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not necessarily full, of the category LM of all linear modular lattices, we
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Introduction

The aim of this paper is to investigate the connections between the lattice
preradicals introduced in [4] and the usual module preradicals.

Section 0 collects together some general notation and terminology on
lattices, modules, and hereditary torsion theories needed in the sequel.

Section 1 presents some basic definitions and results of [3], [4], and [5]
on linear morphisms of lattices and lattice preradicals.

In Section 2 we give the main results of the paper. Firstly, we show
that any lattice preradical naturally induces a module preradical, or more
generally, a preradical on any locally small Abelian category, but not con-
versely. Then, we introduce and investigate the concept of a linearly closed
subcategory of the category LM of all linear modular lattices; these are
subcategories of LM that are not necessarily full but enjoy some natural
conditions that are in particular satisfied when considering subcategories of
locally small Abelian categories or subcategories associated with τ -saturated
submodules with respect to a hereditary torsion theory τ on the category
Mod-R of all right R-modules over a unital ring R.
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Section 3 presents the more general concept of a preradical on a linearly
closed subcategory of LM. Then, we show that we can naturally associate
to preradicals on locally small Abelian categories and module categories
equipped with hereditary torsion theories lattice preradicals on the linearly
closed subcategories SCX and SCH discussed in Examples 2.7 and 2.9, re-
spectively. In the final part of this section we show how the main results
of [5] about lattice preradicals on C11 lattices also hold for preradicals on
linearly closed subcategories that are weakly hereditary.

0. Preliminaries

All lattices considered in this paper are assumed to be bounded, i.e., they
have a least element denoted by 0 and a greatest element denoted by 1.
Throughout this paper, L will always denote such a lattice. We shall denote
by L the class of all (bounded) lattices and by M the class of all (bounded)
modular lattices.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

An initial interval of b/a is any interval c/a for some c ∈ b/a.
For all other undefined notation and terminology on lattices, the reader

is referred to [1], [2], [7], and/or [8].

Throughout this paper R will denote an associative ring with non-zero
identity element, and Mod-R (respectively, R-Mod) the category of all uni-
tal right (respectively, left) R-modules. The notation MR will be used to
designate a unital right R-module M , and N 6 M will mean that N is
a submodule of M . The lattice of all submodules of a module M will be
denoted by L(M).

A preradical on Mod-R is a subfunctor q of the identity functor 1Mod-R

of Mod-R. This means that q assigns to each right R-module M a submod-
ule q(M) of M such that each morphism f : M −→ N in Mod-R induces
by restriction a morphism q(f) : q(M) −→ q(N), i.e., f(q(M)) 6 q(N).

In this paper τ = (T ,F) will denote a fixed hereditary torsion theory
on Mod-R and tτ (M) the τ -torsion submodule of a right R-module M . It
is well-known that the assignment M 7→ tτ (M), M ∈ Mod-R, defines a left
exact (pre)radical on Mod-R. For any MR we shall denote

Satτ (M) := { N | N 6M and M/N ∈ F },

and for any N 6 M we shall denote by N the τ -saturation of N (in M)
defined by N/N = tτ (M/N). The submodule N is called τ -saturated if
N = N . Note that

Satτ (M) = {N |N 6M, N = N },
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so Satτ (M) is the set of all τ -saturated submodules of M .
It is well-known that for any MR, Satτ (M) is an upper continuous mod-

ular lattice with respect to the inclusion ⊆ and the operations
∨

and
∧

defined as follows:∨
i∈I

Ni :=
∑
i∈I

Ni and
∧
i∈I

Ni :=
⋂
i∈I

Ni,

having least element τ(M) and greatest element M (see [8, Chapter 9,
Proposition 4.1]).

The reader is referred to [8] for more about hereditary torsion theories.

1. Linear morphisms of lattices and lattice preradicals

In this section we recall from [3] and [4] the concepts of a linear morphism
and of a lattice preradical, respectively, and list some of their basic proper-
ties. We also present from [5] the concept of a weakly lattice preradical.

As in [3], a mapping f : L −→ L′ between a lattice L with least element
0 and greatest element 1 and a lattice L′ with least element 0′ and greatest
element 1′ is called a linear morphism if there exist k ∈ L, called a kernel
of f , and a′ ∈ L′ such that the following two conditions are satisfied.

• f(x) = f(x ∨ k), ∀x ∈ L.
• f induces a lattice isomorphism

f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.

If f : L −→ L′ is a linear morphism of lattices, then f is an increasing
mapping, commutes with arbitrary joins (i.e., f (

∨
i∈I xi) =

∨
i∈I f(xi) for

any family (xi)i∈I of elements of L, provided both joins exist), preserves
intervals (i.e., for any u 6 v in L, one has f(v/u) = f(v)/f(u)), and its
kernel k is uniquely determined.

As in [3], the class M of all (bounded) modular lattices becomes a
category, denoted by LM, (for “linear modular”) if for any L, L′ ∈M one
takes as morphisms from L to L′ all the linear morphisms from L to L′.

