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Abstract - We survey recently discovered aspects in the geometric theory
of higher dimensional dynamical systems on basic fractal sets. For most
of these systems, hyperbolicity and the various invariant measures play a
central role. We present several results which underline the rich connections
between geometric theory of currents, ergodic theory, and thermodynamical
formalism. Also we explain the interplay between the geometry of folded
fractal sets and the ergodic properties of equilibrium measures supported
on them.
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1. Introduction

Dynamics and smooth ergodic theory have had a remarkable growth in the
last 30 years and, besides their own rich theory and structure, these fields
employ methods and ideas from several areas such as differentiable dynamics
and fractal theory, geometric analysis, measure theory, nonlinear analysis,
statistical physics, complex geometry, stochastics. We give in this paper a
short survey of some recent results, pertaining to applications of thermo-
dynamic formalism, in particular on projective spaces. Methods of thermo-
dynamic formalism and smooth ergodic theory have started to be applied
relatively recently in conformal dynamics in higher dimensions. In one com-
plex variable, they have been applied by several authors in the past, starting
with the pioneering work of Ruelle [26]. The main idea is to study the metric
properties of the complicated fractal sets invariated by dynamical systems
with the help of concepts such as: topological pressure, various types of
entropy, equilibrium measures, decay of correlations, folded fractals theory,
stochastic methods, mixing, etc.

Let us consider a holomorphic map f : P2C → P2C which is non-
degenerate; then f is given by three homogeneous polynomials [P0 : P1 : P2]
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in the complex variables z0, z1, z2, each of these polynomials having the same
degree d ≥ 2, which is called the degree (or the algebraic degree) of f (cf.
[9]). Consider a basic set Λ for the map f : P2C → P2C, i.e a compact f -
invariant fractal set Λ such that f is topologically transitive on Λ and there
exists a neighbourhood U of Λ with Λ = ∩

n∈Z
fn(U). The general notion

of basic set originated from the sets of the spectral decomposition theorem
(cf. [3]). Given a basic set Λ, one can construct the natural extension (or
inverse limit), Λ̂ := {(x, x−1, x−2, . . .)}, f(x−i) = x−i+1, x−i ∈ Λ, i ≥ 1}.
The natural extension is a compact metric space with the canonical metric
(see [24], [9], etc.) We now obtain a shift homeomorphism f̂ : Λ̂→ Λ̂ on the
natural extension, which is defined by f̂(x̂) = (f(x), x, x−1, . . .), x̂ ∈ Λ̂.

An important notion in the sequel is that of hyperbolicity for endomor-
phisms; this notion is different from that of expanding maps in the one
dimensional case, or from that of hyperbolicity for diffeomorphisms. For
endomorphisms, hyperbolicity is defined as a continuous invariant splitting
of the tangent bundle TΛ̂ := {(x̂, v), x̂ ∈ Λ̂, v ∈ Tx0P2} over Λ̂, into sta-

ble Esx and unstable Eux̂ directions, for all x̂ ∈ Λ̂ (see Ruelle [24]). While
for diffeomorphisms, both stable and unstable directions are uniquely deter-
mined by their base point, for non-invertible maps the unstable directions
depend on whole prehistories x̂ ∈ Λ̂ (i.e past trajectories); this follows nat-
urally from the non-invertibility of f , and the fact that Dfx(Esx) ⊂ Esf(x)

and Dfx(Eux̂) ⊂ Eu
f̂(x̂)

. If f is hyperbolic on Λ then we have local stable

manifolds W s
r (x) and local unstable manifolds W u

r (x̂) where x̂ ∈ Λ̂. An
additional difficulty is that Λ is not necessarily totally invariant. Hence for
x ∈ Λ we could have some f -preimages of x in Λ and others outside Λ. Also
the number of f -preimages of x that remain in Λ can vary with x. Thus
the case of smooth endomorphisms is subtle, and is very different from the
case of diffeomorphisms. Hyperbolic non-invertible maps on invariant frac-
tal sets have been studied also in [9], [28], [15], [19], etc. A saddle basic set
is a basic set Λ on which f is hyperbolic and has both stable and unstable
directions, i.e the dimensions of the stable/unstable tangent subspaces are
nonzero. Define also the stable dimension at a point x, as

