # 0. Suppose that R} + Ry — Rl% =0,
then we have

fre@ttz 4 po(02tb0)z |94 gpelarten)s 4 A2 | 420207 — () (4.16)

where f; (j =1,2) are meromorphic functions of order less than 1. By
using the same reasoning as above, we can get a contradiction. Hence,

Ry + Ry — Rl% # 0 is proved. Set
¥ (2) = R{Ry + R2 — RiR), and ¢ (z) = R{Ry + 2R\Ry — R1R}. (4.17)

By (4.5) and (4.17), we get

—R, R Ry _
f’zw(;;{f(’”” + <Rk_1 - RE) 7+ ( b1+ R — Rk_lf’) Fey
/

R R
+ R;_2 + Rp_3 — Rk—270 f(k—2) ot R’2 + Ry — R270 f// ‘
Ry Ro

Substituting (4.17) and (4.18) into (4.15), we obtain

(k+2) _ O] prn), [op _ By ¢ _ B\ s
f + [Rkl 1/1] f +[ Ry + Ri—2 Ro Ry—y Ry /

R// R/
T [RZl + 2R} 5+ Ry—3 — Rp1735 0 < b1+ Rip—g — Rk—10>:| FED

Ry ¢ Ry
+-+ |RE+ 2R+ R — R Bg ¢ R+ R _RRi "
3 2 1 SRO w 3 2 3R0
/! /
+ R’2’+2R’1+R0—R2ﬁ—? R’2+R1—R2& ff=0. (4.19)
RO w Ro

We can denote equation (4.19) by the following form
FED fhg oy fED fhy oo fE o hon f O tho 1 f+hao f” = 0, (4.20)

where

/!

R,
hai = Riip+2Riy +Ri— Riza >

Ry
¢ (2) Ry .
Y2 R§+2+Ri+1_Ri+2R78 (i=0,1,---,k—3),
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/! ,
hoj—2 = 2R}, + Ry—o — Mg 0 (Rkl = RO) ;

Ry v (2) Ry
hojx—1 = Ri—1 — ZZ;

Substituting fU+2) = géj) + ¢ (j=0,--- k) into (4.20) we get

) (k—1) (k—2)

k
gé + hak-195 + ha k—295 + -+ ho1gs + hooga = ha,  (4.21)
where

ho=— [sﬂ(k) + h2,k—190(k_1) + h2,k:—2%0(k_2) 4+ hooe" + ho1 + hQ,OSD} :

We can get

(i=0,1,---,k—1), (4.22)
where
Lo (2)=R4R|Ro + RYR3 — RYR R\, + 2R Ry + 3R\ R3 — 2R, R R\, + R}
—3R1RyRy — RoR, R} — RoR§Ry — RAR/ Ry — 2R, Ry Ry + RyR1 Rl
— RIR1Ry + RiR{ + RoR{ R\ + 2R R}, (4.23)
Li=R{\s Ry Ro+ R}y Rg — R}, R1 Ry + 2R | R Ro + 2R}, 1 R — 2R R1 Ry
+R;R| Ry + R;R} — R;R1 R}, — Ri 2R\ R — Ri12R{ Ry — R}.,R Ry
—2R£+2R6R0 -+ R;+2R1R6/ - RZ’_HR/{R() — 2Ri+1R6R0 + Ri+1R1R3
+ Ry oR{R) 4+ 2R oR} (i=1,2,--- ,k—3), (4.24)
Lip_o=2R, R/Ry+ 2R} _|R%—2R} |R\R)+ Ry_2R|Ry + Ry_oR>
—Rp_o2R1Rl — RYR} — RyRy — Ry_1R/Ry — 2R;,_1 R\ Ry
+ Ry_1R1Rj + R{R{, + 2R{, (4.25)
L= Rk,1R3R0 + kale — Rk,1R1R6 — Rll/Ro — 2R6R0 + Rle. (4.26)

Therefore
—h 1 (k) (k—1) /" /
2 _ - b z/}—i—go Lk,1+"'+£L2+£L1+LO . (4'27)
© (2 ® @

Now we prove that he # 0. In fact, if hg = 0, then 77?2 = 0. Hence, by
(4.27) we have
(k—1) "

¥

kal + -+ ?LQ + ;Ll + LO = 07 (4'28)

¥

¥

P+
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Obviously, % (j =1,---, k) are meromorphic functions with o (%) <1
By (4.17) and (4.23)-(4.26), we can rewrite (4.28) in the form
k—1 k—1
f1,062a12 + f2’062a2z + f3706(a1+a2)z + Z f17l'6(2a1+bi)z + Z f2,i€(2a2+bi)z
i=1 =1
k—1
+> faelt otz gy pelatblz g, jelazth)z
i=1
k—1 k—1
+ Z ll7ie(a1+b1+b¢)z + Z 127i€(a2+b1+b¢)2
i=1 i=1
+ Ail')€3a1z + A§’63a22 + 3A%A26(2a1+a2)z + 3A1A%e(a1+2a2)z =0, (4.29)
where f1, f2i, f3,i, L3, l2i (i =0,1,---  k — 1) are meromorphic functions

of order less than 1. Set J ={3a1, 3as, 2a1 + az, a1 + 2a2, 2a1, 2az, a1 + az,
ay + by, az + by, 2a1 + by, 2a2 + by, a1 + ag + by, ay + by + by, az + by + b;
(t=1,--- ,k—1)}. Tt is clear that 3a; # 2a1, 2a; + ag, a1 + 2as2, 3az and by
Lemma 2.13 we have 3a; # a1 + b1, 2a1 + b, a1 +b1+b; (i=1,--- [ k—1).
(i) If 3a1 # 2a2, a1 + az, as + by, 2a2 + b;, a1 + ag + by, ag + by + b;

(i=1,---,k—1), then we can rewrite (4.29) in the form
Adedaz 4 Z age’ =0,
Bel'

where I't € J\ {3a1} and ag (f € I'1) are meromorphic functions of order
less than 1. By Lemma 2.7 and Lemma 2.8, we get A; = 0, which is a
contradiction.

(ii) If 3a; = ~ such that v €{2aq2, a1 + a2, az + b1, 2a2 + b;, a1 + a2 + b;,
az+ by +b; (i =1,---,k—1)}, then by Lemma 2.12 we have 3as # [ for
all B € J\ {3az2}. Hence, we can rewrite (4.29) in the form

Adeda2® ¢ Z age’ =0,
BeT2

where I'y C J\ {3az2} and ag (f € I'z) are meromorphic functions of order
less than 1. By Lemma 2.7 and Lemma 2.8, we get Ao = 0, it is a con-
tradiction. Hence, he # 0 is proved. By Lemma 2.6 and (4.21), we have
Mg2) = A(f"—¢) = 0(g2) = o(f) = co. The proof of Theorem 1.2 is
complete.
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