The isomorphisms in the category LM are exactly the isomorphisms
in the full category M of the category L of all (bounded) lattices. The
monomorphisms (respectively, epimorphisms) in the category LM are ex-
actly the injective (respectively, surjective) linear morphisms. Moreover, the
subobjects of L ∈ LM can be viewed as the intervals a/0 for any a ∈ L.

As in [5], a non-empty class C of lattices is said to be weakly hereditary
if a/0 ∈ C for any L ∈ C and a ∈ L. According to [6], an abstract class of
lattices is a subclass ∅ 6= C ⊆ L which is closed under lattice isomorphisms,
i.e., if L,K ∈ L, K ' L, and L ∈ C, then K ∈ C. Thus, a hereditary class
of lattices as defined in [6] is nothing else than a weakly hereditary class
which additionally is an abstract class.



22 Toma Albu and Mihai Iosif

For any non-empty subclass C of M we shall denote by LC the full
subcategory of LM having C as the class of its objects.

Let C be a weakly hereditary subclass of M. As in [5], a weakly lattice
preradical on C is any functor r : LC −→ LC satisfying the following two
conditions.

• r(L) is an initial interval of L for any L ∈ LC.
• For any morphism f : L −→ L′ in LC, r(f) : r(L) −→ r(L′) is the

restriction and corestriction of f to r(L) and r(L′), respectively.

The lattice preradicals defined in [4] are precisely the weakly lattice pre-
radicals on hereditary classes C ⊆ M. As in the case of “true” lattice
preradicals, for a weakly lattice preradical r on the weakly hereditary class
C ⊆ M, we set r(a/0) := ar/0 for any a ∈ L and L ∈ C.

If a 6 b in L then a/0, b/0 are both in C because C is weakly hered-
itary. The inclusion mapping ι : a/0 ↪→ b/0 is clearly a linear morphism,
thus it is a morphism in LC. Applying now r we obtain r(ι) : ar/0 −→ br/0
as a restriction of ι, and so ar 6 br.

2. Connections between lattice preradicals and module preradicals

This section contains the main results of the paper. We first show that any
lattice preradical naturally induces a module preradical, or more generally a
preradical on any locally small Abelian category, but not conversely. Then,
we introduce the concept of a linearly closed subcategory of LM and show
that, based on this, the main results of [5] about lattice preradicals on
C11 lattices also hold for preradicals on linearly closed subcategories that
are weakly hereditary; so, they can be at once applied to Grothendieck
categories and module categories equipped with hereditary torsion theories.

Proposition 2.1. For any lattice preradical r on LM, the assignment
MR 7→M r defines a preradical r on Mod-R.

Proof. Recall that, when we specialize the notation ar/0 := r(a/0), a ∈ L,
L ∈ LM, for L = L(MR) and a = M , we have M r/0 = r(L(MR)) in the
lattice L(MR) = M/0.

Clearly r(M) := M r 6 M. Let f : M −→ M ′ be a morphism of right
R-modules. Then f induces a mapping

f : L(M) −→ L(M ′), f(N) = f(N), ∀N 6M,

which is a linear morphism of lattices. Since r is a preradical on LM, we
have

f(M r/0) = f(r(L(M)) ⊆ r(L(M ′)) = M ′r/0,

and so, f(M r) ⊆ M ′r, that is, f(r(M)) ⊆ r(M ′). Thus r is a module
preradical. 2
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More generally, we may consider instead of Mod-R any locally small
Abelian category. Recall that an Abelian category A is said to be locally
small if the class L(X) of all subobjects of each object X of A is a set, and
in this case, L(X) is actually a modular lattice. We shall use the standard
notation A ⊆ X to designate an element A ∈ L(X). As it is well-known,
any Grothendieck category is locally small. To extend Proposition 2.1 to a
locally small Abelian category A, it suffices to observe that, by [4, Lemma
5.1], for any morphism f : X −→ Y in A, the induced mapping

f∗ : L(X) −→ L(Y ), f∗(A) = f(A), ∀A ⊆ X,

is a linear morphism of lattices.

The next example shows that a module preradical does not necessarily
define a lattice preradical.

Example 2.2. For any M ∈ Z-Mod, denote r(M) = {x ∈ M | 2x = 0 }.
Then r is a preradical on Z-Mod.We claim that there is no lattice preradical
r such that r is obtained from r as in Proposition 2.1.