δs(x) := HD(W s
r (x) ∩ Λ), x ∈ Λ

Let us remark that there exist classes of endomorphisms which are hyper-
bolic on saddle sets Λ, but which have a very strong non-invertible character,
while at the same time, are also far from being constant-to-1 on Λ; such ex-
amples were constructed in [12]. These skew product endomorphisms also
present new phenomena w.r.t the stable dimension; by using a type of New-
house phenomenon for intersections of Cantor sets in fibers, we proved in
[12] that there exist uncountably many points in Λ having one 1-preimage
in Λ, and also uncountably many points having two 1-preimages in Λ.
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Assume now that µ is a probability measure on a compact metric space
X; the lower pointwise dimension and the upper pointwise dimension of µ
at the point x ∈ X are defined respectively by:

δµ(x) := lim inf
ρ→0

logµ(B(x, ρ))

log ρ
, and δ̄µ(x) := lim sup

ρ→0

logµ(B(x, ρ))

log ρ

If they are equal, the common value δµ(x) is the pointwise dimension of µ
at x ∈ X (see [23]).

For measures with one contracting direction on average (i.e one negative
Lyapunov exponent) and one expanding direction (one positive Lyapunov
exponent), Young proved the following formula

Theorem 1.1. (Young, [30]) Consider a hyperbolic f -invariant measure µ
(i.e µ has only non-zero Lyapunov exponents), where f is a smooth diffeo-
morphism of a surface M . Then, µ-a.e we have

δµ = hµ(
1

χu(µ)
− 1

χs(µ)
),

where χs(µ), χu(µ) are the negative, respectively positive Lyapunov expo-
nents of µ.

Mańe showed in [11] that HD(µ) =
hµ
χ(µ) for any ergodic probability

measure µ, f -invariant with respect to a rational endomorphism f in one
variable, and such that µ has positive Lyapunov exponents. However the
situation for higher dimensional endomorphisms and their invariant mea-
sures is different (see also [8], [16], [12], [13]). Nevertheless, the study of the
measure of maximal entropy of the restriction f |Λ to a saddle basic set Λ of
a non-invertible map, is different from above.

In [7], Fornaess and Mihailescu studied a much larger class of measures,
namely equilibrium measures µφ for certain Hölder potentials φ on Λ. In this
way, the structure of Λ is more intimately investigated. Also in [7], we gave
optimal estimates for the pointwise dimension of these equilibrium measures,
and also for the Hausdorff dimension of µφ. This answers a question from
[8], in a more general setting. Also, we proved that for certain basic saddle
sets Λ, the measure of maximal entropy on Λ can be described geometrically
as a wedge product of two positive closed currents.

Another direction in which we present results, is that of the relationships
between two apparently distant notions, i.e 1-sided Bernoullicity for certain
invariant probabilities and stable dimension. In [13] we proved a geomet-
ric flattening phenomenon associated to the stable dimension. Namely we
showed that if the stable dimension is zero a some point in the basic set Λ,
then the fractal Λ must be contained in a submanifold (or a union of finitely
many submanifolds), and f is expanding on Λ. Moreover in the same paper
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[13] we classified the possible dynamical behaviours and established when
is the system (Λ, f, µ) 1-sided or 2-sided Bernoulli for certain equilibrium
measures, in the case of holomorphic perturbations of a product map.

