Extremal quasiconformal parametric representation of a quasicircle

Reiner Kühnau
Professor Dr. Cabiria Andreian Cazacu zum 85. Geburtstag gewidmet

Abstract

For a given quasicircle we are looking for a parametric representation with an extremal quasiconformal extension to the whole Riemann sphere.

Key words and phrases : Quasicircle, extremal quasiconformal mappings.

Mathematics Subject Classification (2010) : Primary: 30C62; Secondary: 30C75.

1. Introduction

The theory of analytic functions and of conformal mappings became important new aspects and a great enrichment by introducing quasiconformal mappings. The latest great survey of this field was given by Cabiria Andreian Cazacu in her profound Handbook article [3]. Furthermore, beside her own important contributions, she also gave one of the first introduction to the foundation: [1], [2].

Here we will consider the following question. Let a (closed) Jordan curve \mathfrak{C} be given in the complex w-plane. Then we have a great variety of continuous parametric representations of the form

$$
w=w(z) \quad \text { with } \quad z=e^{i t}, 0 \leq t \leq 2 \pi,
$$

where $w(z)$ is a continuous and schlicht mapping of the unit circle $|z|=1$ onto \mathfrak{C}. Our aim is the question: Is there a distinguished parametric representation, from the point of view of complex analysis? For this reason, we ask for an extension of such a parametric representation $w(z)$ to a continuous and schlicht mapping of the whole Riemann sphere onto itself. It is known that there exists such a mapping which is quasiconformal if and only if \mathfrak{C} is a quasicircle; cf. [3], [5], [7], [10]. Obviously, the "optimal" case of an extension which is even conformal exists only in the trivial case of a circle \mathfrak{C}. Therefore, there arises the question for an "extremal quasiconformal parametric representation of the quasicircle \mathfrak{C} " (in the original sense of H .

Grötzsch called "möglichst konform"). That means a parametric representation for which the extremal quasiconformal extension to the whole sphere has as a dilatation bound which is as small as possible.
Of course, such an extremal quasiconformal parametric representation always yields again such a representation after an arbitrary Möbius transformation of the unit circle $|z|=1$ onto itself.

In the following, we always denote by $Q_{\mathfrak{C}}$ the "reflection coefficient" of the quasicircle \mathfrak{C}. That is the smallest dilatation bound in the class of all quasiconformal reflections at \mathfrak{C}; cf. [5], [7], [10].

Our starting point is the
Theorem 1.1. For every quasicircle \mathfrak{C} there exists an extremal quasiconformal parametric representation. The smallest dilatation bound is $\sqrt{Q_{\mathfrak{C}}}$. If \mathfrak{C} is, e.g., analytic then the extremal representation is unique up to a Möbius transformation of the unit circle $|z|=1$ onto itself. It then has a constant dilatation and can be described by a quadratic differential.

It is difficult to give concrete examples for curves \mathfrak{C} with a known extremal quasiconformal parametric representation. We can offer here only the example of an ellipse \mathfrak{C}. Even in this case the solution does not look simply.

We can assume the ellipse \mathfrak{C} in the form

$$
\begin{equation*}
\mathfrak{C}: \quad \frac{1}{Q^{2}}(\mathfrak{R e} w)^{2}+(\mathfrak{I m} w)^{2}=1 \tag{1.1}
\end{equation*}
$$

with $Q=Q_{\mathbb{C}}$ because here the reflection coefficient is the quotient of the semiaxes [7].

Theorem 1.2. We have for the by (1.1) defined ellipse \mathfrak{C}, under the normalization $w(1)=Q, w(i)=i, w(-1)=-Q, w(-i)=-i$, the (then uniquely determined) extremal quasiconformal parametric representation

$$
\begin{equation*}
w\left(e^{i t}\right)=Q \cos \left(\frac{\pi}{K(\kappa)} F(\kappa, \varphi)\right)+i \sin \left(\frac{\pi}{K(\kappa)} F(\kappa, \varphi)\right) \tag{1.2}
\end{equation*}
$$

with the usual abbreviations

$$
\begin{equation*}
F(\kappa, \varphi)=\int_{0}^{\varphi} \frac{d t}{\sqrt{1-\kappa^{2} \sin ^{2} \varphi}}, \quad K(\kappa)=F\left(\kappa, \frac{\pi}{2}\right) \tag{1.3}
\end{equation*}
$$

for the elliptic integral of the first kind, resp. for the complete elliptic integral of the first kind, further

$$
\begin{equation*}
\kappa=\left(\frac{2 q^{1 / 4}+2 q^{9 / 4}+2 q^{25 / 4}+\cdots}{1+2 q+2 q^{4}+2 q^{9}+\cdots}\right)^{2}, \quad q=\sqrt{\frac{\sqrt{Q}-1}{\sqrt{Q}+1}} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\varphi=\arctan \left(\frac{1}{\sqrt[4]{1-\kappa^{2}}} \tan \frac{t}{2}\right) \tag{1.5}
\end{equation*}
$$

The dilatation of the extremal quasiconformal extension of this extremal quasiconformal parametric representation to the whole Riemann sphere is constant and equals $\sqrt{Q}=\sqrt{Q_{\mathbb{C}}}$.