To see this, suppose that such an r exists. Consider the cyclic Abelian
groups Z2 and Z3. Since their lattices of subgroups L(Z2) and L(Z3) are
two-element chains, they are isomorphic, and let ϕ : L(Z2)

∼−→ L(Z3) be
the (unique) lattice isomorphism. Then ϕ(r(L(Z2)) ⊆ r(L(Z3)). But

Zr2 = r(Z2) = Z2 and Zr3 = r(Z3) = 0,

so r(L(Z2)) = {Z2, 0} and r(L(Z3)) = {0}, and then

Z3 = ϕ(Z2) ∈ ϕ(r(L(Z2)) = {0},

which is a contradiction. �

We are now going to investigate when a module preradical produces a
sort of a lattice preradical. Thus, we introduce the concept of a linearly
closed subcategory of the category LM; these are subcategories of LM
that are not necessarily full but enjoy some natural conditions that are in
particular satisfied when considering subcategories of locally small Abelian
categories or subcategories associated with τ -saturated submodules with
respect to a hereditary torsion theory τ on the category Mod-R.

Definition 2.3. Let SC be a subcategory (not necessarily full ) of LM
having as class of objects a non-empty subclass C of M. We say that SC
is linearly closed if its class of morphisms Mor (SC) satisfies the following
four properties.

(1) If L ∈ C, a ∈ L, and a/0 ∈ C, then the inclusion mapping

i : a/0 ↪→ L, i(x) = x, ∀x ∈ a/0,
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is in Mor (SC).

(2) If L ∈ C, a ∈ L, and 1/a ∈ C, then the linear morphism

p : L −→ 1/a, p(x) = x ∨ a, ∀x ∈ L,

is in Mor (SC).

(3) If f : L −→ L′ is in Mor (SC), k is the kernel of f, and a′ ∈ L′ is
such that f : 1/k

∼−→ a′/0′ is the induced isomorphism, then

1/k ∈ C, a′/0′ ∈ C, and f ∈ Mor (SC).

(4) If f : L
∼−→ L′ is in Mor (SC) and is an isomorphism in LM, then

its inverse f−1 is in Mor (SC) (i.e., f is an isomorphism in SC). �

The next result has a series of consequences that will be essentially used
in our forthcoming paper [5] investigating the behavior under lattice pre-
radicals of the condition (C11) in modular lattices.

Proposition 2.4. Let SC be a linearly closed subcategory of LM,
let f : L −→ L′ be a morphism in SC with kernel k, and let a, b ∈ L
such that a/0 and 1′/f(b) are in SC. Then a/((b∨k)∧a) and f(a∨b)/f(b)
are both in SC, and the canonical morphism

g : a/((b ∨ k) ∧ a) −→ f(a ∨ b)/f(b), x 7→ f(x) ∨ f(b),

induced by f is an isomorphism in Mor (SC).

Proof. By Definition 2.3(1), the inclusion mapping i : a/0 ↪→ L is in
Mor (SC), and, by Definition 2.3(2) the projection

p : L′ −→ 1′/f(b), p(y) = y ∨ f(b), ∀ y ∈ L′,

is also in Mor (SC). Thus g := p ◦ f ◦ i : a/0 −→ 1′/f(b) is in Mor (SC).
The kernel of g is (b ∨ k) ∧ a. Indeed, for x ∈ a/0, we have

g(x) = f(b)⇐⇒ f(x)∨f(b) = f(b)⇐⇒ f(x∨b) = f(b)⇐⇒ x∨b∨k = b∨k

⇐⇒ x 6 b ∨ k ⇐⇒ x 6 (b ∨ k) ∧ a.

Since g(a) = f(a∨ b), it follows that the isomorphism induced by the linear
morphism g is

g : a/((b ∨ k) ∧ a) −→ f(a ∨ b)/f(b), x 7→ f(x) ∨ f(b).

By Definition 2.3(3), we obtain the desired conclusion. 2
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Corollary 2.5. The following assertions hold for a linearly closed subcat-
egory SC of LM, a morphism f : L −→ L′ in SC with kernel k, and
elements a, b ∈ L.

(1) If a/0 ∈ SC, then both intervals a/(a ∧ k) and f(a)/0′ are in SC,
and the canonical morphism

α : a/(a ∧ k) −→ f(a)/0′

induced by f is an isomorphism in Mor (SC).

(2) If 1′/f(b) ∈ SC, then both intervals 1/(b ∨ k) and f(1)/f(b) are in
SC, and the canonical morphism

β : 1/(b ∨ k) −→ f(1)/f(b)

induced by f is an isomorphism in Mor (SC).

Proof. (1) Apply Proposition 2.4 first for b = 0, and then for a = 1. 2

Corollary 2.6. The following assertions hold for a linearly closed subcate-
gory SC of LM, L ∈ C, and a, b ∈ L.

(1) If a/0 ∈ C and 1/b ∈ C, then a/(a ∧ b) ∈ C, (a ∨ b)/b ∈ C, and the
canonical isomorphisms

ϕ : a/(a ∧ b) ∼−→ (a ∨ b)/b, ϕ(x) = x ∨ b, ∀x ∈ a/(a ∧ b),

ψ : (a ∨ b)/b ∼−→ a/(a ∧ b), ψ(y) = y ∧ a, ∀ y ∈ (a ∨ b)/b,

are both in Mor (SC).