In [15] we studied the stable dimension in the case of partially confor-
mal hyperbolic maps, and its connections to a notion of inverse pressure
introduced in [20]. The estimates on the Hausdorff dimension of the sta-
ble section through the fractal basic set Λ, as well as the estimates on the
Hausdorff dimension of the global unstable set W u(Λ̂) complete the results
obtained by Mihailescu in [16]; where we showed that, if a holomorphic en-
domorphism f : P2 → P2 is s-hyperbolic, then the set K−, equal to the
complement of the set U− of points z so that every y in a neighbourhood
of z has its preimages f−n(y) converging to suppµG, has in fact empty
interior (see also [18]). This represents a fundamental difference from the
case of Hénon diffeomorphisms hyperbolic on their respective Julia sets, for
which Bedford and Smillie showed in [2], that the set K− of the points with
bounded inverse iterates, may contain repelling basins of periodic repelling
points.

Moreover in [19], Mihailescu and Urbański also found estimates for the
stable dimension, by using continuous maps ω(·) which bound the preimage
counting function d(·) from above.

Also in [14], E. Mihailescu studied the asymptotic distributions of those
consecutive preimages belonging to a saddle invariant set, showing that they
approach a certain equilibrium measure.

2. Geometric and ergodic properties of measures and currents.

Let us consider a non-degenerate holomorphic map f : P2 → P2 of degree
d ≥ 2, so f = [P0 : P1 : P2], where P0, P1, P2 are homogeneous polynomials in
z0, z1, z2 each of them having degree d. Then the topological entropy of f is
equal to log d2; also there exists a Green function G on C3\{0} and a positive
closed current T on P2 (see [9], etc.), which satisfy G(F (z)) = d · G(z),
and π∗2T = ddcG. Moreover the Green measure µG is defined as the wedge
product T ∧T . In [4] it was shown that in fact µG is the measure of maximal
entropy for f on P2, so the measure-theoretic entropy of µG is log d2. It was
shown by Briend that all Lyapunov exponents of µG are positive.

However if we consider instead, the restriction of f to a saddle set Λ,
then the properties of the measure of maximal entropy of the restriction f |Λ
are completely different.

Recall now that in general, given a hyperbolic endomorphism f on a
basic set Λ, and a Hölder continuous potential φ on Λ, there exists a unique
f -invariant probability measure µφ on Λ such that the supremum in the Vari-
ational Principle is attained ([3]). So µφ is the unique f -invariant measure
for which we have P (φ) = hµφ +

∫
Λ φdµφ. This follows from the hyper-
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bolicity of the endomorphism f on Λ and from the Hölder continuity of φ,
similarly to the case of diffeomorphisms. In particular, if φ ≡ 0 on Λ, then
µ0 is just the unique measure of maximal entropy for the restriction f |Λ. We
showed in [17] that in general, for the case of a hyperbolic smooth map on a
basic set of saddle type Λ, the equilibrium measure µφ satisfies the following
estimates on Bowen balls:

1

C
eSnφ(x)−nP (φ) ≤ µφ(Bn(x, ε)) ≤ CeSnφ(x)−nP (φ), ∀n > 0, (2.1)

where Snφ(x) := φ(x) + . . . + φ(fn−1(x)), and C > 0 is some constant
independent of x, n.

We give now some constructions of currents and measures. In [9] For-
naess and Sibony studied s-hyperbolic Axiom A holomorphic maps on P2

and minimal saddle basic sets, i.e minimal for the ordering between saddle
basic sets defined by Λi � Λj iff W u(Λ̂i) ∩W s(Λj) 6= ∅. A related notion
introduced in [6] is that of a terminal set; here f is not assumed to have
Axiom A and the condition refers strictly to the saddle set Λ, which is called
terminal if for any x̂ ∈ Λ̂, the iterates fn, n restricted to W u

loc(x̂) \ Λ form

a normal family. If f is Axiom A and Λ is minimal, then for any x̂ ∈ Λ̂
the global unstable set W u(x̂) does not intersect any global stable set of
any other basic set, thus W u(Λ̂) \ Λ is contained in the union of basins of
attraction of attracting cycles. Hence in this case, minimal sets are also ter-
minal. Examples of terminal/minimal sets can be obtained by perturbations
of products or skew products, or as maps constructed by Ueda’s method.