Here we have in the first equation (1.4) in the nominator and in the denominator a theta series.
In particular, the Theorem 1.2 means that in the case of an ellipse the corresponding affine mapping (with the dilatation $Q_{\mathfrak{C}}$) does not yield the extremal quasiconformal parametric representation.

In Section 3 we give a generalization and in Section 4 a discretization of our problem.

As an addendum, we will consider in the last Section 5 for an analytic quasicircle \mathfrak{C} also a modified problem.

2. Proof of Theorem 1.1 and 1.2

The Proof of Theorem 1.1 follows the idea in [7] (p. 95), [11] (p. 78). We start with an extremal quasiconformal reflection at \mathfrak{C}. Here we observe the infinitesimal ellipses which transform onto infinitesimal circles. If the dilatation is p (quotient of the semiaxis) we take now the ellipses with dilatation \sqrt{p} and the same orientation of the axis. This means the solution of a Beltrami equation. In this manner, we obtain as in [7], [11] by some sort of factorization the Theorem 1.1 .

Remarks. (i) In the Theorem 1.1 we restrict ourself mainly to the clear case of an analytic quasicircle \mathfrak{C}. Of course, there remains the problem of a systematic inquiry of properties of the extremal quasiconformal parametric representation and its extension, in dependence of properties of \mathfrak{C}, e.g., asymptotical conformality or smoothness.
(ii) If we replace in this consideration p by a $p_{1}, 1 \leq p_{1} \leq Q_{\mathfrak{C}}$, we obtain in the same manner also a parametric representation of \mathfrak{C} which is Q_{1}-quasiconformal in the exterior of the unit circle and Q_{2}-quasiconformal in the interior, with $1 \leq Q_{1} \leq Q_{\mathfrak{C}}, 1 \leq Q_{2} \leq Q_{\mathbb{C}}, Q_{1} Q_{2}=Q_{\mathfrak{C}}$; cf. again [11] (p. 78). Furthermore, it arises the question: Is it possible to arrange the "splitting" of the dilatation in a function p_{1} (not necessarily constant) in the exterior of \mathfrak{C} and p_{2} in the interior with $p_{1} p_{2}=Q_{\mathfrak{C}}$ such that at the unit circle $|z|=1$ a parametric representation with a prescibed property appears?

The case of an ellipse \mathfrak{C} is a great stroke of luck, because here we obtain the mentioned Beltrami solution by a simple affine mapping. Namely, for
the Proof of Theorem 1.2 we start with the conformal mapping $W=W(z)$ of the unit disk $|z|<1, z=e^{i t}$, onto the interior of the stretched ellipse

$$
\begin{equation*}
\frac{1}{Q}(\mathfrak{R e} W)^{2}+(\mathfrak{I m} W)^{2}=1 \tag{2.1}
\end{equation*}
$$

with $W(1)=\sqrt{Q}, W(i)=i, W(-1)=-\sqrt{Q}, W(-i)=-i$. By [4] (p. $318 / 319$), we obtain the boundary values

$$
\begin{equation*}
W\left(e^{i t}\right)=\sqrt{Q} \cos \left(\frac{\pi}{K(\kappa)} F(\kappa, \varphi)\right)+i \sin \left(\frac{\pi}{K(\kappa)} F(\kappa, \varphi)\right) \tag{2.2}
\end{equation*}
$$

with (1.3), (1.4), (1.5). The following affine mapping

$$
w=\sqrt{Q} \mathfrak{k e} W+i \mathfrak{I m} W
$$

leaves us indeed with (1.2).
We add that in this exceptional case of an ellipse \mathfrak{C} it is also possible to give explicit analytic expressions of the inverse mapping of the extremal quasiconformal parametric representation (1.2); cf. again [4], in another form using Tchebyshev polynomials in [12] (p. 258).