(2) Suppose that 1 = a
·
∨ b (this means that 1 = a ∨ b and a ∧ b = 0). If

a/0 ∈ C and 1/b ∈ C, then the linear morphism

q : L −→ a/0, q(x) := (x ∨ b) ∧ a, ∀x ∈ L,

is in Mor (SC). Moreover, q is a surjective linear morphism with
kernel b.

(3) If 0/0 ∈ C, then, the mapping o : L −→ 0/0, o(x) = 0, ∀x ∈ L, is in
Mor (SC).

(4) If K ∈ C, 0/0 ∈ C, and there exists a morphism from K to L in
Mor (SC), then the mapping K −→ L, x 7→ 0, is in Mor (SC).

Proof. (1) Apply Proposition 2.4 for L′ = L and f = 1L. Then g = ϕ is in
Mor (SC). Since ψ = ϕ−1, by Definition 2.3(4), we have ψ ∈ Mor (SC).

(2) With notation from (1) above, we have q = ψ ◦ p, where
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p : L −→ 1/b, p(x) = x ∨ b, ∀x ∈ L.

For the last part of (2), see [4, Example 0.2(3)].

(3) Take a = 0 and b = 1 in (2).

(4) Compose the inclusion mapping of 0/0 into L with the previous
mapping o and the supposed morphism from K to L. 2

We present now two examples where linearly closed subcategories natu-
rally occur: in locally small Abelian categories and in τ -saturated submod-
ules with respect to a hereditary torsion theory τ on the category Mod-R.

Example 2.7. Let X be a non-empty class of objects of a locally small
Abelian category A, in particular a non-empty class of right R-modules.
We assume that X is hereditary, i.e., it is closed under subobjects; this
means that for every X ∈ X and subobject Y of X in A, we have Y ∈ X .

For any X ′ ⊆ X in A, we denote by [X ′, X] the interval in the lattice
L(X), and by

ϕX/X′ : [X ′, X]
∼−→ L(X/X ′)

the canonical lattice isomorphism Z 7→ Z/X ′, which is clearly a linear
morphism of lattices.

We shall associate to X a linearly closed subcategory SCX having

CX := { [X ′, X] |X ∈ X , X ′ ⊆ X}

as class of objects, and as morphisms those mappings that are induced by
morphisms f : X/X ′ −→ Y/Y ′ in A, i.e., arise as compositions

[X ′, X]
ϕX/X′−→ L(X/X ′)

f∗−→ L(Y/Y ′)
ϕ−1
Y/Y ′−→ [Y ′, Y ].

Recall that for any morphism f : A −→ B in A we denoted by f∗ the so
called direct image mapping

f∗ : L(A) −→ L(B), f∗(A
′) = f(A′), ∀A′ ∈ L(A).

By [4, Lemma 5.1], any such mapping f∗ is a linear morphism of lattices,
so, the morphisms in SCX , as compositions of linear morphisms of lattices,
are also linear morphisms of lattices.

Notice that the transition from morphisms in A to their direct image

mappings is functorial, i.e., for any morphisms A
f−→ B and B

g−→ C we
have (g◦f)∗ = g∗ ◦f∗ and (1A)∗ = 1L(A). Therefore, if f is an isomorphism
in A, then f∗ is a linear lattice isomorphism and (f∗)

−1 = (f−1)∗.
Clearly, SCX is a subcategory, not necessarily full, of the category LM.

We are now going to show that SCX is indeed a linearly closed subcategory
of LM, i.e., it verifies the properties (1) - (4) of Definition 2.3.
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For property (1), let [X ′, X] ∈ CX , and let Y ∈ [X ′, X]. Because the
class X is hereditary, we have Y ∈ X . Clearly, the inclusion mapping

[X ′, Y ]
ι
↪→ [X ′, X] is induced by the inclusion morphism Y/X ′ ↪→ X/X ′ in

A, so ι ∈ Mor (SCX ), as desired.

For property (2), let [X ′, X] ∈ CX , and let Y ∈ [X ′, X]. Then Y ∈ X .
We have to prove that the mapping

π : [X ′, X] −→ [Y,X], π(Z) = Y + Z, ∀Z ∈ [X ′, X],

is induced by a certain morphism in A, namely by the canonical epimor-
phism q : X/X ′ −→ X/Y in A, i.e.,

π = ϕ−1X/Y ◦ q∗ ◦ ϕX/X′ .

Indeed

(ϕ−1X/Y ◦ q∗ ◦ ϕX/X′)(Z) = (ϕ−1X/Y ◦ q∗)(Z/X
′) = ϕ−1X/Y ((Y + Z)/Y ) =

= Y + Z = π(Z), ∀Z ∈ [X ′, X].

To verify the property (3), let α : [X ′, X] −→ [Y ′, Y ] be a morphism in
SCX . This means that α is induced by a morphism f : X/X ′ −→ Y/Y ′ in
A, i.e.,

α = ϕ−1Y/Y ′ ◦ f∗ ◦ ϕX/X′ .