Now, given a minimal set Λ for a s-hyperbolic map f : P2 → P2, one
can construct an f -invariant measure on Λ, as a wedge product of certain
positive closed currents:

Theorem 2.1. (Fornaess and Sibony, [9]) If f is a holomorphic non-dege-
nerate map on P2, which is s-hyperbolic, then for any minimal set Λ there
exists a positive closed current σ constructed by using forward iterates of
unstable disks, namely if D is a local unstable disk centered on Λ, then

fn? ([D])

dn
→ σ ·

∫
D ∧ T

This implies that there exists an f -invariant measure ν on Λ, defined as
ν = σ ∧ T .

We will need also the notion of transversal measures µ̂sx; these are similar
to the transversal measures obtained in the diffeomorphism case by Ruelle
and Sullivan [27] (see also Sinai [29]), but are more difficult to construct
on the natural extension Λ̂. One obtains a system of transversal measures
µ̂sx on Ŵ s

loc(x), where by Ŵ s
loc(x) and Ŵ u

loc(x̂) are denoted the lifts to Λ̂, of
the local stable intersection W s

loc(x) ∩ Λ, respectively of the local unstable
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intersection W u
loc(x̂) ∩ Λ, i.e Ŵ s

loc(x) := π−1(W s
loc(x) ∩ Λ), and Ŵ u

loc(x̂) :=

π−1(W u
loc(x̂) ∩ Λ), x̂ ∈ Λ̂. Then the family of measures µ̂sx satisfies the

following properties:
i) if χsx,y : Ŵ s

r (x) → Ŵ s
r (y) is the holonomy map given by χsx,y(ξ̂) =

Ŵ u
r (ξ̂) ∩ Ŵ s

r (y), then µ̂sx(A) = µ̂sy(χ
s
x,y(A)) for any borelian set A.

ii) f̂?µ̂
s
x = ehtop(f |Λ)µ̂sf(x)|f̂(Ŵ s

r (x))

iii) supp µ̂sx = Ŵ s(x).
In fact from [27] and [29] applied to our case on Λ̂, it follows that there

exist also unstable transversal measures, denoted by µ̂ux̂ on Ŵ u
r (x̂), x̂ ∈ Λ̂

with similar properties. And that the measure of maximal entropy on Λ̂
denoted by µ̂0, can be written as the product of transversal stable measures
µ̂sy with transversal unstable measures µ̂x̂ i.e that:

µ̂0(φ) =

∫
Ŵ s
r (x)

(

∫
Ŵu
r (ŷ)

φ dµ̂uŷ) dµ̂sx(ŷ),

for any function φ defined on a neighbourhood of x̂ ∈ Λ̂.
In [6] Diller and Jonsson introduced a positive current σu by using

transversal measures (see also the diffeomorphism case in [27], [29]); namely
in a neighbourhood of x ∈ Λ, < σu, χ >=

∫
Ŵ s
loc

(
∫
Wu
loc(ŷ) χ)dµ̂sx(ŷ), where µ̂sx

are transversal measures on Ŵ s
loc(x) := π−1(W s

loc(x). If the saddle set Λ is
terminal, then they defined an invariant probability measure on Λ, namely
νi = σu ∧ T . We use the notation νi in order to emphasize the way the
current σu was constructed, by using the inverse limit. By using Spectral
Decomposition Theorem ([3]), there is no loss of generality in assuming in
the sequel that f itself is mixing on Λ. In the next Theorem we obtained a
geometric description of the measure of maximal entropy of the restriction
f |Λ as a product of two positive closed currents.

Theorem 2.2. (Fornaess and Mihailescu, [7]) a) Let f : P2 → P2 holomor-
phic map of degree d and Λ be a terminal mixing saddle set. Then νi is equal
to the measure of maximal entropy µ0 on Λ.

b) Let f : P2 → P2 be an Axiom A holomorphic map of degree d, c-
hyperbolic and mixing on a minimal saddle set Λ. Then νi = ν = µ0, where
µ0 is the measure of maximal entropy on Λ.