3. A generalization

Let n samples K_{1}, \cdots, K_{n} of the unit disk be given in n complex planes. In addition, let be given a fixed system

$$
\begin{equation*}
S=\bigcup_{k, l=1}^{n} S_{l, k} \tag{3.1}
\end{equation*}
$$

of $n(n-1)$ quasisymmetric and orientation preserving substitutions $S_{l, k}$ between the boundaries ∂K_{l} and ∂K_{k} (beside the trivial identity substitutions $\left.S_{1,1}, \cdots, S_{n, n}\right)$. We assume that this system of the substitutions

$$
\begin{equation*}
S_{l, k}: \quad \partial K_{k} \rightarrow \partial K_{l} \tag{3.2}
\end{equation*}
$$

satisfies for all k, l, m for the inverse and for the compositions

$$
\begin{equation*}
S_{k, l}=S_{l, k}^{-1}, \quad S_{m, k}=S_{m, l} \circ S_{l, k} . \tag{3.3}
\end{equation*}
$$

In particular, this means that after prescribing the special substitutions $S_{2,1}, S_{3,2}, \cdots, S_{n, n-1}$ we can obtain by composition with (3.3) also the other $S_{l, k}$.
As a welding function, every $S_{l, k}$ yields a quasicircle $\mathfrak{C}_{l, k}=\mathfrak{C}_{k, l}$ (unique up to a Möbius transformation), namely by conformal welding of K_{k} and K_{l} (resp. the at the unit circle reflected K_{l}). This leaves us with $\binom{n}{2}$ quasicircles.

Now we take an additional unit disk \mathfrak{K} in the complex z-plane and a system $\mathfrak{S}=\left(\mathfrak{S}_{1}, \cdots, \mathfrak{S}_{n}\right)$ of quasisymmetric substitutions

$$
\begin{equation*}
\mathfrak{S}_{k}: \quad \partial \mathfrak{K} \rightarrow \partial K_{k}, \quad k=1, \cdots, n, \tag{3.4}
\end{equation*}
$$

which are linked by

$$
\begin{equation*}
\mathfrak{S}_{l}=S_{l, k} \circ \mathfrak{S}_{k} \tag{3.5}
\end{equation*}
$$

One can think also of defining only one substitution, e.g., \mathfrak{S}_{1} and then generating the other by (3.3).
With this system \mathfrak{S} of substitutions, we consider systems of n quasiconformal mappings $\mathfrak{w}_{k}(z)$ with dilatation bounds Q_{k}, satisfying

$$
\begin{equation*}
\mathfrak{w}_{k}(z): \mathfrak{K} \rightarrow K_{k} \text { which equals } \mathfrak{S}_{k} \text { at the unit circle. } \tag{3.6}
\end{equation*}
$$

We can state the
Problem. For a given and fixed system S, what is the domain of variability of the systems Q_{1}, \cdots, Q_{n} (in the n-dimensional space) if the substitutions $\mathfrak{S}_{1}, \cdots, \mathfrak{S}_{n}$ and the mappings $\mathfrak{w}_{1}, \cdots, \mathfrak{w}_{n}$ vary.

This domain of variability will appear in dependence of the fixed system S.

Here we can give only the complete solution in the simplest case $n=2$.
Theorem 3.1. In the case $n=2$, the exact domain of variability of all possible pairs $\left(Q_{1}, Q_{2}\right)$ is given by

$$
\begin{equation*}
Q_{1} \geq 1, \quad Q_{2} \geq 1, \quad Q_{1} Q_{2} \geq Q_{\mathfrak{C}_{1,2}} \tag{3.7}
\end{equation*}
$$

where $Q_{\mathfrak{C}_{1,2}}$ is the reflection coefficient of the quasicircle $\mathfrak{C}_{1,2}$ arising by the substitution $S_{1,2}$. In the case of an analytic substitution $S_{1,2}$, that means in the case of an analytic Jordan curve $\mathfrak{C}_{1,2}$, there exists for every pair $\left(Q_{1}, Q_{2}\right)$ with $Q_{1} Q_{2}=Q_{\mathfrak{C}_{1,2}}, Q_{1}>1, Q_{2}>1$ exactly one pair of corresponding substitutions $\mathfrak{S}_{1}, \mathfrak{S}_{2}$ (up to Möbius transformations of the unit circle onto itself).

For the Proof, we first observe that for every Q_{1} with $1 \leq Q_{1} \leq Q_{\mathfrak{C}_{1,2}}$ there exists a pair of admissible quasiconformal mappings with dilatation bounds Q_{1} and $Q_{2}=Q_{\mathfrak{C}_{1,2}} / Q_{1}$, that means $Q_{1} Q_{2}=Q_{\mathfrak{C}_{1,2}}$; cf. the Remark (ii) of Section 2. And a pair $\left(Q_{1}, Q_{2}\right)$ in the domain of variability with $Q_{1} Q_{2}<Q_{\mathfrak{C}_{1,2}}$ is impossible because otherwise a $Q_{1} Q_{2}$-quasiconformal reflection at $\mathfrak{C}_{1,2}$ would be follow.
Obviously, with an admissible pair $\left(Q_{1}, Q_{2}\right)$ always also, e.g., $t Q_{1}, t Q_{2}$ or $t Q_{1}, Q_{2}$ or $Q_{1}, t Q_{2}$ with $t>1$ is an admissible pair. This means that the
by (3.7) characterized domain is completely covered by the admissible pairs $\left(Q_{1}, Q_{2}\right)$.