Set K := Ker (f) and I := Im (f). Since A is an Abelian category, we have
K = U/X ′ and I = V/Y ′ for some X ′ ⊆ U ⊆ X and Y ′ ⊆ V ⊆ Y . Now,
observe that V ∈ C because the given class C is hereditary, so [U,X] ∈ CX
and [Y ′, V ] ∈ CX .

Further, let

f : (X/X ′)/(U/X ′)
∼−→ V/Y ′ and h : X/U

∼−→ (X/X ′)/(U/X ′)

be the canonical isomorphisms in A, and set g := f ◦ h. Then g∗ = f∗ ◦ h∗
is an isomorphism in LM. If we set α := ϕV/Y ′ ◦g∗ ◦ϕX/U , then it is easily

checked that the obtained isomorphism α : [U,X]
∼−→ [Y ′, V ] in LM is a

restriction of the given morphism α, i.e., α(Z) = α(Z), ∀Z ∈ [U,X]. To
conclude that α ∈ Mor (SCX ), we have to prove that U is the kernel of the
given linear mapping α, i.e., α(W + U) = α(W ), ∀W ∈ [X ′, X].

Indeed, for any W ∈ [X ′, X], we have

α(W + U) = (ϕ−1Y/Y ′ ◦ f∗ ◦ ϕX/X′)(W + U) = (ϕ−1Y/Y ′ ◦ f∗)((W + U)/X ′) =

= ϕ−1Y/Y ′(f((W + U)/X ′)) = ϕ−1Y/Y ′(f(W/X ′) + f(U/X ′)) =

= ϕ−1Y/Y ′(f(W/X ′) + f(K)) = ϕ−1Y/Y ′(f(W/X ′)) = α(W ).
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To prove the property (4), let α : [X ′, X] −→ [Y ′, Y ], α ∈ Mor (SCX ).
This means that α is induced by a morphism f : X/X ′ −→ Y/Y ′ in A,
i.e.,

α = ϕ−1Y/Y ′ ◦ f∗ ◦ ϕX/X′ .

Assume that α is an isomorphism in LM, so a bijective mapping. Then
f∗ is also a bijective mapping.

Let K := Ker (f). Then, f∗(K) = f(K) = 0 = f∗(0), where 0 is the
zero object of A, so K = 0 because f∗ is an injective mapping. Thus
f is a monomorphism. We also have α(X) = Y because α, as a lattice
isomorphism, carries the greatest element of [X ′, X] onto the greatest el-
ement of [Y ′, Y ]. Then f(X/X ′) = Y/Y ′, i.e., f is an epimorphism, so
a bimorphism. Thus f is an isomorphism in A. This implies that α−1 is
induced by f−1 , i.e., α−1 is an isomorphism in Mor (SCX ), as desired. �

We shall discuss now another circumstance where the linearly closed
subcategories naturally occur, namely in lattices of τ -saturated submodules
with respect to a hereditary torsion theory τ on the category Mod-R. To
do that, we recall the following result.

Lemma 2.8. ([1, Lemma 3.4.4]). The following statements hold for a mod-
ule MR and submodules P ⊆ N of MR.

(1) The mapping α : Satτ (N/P ) −→ Satτ (N/P ), X/P 7→ X/P, is a
lattice isomorphism.

(2) Satτ (N) ' Satτ (N).

(3) If M/N ∈ T , then Satτ (M) ' Satτ (N).

(4) If N, P ∈ Satτ (M), then the assignment X 7→ X/P defines a lattice
isomorphism from the interval [P,N ] of the lattice Satτ (M) onto the
lattice Satτ (N/P ). �

Example 2.9. Let τ = (T ,F) be a hereditary torsion theory on Mod-R,
and let H be a non-empty class of right R-modules which is τ -hereditary.
Recall from [5] that H is said to be τ -hereditary if for any M ∈ H and
N ∈ Sat τ (M) one has N ∈ H.

For any M ∈ H and M ′ ∈ Sat τ (M), we denote by [M ′,M ] the interval
in the lattice Sat τ (M), and by

ψM/M ′ : [M ′,M ]
∼−→ Sat τ (M/M ′), ψ(N) := N/M ′, ∀N ∈ [M ′,M ],

the canonical lattice isomorphism in Lemma 2.8(4), which is clearly a linear
morphism of lattices.

We shall associate to H a linearly closed subcategory SCH having

CH := { [M ′,M ] |M ∈ H, M ′ ∈ Sat τ (M)}
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as class of objects and as morphisms those mappings that are induced by
morphisms f : M/M ′ −→ P/P ′ in Mod-R, i.e., arise as compositions

[M ′,M ]
ψM/M′−→ Sat τ (M/M ′)

fτ−→ Sat τ (P/P ′)
ψ−1
P/P ′−→ [P ′, P ].

where, for any morphism f : A −→ B in Mod-R, fτ denotes the mapping

fτ : Sat τ (A) −→ Sat τ (B), fτ (X) = f(X), ∀X ∈ Sat τ (A).