Now we shall give several results about the pointwise dimension for equi-
librium measures for holomorphic maps. For a saddle basic set Λ, a point
z ∈ Λ, integers n, k and ε > 0, define the set:

B(n, k, z, ε) := fn(Bn+k(z, ε))

The question of establishing the pointwise dimension for invariant mea-
sures supported on fractal sets is an important one. For hyperbolic measures
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invariated by diffeomorphisms, it was solved by Barreira, Pesin and Schmel-
ing in [1]. However for endomorphisms there appear many different phe-
nomena and one cannot hope in general for a formula, due to the fact that
the preimage counting function d(x) := Card{y ∈ Λ, f(y) = x}, x ∈ Λ asso-
ciated to f and Λ, may be non-constant. In the case when d(·) is constant,
we studied this problem in [7].

Theorem 2.3. (Fornaess and Mihailescu, [7]) Let f : P2 → P2 be a holo-
morphic map of degree d and Λ be a basic set, such that f is c-hyperbolic
on Λ and the preimage counting function d(·) is constant and equal to d′ on
Λ. Consider a Hölder continuous function φ on Λ, such that φ(x) + log d′ <
P (φ), ∀x ∈ Λ. Then we obtain the following comparison, which does not
depend on n, k, z:

µφ(B(n, k, z, ε)) ≈ eSn+kφ(z)

(d′)k

It follows that the pointwise dimension of µφ exists µφ-a.e and denote it by
δµφ. Then µφ-a.e,

δµφ = HD(µφ) = hµφ(
1

χu(µφ)
− 1

χs(µφ)
) + log d′ · 1

χs(µφ)

This Theorem was proved by studying the measure of the iterates of
Bowen balls and carefully comparing the measures coming from various
preimages, and then adjusting the stable and unstable sides of the iter-
ates conformally, so that we obtain ”roughly round” balls. These iterates
can then be used in order to obtain the pointwise dimension of µφ.

If the preimage counting function d(·) is not constant on Λ, we can still
obtain bounds for the measure of iterates of Bowen balls, and estimates for
the lower pointwise dimension:

Corollary 2.1. (see [7]) In the setting of Theorem 2.3 assume the preimage
counting function satisfies d(x) ≤ d′ for µφ-a.e x ∈ Λ and that φ(x)+log d′ <
P (φ) for all x ∈ Λ. Then for µφ-a.e x ∈ Λ,

δµφ(x) ≥ hµφ(
1

χu(µφ)
− 1

χs(µφ)
) + log d′ · 1

χs(µφ)

From Theorem 2.3 it follows that the measure νi is equal to the measure
of maximal entropy µ0, and to ν, so now by employing also Theorem 2.3,
we found its pointwise dimension in:

Corollary 2.2. (Fornaess and Mihailescu, [7])

a) Let Λ be a mixing terminal saddle set for a holomorphic map f :
P2 → P2 of degree d, s.t Λ does not intersect the critical set Cf of f . If each
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point in Λ has at most d′ f -preimages in Λ and if d′ < d, then for µφ-a.e z,
δνi(z) ≥ log d · ( 1

χu(νi)
− 1

χs(νi)
) + log d′ · 1

χs(νi)
.

b) If Λ is a mixing terminal saddle set for a holomorphic map f on P2

of degree d, if Cf ∩Λ = ∅ and if the preimage counting function is constant
equal to d′ on Λ for d′ ≤ d, then we have:

δνi = HD(νi) = log d·( 1∫
log |Dfu|dνi

− 1∫
log |Dfs|dνi

)+log d′· 1∫
log |Dfs|dνi

c) Let f : P2 → P2 a holomorphic Axiom A map of degree d, which is
c-hyperbolic on a connected minimal saddle set Λ. If d′ denotes the constant
number of f -preimages in Λ of a point, then:

δν = HD(ν) = log d · ( 1

χu(ν)
− 1

χs(ν)
) + log d′ · 1

χs(ν)

In general the map f is not necessarily constant-to-1 on Λ. However when
it happens that f |Λ is expanding and constant-to-1 as above, then we proved
that the measure-preserving system (Λ, f, µ0) is 1-sided Bernoulli, namely it
is isomorphic as a Lebesgue space to a shift space of type (Σ+

m, σm, νp̄), for
some integer m ≥ 2 and some probability vector p̄. Notice that, while for
2-sided Bernoulli shifts, their isomorphism class is determined by measure-
theoretic entropy only (Ornstein), for 1-sided Bernoulli shifts this is not true
anymore ([22], [5]) and the problem of isomorphism class for endomorphisms
is more subtle. In fact one has the following result:

Theorem 2.4. (Parry and Walters, [22]) There exist non-isomorphic exact
endomorphisms S, T of a Lebesgue space (X,B, µ) so that S2 = T 2 (hence
S, T have the same entropy w.r.t µ), S−nB = T−nB, n ≥ 0 and s.t the
Jacobians of S and T w.r.t µ are equal.

However for expanding maps on folded fractals we proved 1-sided Bernoul-
licity in some cases:

Theorem 2.5. (Mihailescu, [13]) Assume that Λ is a hyperbolic basic set
for a smooth endomorphism f , such that f |Λ is d-to-1, td = 0 and f |Λ
is expanding. Then (Λ, f, µ0) is 1-sided Bernoulli, where µ0 is the unique
measure of maximal entropy.

In general when the stable dimension is zero, we showed in [13] that
there are strong geometric consequences (geometric rigidity) for the fractal.

Theorem 2.6. (Mihailescu, [13]) Let f : M → M be a smooth endomor-
phism which is hyperbolic on a basic set Λ with Cf ∩Λ = ∅ and such that f is
conformal on local stable manifolds. Assume that d is the maximum possible
value of d(·) on Λ, and that there exists a point x ∈ Λ where δs(x) = td = 0.
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Then it follows that d(·) ≡ d on Λ and there exist a finite number of unsta-
ble manifolds whose union contains Λ. In particular if Λ is connected, then
there exists an invariant unstable manifold containing Λ, and f is expanding
on Λ.

Thus, from a local condition such as stable dimension being zero at a
point, we obtain the global restriction that Λ is contained in a finite union
of unstable manifolds.

Jointly with Stratmann, see [21] we obtained the following upper esti-
mate for the stable dimension, using the pressure function.

Theorem 2.7. (Mihailescu and Stratmann, [21]) Consider a C2-endomor-
phism f c-hyperbolic on a basic set Λ of f , s.t there exists a continuous
function ω : Λ → R with ∆(x) ≥ ω(x), for all x ∈ Λ. It then follows that
δs(x) ≤ tω, where tω is the unique zero of t 7→ P (tΦs − logω).

As we proved, saddle basic sets are local repellers (see [15]), respectively
attractors, if and only if certain conditions on stable/unstable dimensions
hold. However the proofs for these two cases are different, due to the non-
invertibility.

Theorem 2.8. (Mihailescu, [13]) a) Let Λ be a basic set for a hyperbolic
endomorphism f such that Cf ∩ Λ = ∅ and f is conformal on local stable
manifolds. Then Λ is a local repeller if and only if there exists x ∈ Λ with
δs(x) = ds.

b) Let Λ a hyperbolic basic set for a smooth endomorphism f : M →M
defined on a Riemannian manifold. Assume that f is conformal on local
unstable manifolds (which are supposed to have real dimension du). Then Λ
is an attractor for f if and only if there exists x̂ ∈ Λ̂ with δu(x̂) = du.