Notice that fτ is a linear morphism of lattices by [4, Lemma 6.6]. We
deduce that the morphisms in SCH, as compositions of linear morphisms of
lattices, are also so.

We are now going to show that SCH is indeed a linearly closed sub-
category of LM, i.e., it verifies the properties (1) - (4) of Definition 2.3.
Essentially, we shall proceed as in Example 2.7 by replacing the lattices
L(X/X ′) with the lattices Sat τ (M/M ′), and the intervals [X ′, X] in the
lattice L(X) with the intervals [M ′,M ] in the lattice Sat τ (M).

For instance, to check the property (1), let [M ′,M ] ∈ CH and N ∈
[M ′,M ]. Because the class H is τ -hereditary, we have N ∈ H. Clearly,
the inclusion mapping ι : [M ′, N ] ↪→ [M ′,M ] is induced by the inclusion
morphism N/M ′ ↪→M/M ′ in Mod-R, so ι ∈ Mor (SCH), as desired.

Similarly, to prove the property (2), let [M ′,M ] ∈ CH and N ∈ [M ′,M ].
Then N ∈ H. We have to prove that the mapping

π : [M ′,M ] −→ [N,M ], π(P ) = N ∨ P, ∀P ∈ [M ′,M ],

is induced by a certain morphism in Mod-R, namely by the canonical epi-
morphism q : M/M ′ −→M/N, q(U/M ′) = (N + U)/N , in Mod-R, i.e.,

π = ψ−1M/N ◦ qτ ◦ ψM/M ′ .

Indeed, qτ (P/M ′) = q(P/M ′) = (N + P )/N = (N + P )/N = (N ∨ P )/N ,
so we have

(ψ−1M/N ◦ qτ ◦ ψM/M ′)(P ) = (ψ−1M/N ◦ qτ )(P/M ′) = ψ−1M/N ((N ∨ P )/N) =

= N ∨ P = π(P ), ∀P ∈ [M ′,M ].

To verify the property (3), let α : [M ′,M ] −→ [N ′, N ] be a morphism
in SCH. This means that α is induced by a morphism f : M/M ′ −→ N/N ′

in Mod-R, i.e.,

α = ψ−1N/N ′ ◦ fτ ◦ ψM/M ′ .

Set K := Ker (f) and I := Im (f). We have K = U/M ′ and I = V/N ′ for
some M ′ 6 U 6M and N ′ 6 V 6 N .

Further, let



30 Toma Albu and Mihai Iosif

f : (M/M ′)/(U/M ′)
∼−→ V/N ′ and h : M/U

∼−→ (M/M ′)/(U/M ′)

be the canonical module isomorphisms, and set g := f◦h. Then gτ = f τ ◦hτ
is an isomorphism in LM.

Because U ∈ Sat τ (M), V ∈ Sat τ (N), and the class H is hereditary, we
have [U,M ], [N ′, V ] ∈ CH. We are going to prove that there exists a linear
lattice isomorphism β : [U,M ]

∼−→ [N ′, V ] such that β is the restriction of
the given morphism α ∈ Mor (SCH).

Indeed, the lattice isomorphism gτ : Sat τ (M/U)
∼−→ Sat τ (V/N ′) yields

by Lemma 2.8 the following sequence of canonical lattice isomorphisms

[U,M ]
∼−→ Sat τ (M/U )

∼−→ Sat τ (V /N ′)
∼−→ [N ′, V ].

It is straightforward to check that their composition β is exactly the re-
striction of the given morphism α : [M ′,M ] −→ [N ′, N ] in SCH, i.e.,
α(Z) = β(Z), ∀Z ∈ [U,M ].

To conclude, we have to prove that U is the kernel of the given linear
mapping α, i.e.,

α(W ∨ U) = α(W ), ∀W ∈ [M ′,M ].

First, notice that f(K) ⊆ f(K) (see the proof of [4, Lemma 6.6]), so

0 ⊆ f(K) ⊆ f(K) = f(K) = 0, and then f(K) = f(K) = 0. We have

α(W ∨U ) = (ψ−1N/N ′ ◦ fτ ◦ ψM/M ′)(W ∨U ) = (ψ−1N/N ′ ◦ fτ )((W ∨U )/M ′) =

= ψ−1N/N ′(fτ ((W ∨ U )/M ′)) = ψ−1N/N ′(fτ (ψM/M ′(W ))) =

= (ψ−1N/N ′ ◦ fτ ◦ ψM/M ′)(W ) = α(W ),

as desired, because

fτ ((W ∨ U )/M ′) = fτ ((W + U )/M ′) = fτ ((W + U )/M ′) =
= fτ ( (W + U)/M ′ ) = fτ ( (W/M ′) + (U/M ′) ) = fτ ((W/M ′) ∨ (U/M ′)) =

= fτ (W/M ′) ∨ fτ (K) = f(W/M ′) ∨ f(K) = f(W/M ′) ∨ 0 = fτ (ψM/M ′(W ).