We proved in [13] a Classification Theorem for a class of perturbations:

Theorem 2.9. (Mihailescu, [13]) For some small |c|, c ∈ C \ {0}, let us
consider the polynomial map f(z, w) = (z2 + c, w2), (z, w) ∈ C2. Let also
a polynomial fε which is a smooth perturbation of f and let Λε be the cor-
responding basic set of fε close to the set Λ := {pc} × S1 (where pc is the
fixed attracting point of z → z2 + c). Then we may have exactly one of the
following possibilities:

a) There exists a point x ∈ Λε where δs(x) = 0. Then there exists a
manifold W such that Λε ⊂ W , fε|Λε is expanding and fε|Λε is 2-to-1. In
this case the stable dimension is 0 at any point from Λε, and the measure
preserving system (Λε, fε, µ0,ε) is 1-sided Bernoulli (where µ0,ε is the unique
measure of maximal entropy for fε|Λε).
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b) There exists a point x ∈ Λε with 0 < δs(x) < 2. Then the stable
dimension is positive at any point of Λε, and the measure preserving sys-
tem (Λε, fε, µs,ε) cannot be 1-sided Bernoulli, where µs,ε is the equilibrium
measure of the potential δs(x)Φs

ε. We have two subcases:
b1) fε|Λε is a homeomorphism, and in this case the measure preserving

system (Λε, fε, µφ) is 2-sided Bernoulli for any Holder continuous potential
φ, where µφ is the equilibrium measure of φ.

b2) there exist both points with only one fε-preimage in Λε, as well as
points with two fε-preimages in Λε; the set of points with one fε-preimage
in Λε has non-empty interior.

In the case when the stable dimension is minimal, we obtained the fol-
lowing global result, about preimages in Λ.

Theorem 2.10. (Mihailescu and Urbański, [19]) Assume that f is c-hyper-
bolic on a basic set Λ and that the preimage counting function d(·) reaches a
maximum value of d on Λ. If there exists a point x ∈ Λ such that δs(x) = td,
where td is the unique zero of the pressure function t→ P (tΦs− log d), then
d(y) = d, y ∈ Λ. Hence the stable dimension at every point of Λ must be
equal to td.

Now, another question is under what conditions the stable dimension
can be maximal. This question is related to the Hausdorff dimension of
the global unstable set, and to the dimension of K− (similar to the set of
points with bounded backwards iterates for Hénon maps). In [15] we found a
bound for the stable upper box dimension, by the zero ts(ε) of the ε-inverse
pressure P−ε of log |Dfs|; we showed that unless Λ is a local repeller, the
stable upper box dimension cannot be maximal.

Theorem 2.11. (Mihailescu, [15]) Consider a non-degenerate holomorphic
f : P2 → P2 c-hyperbolic on a basic saddle set Λ. Then for any x ∈ Λ, we
have δs(x) ≤ ts(ε) < 2, for some ε > 0.

By using the above result, we showed in [15] that in certain conditions,
the Hausdorff dimension of the global unstable set W u(Λ̂) is less than max-
imal. The result improves qualitatively the theorem of [16] namely that for
an s-hyperbolic map f , the interior of the set K− is empty.

Theorem 2.12. (Mihailescu, [15]) a) Let f : P2 → P2 to be a holomorphic
map which is c-hyperbolic on a basic set of saddle type Λ, and assume that
the following derivatives condition is satisfied:

sup
ξ̂∈Λ̂

|Dfu(ξ̂)| · |Dfs(ξ)| < 1 (2.2)

Then HD(W u(Λ̂)) < 4.
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b) Consider holomorphic perturbations g, of the holomorphic map given
by f(z, w) = (z2 + c, w2) for small |c|. Then HD(W u(Λ̂g)) < 4, for the
respective basic set Λg of g, which is close to the set {p0(c)} × S1, where
p0(c) is the fixed attracting point of z → z2 + c.