To prove the property (4), let α : [M ′,M ] −→ [N ′, N ], α ∈ Mor (SCH).
This means that α is induced by a morphism f : M/M ′ −→ N/N ′ in
Mod-R, i.e.,

α = ψ−1N/N ′ ◦ fτ ◦ ψM/M ′ .

Assume that α is an isomorphism in LM, so a bijective mapping. Then
fτ is also a bijective mapping. Notice that M/M ′, N/N ′ ∈ F because
M ′ ∈ Sat τ (M) and N ′ ∈ Sat τ (N).

Let K := Ker (f). Then, fτ (K) = f(K) = 0 = 0 = fτ (0), so K = 0
because fτ is an injective mapping, so f is a monomorphism.

We have also α(M) = N because α, as a lattice isomorphism, carries
the greatest element of [M ′,M ] onto the greatest element of [N ′, N ]. Then
f(M/M ′) = N/N ′, i.e., f is an epimorphism, so an isomorphism in Mod-
R. This implies that α−1 is induced by f−1, which shows that α−1 is an
isomorphism in Mor (SCH), as desired. �
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3. Preradicals on linearly closed subcategories of LM

In this section we define the more general concept of a preradical on a linearly
closed subcategory of LM and show that we can associate to preradicals on
locally small Abelian categories and module categories equipped with hered-
itary torsion theories lattice preradicals on the linearly closed subcategories
SCX and SCH discussed in Examples 2.7 and 2.9, respectively. Finally we
show that how the main results of [5] also hold for any preradical on a
linearly closed subcategory of LM which is weakly hereditary.

Proposition 3.1. The following assertions are equivalent for a a linearly
closed subcategory SC of LM.

(1) C is weakly hereditary.

(2) The monomorphisms in the category SC are injective.

(3) For any L ∈ C, the subobjects of L in the category SC can be regarded
as the initial intervals a/0 of L = 1/0, a ∈ L.

Proof. (1)=⇒(2): Let f : L −→ L′ be a monomorphism in SC. If k is
the kernel of f, then K := k/0 ∈ C since C is weakly hereditary. By
Definition 2.3, the inclusion mapping κ : K ↪→ L is in Mor (SC). Also, since
C is weakly hereditary, we have 0/0 ∈ C, and by Corollary 2.6(4) the zero
mapping o : K −→ L is in Mor (SC). We have f ◦ κ = f ◦ o, and since f
is a monomorphism, we deduce that κ = o, thus k = 0, and consequently,
f is injective.

(2)=⇒(3): Let (S, α) be a subobject of L in SC. Then α is a monomor-
phism, thus injective by (2). By Definition 2.3, its image a/0 ∈ C, for a ∈ L,
and since its kernel is zero, α induces an isomorphism α : S

∼−→ a/0, which
is in Mor (SC). Since the inclusion mapping of i : a/0 ↪→ L is a monomor-
phism in Mor (SC), it follows that (a/0, i) is a subobject of L in SC that
is isomorphic to (S, α) via α.

(3)=⇒(1): For a ∈ L and inclusion mapping i : a/0 ↪→ L, (a/0, i) is a
subobject of L in SC, hence a/0 ∈ C. 2

Definition 3.2. Let SC be a linearly closed subcategory of LM such that
its class of objects C is weakly hereditary. A lattice preradical on SC is any
functor r : SC −→ SC satisfying the following two conditions.

(1) r(L) 6 L, i.e., r(L) is a subobject of L, for any L ∈ SC.

(2) For any morphism f : L −→ L′ in SC, r(f) : r(L) −→ r(L′) is the
restriction and corestriction of f to r(L) and r(L′), respectively. �



32 Toma Albu and Mihai Iosif

Let SC be a linearly closed subcategory of LM such that its class of
objects C is weakly hereditary, and let r : SC −→ SC be a lattice preradical
on SC. By Proposition 3.1, for every L ∈ C and a ∈ L, the subobject r(a/0)
of L in SC is necessarily an initial interval of a/0. We denote

r(a/0) := ar/0.

If a 6 b in L then a/0, b/0 are in C because C is weakly hereditary. The
inclusion mapping i : a/0 ↪→ b/0 is in Mor (SC) since SC is linearly closed.
Applying r we obtain the morphism r(i) : ar/0 −→ br/0 as a restriction of
i, and so ar 6 br.

Recall that a preradical on an Abelian category A is just a subfunctor
of the identity functor 1A of A.

Proposition 3.3. Let X be a hereditary class of objects of a locally small
Abelian category A, and let r be a preradical on A. Then r canonically
yields a preradical % on the linearly closed subcategory

SCX := { [X ′, X] |X ∈ X , X ′ ⊆ X}

of LM discussed in Example 2.7.