Condition (2.2) can be verified also in the case of saddle sets for certain
skew products with overlaps in fibers. Then from [17], the unstable dimen-
sion δug is constant on Λ̂g, and varies real-analytically when the parameters
of the perturbation g of a map f vary holomorphically.
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d’un éndomorphisme de PkC, IHÉS Publ. Math., 93 (2001) 145-159,
http://dx.doi.org/10.1007/s10240-001-8190-4.

[5] H. Bruin and J. Hawkins, Rigidity of smooth one-sided Bernoulli endomorphisms,
New York J. Math., 15 (2009), 1-33.

[6] J. Diller and M. Jonsson, Topological entropy on saddle sets in P2, Duke Math.
J., 103 (2000), 261-277, http://dx.doi.org/10.1215/s0012-7094-00-10324-9.

[7] J.E. Fornaess and E. Mihailescu, Equilibrium measures on saddle
sets of holomorphic maps on P2, Math. Ann., 356 (2013), 1471-1491,
http://dx.doi.org/10.1007/s00208-012-0891-0.

[8] J.E. Fornaess and N. Sibony, Some open problems in higher dimensional
complex analysis and complex dynamics, Publ. Mat., 45 (2001), 529-547,
http://dx.doi.org/10.5565/publmat 45201 11.

[9] J.E. Fornaess and N. Sibony, Hyperbolic maps on P2, Math. Ann., 311 (1998),
305-333, http://dx.doi.org/10.1007/s002080050189.

[10] I. Kornfeld and Y. Sinai, Chapters 1-3 in Dynamical Systems, Ergodic Theory
and Applications, ed. Y. Sinai, Encycl. of Math. Sci., vol. 100, Springer Verlag, Berlin
Heidelberg 2000.

[11] R. Mane, On the Bernoulli property for rational maps, Ergodic Theory Dynam.
Systems, 5 (1985), 71-88, http://dx.doi.org/10.1017/s0143385700002765.

[12] E. Mihailescu, Unstable directions and fractal dimensions for a family of skew prod-
ucts with overlaps, Math. Z., 269 (2011), 733-750, http://dx.doi.org/10.1007/s00209-
010-0761-y.

http://dx.doi.org/10.2307/121072
http://dx.doi.org/10.1007/bf01239509
http://dx.doi.org/10.1007/s10240-001-8190-4
http://dx.doi.org/10.1215/s0012-7094-00-10324-9
http://dx.doi.org/10.1007/s00208-012-0891-0
http://dx.doi.org/10.5565/publmat_45201_11
http://dx.doi.org/10.1007/s002080050189
http://dx.doi.org/10.1017/s0143385700002765
http://dx.doi.org/10.1007/s00209-010-0761-y
http://dx.doi.org/10.1007/s00209-010-0761-y


168 Eugen Mihailescu

[13] E. Mihailescu, Local geometry and dynamical behavior on folded basic sets, J. Stat.
Phys., 142 (2011), 154-167, http://dx.doi.org/10.1007/s10955-010-0097-3.

[14] E. Mihailescu, Asymptotic distributions of preimages for endo-
morphisms, Ergodic Theory Dynam. Systems, 31 (2011), 911-935,
http://dx.doi.org/10.1017/s0143385710000155.

[15] E. Mihailescu, Metric properties of some fractal sets and applications of
inverse pressure, Math. Proc. Cambridge Philos. Soc., 148 (2010), 553-572,
http://dx.doi.org/10.1017/s0305004109990326.

[16] E. Mihailescu, The set K− for hyperbolic non-invertible maps, Ergodic Theory
Dynam. Systems, 22 (2002), 873-887, http://dx.doi.org/10.1017/s0143385702000445.

[17] E. Mihailescu, Unstable manifolds and Holder structures associated with
noninvertible maps, Discrete Contin. Dyn. Syst., 14, 3 (2006), 419-446,
http://dx.doi.org/10.3934/dcds.2006.14.419.

[18] E. Mihailescu, Periodic points for actions of tori in Stein manifolds, Math. Ann.,
314 (1999), 39-52, http://dx.doi.org/10.1007/s002080050285.
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