Proof. With notation of Example 2.7, let [X ′, X] ∈ SCX . Then r(X/X ′) =
Y/X ′ for some Y ∈ A with X ′ ⊆ Y ⊆ X. We set Xr := Y . Because X is
a hereditary subclass of A, we have Xr ∈ X , so we can define the following
mapping

% : SCX −→ SCX , %([X ′, X]) := [X ′, Xr], ∀ [X ′, X] ∈ SCX .

By definition, %([X ′, X]) is a subobject of [X ′, X] for any [X ′, X] ∈ SCX .
To conclude that % is a preradical on SCX , we must show that for any
morphism α : [X ′, X] −→ [Y ′, Y ] in SCX , we have

α(%([X ′, X])) ⊆ %([Y ′, Y ]), i.e., α([X ′, Xr]) ⊆ [Y ′, Y r], ∀ [X ′, X] ∈ SCX .

Indeed, by the definition of the morphisms in SCX , α is induced by a
morphism f : X/X ′ −→ Y/Y ′ in A, i.e., arises as a composition

[X ′, X]
ϕX/X′−→ L(X/X ′)

f∗−→ L(Y/Y ′)
ϕ−1
Y/Y ′−→ [Y ′, Y ].

Now, the morphism f yields a morphism r(f) : r(X/X ′) −→ r(Y/Y ′), i.e.,
a morphism r(f) : Xr/X ′ −→ Y r/Y ′, and then f∗(X

r/X ′) ⊆ Y r/Y ′. This
shows that

α([X ′, Xr]) = (ϕ−1Y/Y ′ ◦ f∗ ◦ ϕX/X′)([X
′, Xr]) ⊆ ϕ−1Y/Y ′(Y

r/Y ′) = [Y ′, Y r],

as desired. 2
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Proposition 3.4. Let τ = (T ,F) be a hereditary torsion theory on Mod-R,
let H be a τ -hereditary class of right R-modules, and let r be preradical on
Mod-R. Then r canonically yields a preradical %τ on the linearly closed
subcategory

SCH := { [M ′,M ] |M ∈ H, M ′ ∈ Sat τ (M)}

of LM discussed in Example 2.9.

Proof. With notation of Example 2.9, let [M ′,M ] ∈ SCH. Then r(M/M ′) =
P/M ′ for some P ∈ Mod-R with M ′ 6 P 6M . We set M r := P . Because
M ∈ H and H is a τ -hereditary subclass of Mod-R, we have M r ∈ H, so
we can define the following mapping

%τ : SCH −→ SCH, %τ ([M ′,M ]) := [M ′,M r], ∀ [M ′,M ] ∈ SCH.

By definition, %τ ([M ′,M ]) is a subobject of [M ′,M ] for any [M ′,M ] ∈ SCH.
To conclude that %τ is a preradical on SCH, we must show that for any
morphism α : [M ′,M ] −→ [N ′, N ] in SCH, we have

α(%τ ([M ′,M ]) ⊆ %([N ′, N ]), i.e., α([M ′,M r]) ⊆ [N ′, N r], ∀ [M ′,M ] ∈ SCH.

Indeed, by the definition of the morphisms in SCH, α is induced by a
morphism f : M/M ′ −→ N/N ′ in Mod-R, i.e., arises as a composition

[M ′,M ]
ψM/M′−→ Sat τ (M/M ′)

fτ−→ Sat τ (N/N ′)
ψ−1
N/N′−→ [N ′, N ].

Now, the morphism f yields a morphism

r(f) : P/M ′ = r(M/M ′) −→ r(N/N ′) = Q/N ′,

i.e., f(P/M ′) ⊆ Q/N ′. Then, by [5, Lemma 4.4], f(P/M ′ ) ⊆ Q/N ′, so

fτ (M r/M ′) = f(P/M ′) = f(P/M ′ ) ⊆ Q/N ′ = Q/N ′ = Q/N ′ = N r/N ′.

This shows that

α([M ′,M r])=(ψ−1N/N ′ ◦ fτ ◦ ψM/M ′)([M
′,M r])⊆ψ−1N/N ′(N

r/N ′)=[N ′, N r],

as desired. 2

Remarks 3.5. (1) Observe that Proposition 3.3 (respectively, Proposition
3.4) also holds when the given preradical r on the category A (respectively,
Mod-R) is a preradical only on the given hereditary class X (respectively, τ -
hereditary class H) under the additional condition that X is a cohereditary
(respectively, H is a τ -cohereditary) class. Recall that a non-empty subclass
of A is said to be cohereditary if it is closed under quotient objects, and
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if τ = (T ,F) is a hereditary torsion theory on Mod-R, then, a non-empty
class H of right R-modules is said to be τ -cohereditary if for any M ∈ H
and M ′ ∈ Sat τ (M) one has M/M ′ ∈ H.

(2) A thorough examination of the proofs in [5] shows that they are
performed using only morphisms as in Definition 2.3 and Corollary 2.6. So,
all the results of [5], in particular [5, Theorem 2.4] and its Corollary 2.5
also hold for any lattice preradical on a linearly closed subcategory of LM
which is weakly hereditary. �
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