It seems that in the case $n>2$ the situation is more involved (beside some special and obvious cases).

Remarks. (i) As in the case $n=2$, it would be desirable, e.g. in the case $n=3$, to construct an appropiate conformal welding of K_{1}, K_{2}, K_{3} corresponding to the substitutions of the system S. This would be shape the whole situation more suggestive. Of course, this is impossible in the complex plane. Therefore, one has to try a welding in space, using three simply-connected surfaces with common boundary.
(ii) In the case $n=3$, if $\mathfrak{C}_{1,2}$ and $\mathfrak{C}_{2,3}$ are given then also the substitutions $S_{1,2}$ and $S_{2,3}$, therefore by (3.3) also $S_{1,3}$ and then $\mathfrak{C}_{1,3}$ (up to a Möbius transformation). It would be desirable to have a direct procedure which yields for given $\mathfrak{C}_{1,2}$ and $\mathfrak{C}_{2,3}$ the third $\mathfrak{C}_{1,3}$. Of course, this is possible by cutting the planes along $\mathfrak{C}_{1,2}$ and $\mathfrak{C}_{2,3}$ followed by a suitable welding of the interior of $\mathfrak{C}_{1,2}$ and $\mathfrak{C}_{2,3}$. But it arises the question for a more direct procedure.

4. A discretization

Let n different points w_{1}, \cdots, w_{n} be given and fixed in the complex w plane. Additionally, we consider in the z-plane n different (non fixed) points z_{1}, \cdots, z_{n} varying at the unit circle $|z|=1$ and take into account those quasiconformal mappings $w(z)$ of the Riemann sphere onto itself with $w\left(z_{k}\right)=w_{k}, k=1, \cdots, n$. Furthermore, we prescribe a homotopy class. That means, the image of the unit circle $|z|=1$ has to be a Jordan curve through the w_{k} in a given and fixed homotopy class. Using essentially results of O . Teichmüller, in [8] was proven: In the class of these quasiconformal mappings (varying the z_{k} and the mappings) there exists an extremal quasiconformal mapping (that means with the smallest dilatation bound) which is unique up to a Möbius transformation of the unit circle $|z|=1$ onto itself.

In [8] there was additionally given a description of the extremal mapping in more detail, e.g., with a quadratic differential.

Furthermore, in [9] the simplest non-trivial case $n=4$ was studied explicitly, using elliptic functions and elliptic integrals.

5. Analytic Jordan curves

As an addendum, for the case of an analytic Jordan curve \mathfrak{C} we will consider also a modified problem. Then there exists a parametric representation $w=$ $w(z)$ which is a schlicht mapping of the unit circle $|z|=1$ onto \mathfrak{C} and has an
analytic and schlicht conformal extension to an annulus $\frac{1}{R}<|z|<R, R>1$. Here we can choose $R=\infty$ only in the case of a circle \mathfrak{C}.

For a given fixed $w(z)$ and then all possible values R we ask now for sup R. To this end, first we consider for $|z|=|\zeta|=1$ the development

$$
\begin{equation*}
\log \frac{w(z)-w(\zeta)}{z-\zeta}=\sum_{i, k=-\infty}^{\infty} A_{i k} z^{i} \zeta^{k} \quad\left(A_{i k}=A_{k i}\right) \tag{5.1}
\end{equation*}
$$

to obtain the coefficients $A_{i k}$. Then the solution of our problem is given by the following generalized Grunsky inequalities.

Theorem 5.1. The desired sup R is the supremum of all R for which $w(z)$ is analytic in $\frac{1}{R}<|z|<R$ and satisfies with the corresponding coefficients $A_{i k}$ the inequalities

$$
\begin{equation*}
\left|\sum_{i, k=-n}^{n} A_{i k} X_{i} X_{k}+2 \sum_{k=1}^{n} \frac{X_{k} X_{-k}}{k\left(R^{4 k}-1\right)}\right| \leq \sum_{k=1}^{n} \frac{\left|X_{k}\right|^{2}+\left|X_{-k}\right|^{2}}{k\left(R^{2 k}-R^{-2 k}\right)} \tag{5.2}
\end{equation*}
$$

for all finite systems of complex numbers X_{-n}, \ldots, X_{n} with $X_{0}=0$.
The proof follows by a slight transformation of Satz 2 in [6].
It remains the desideratum: Is it possible to prove in the style of [13] (middle of p. 59) the analyticity of $w(z)$ in $\frac{1}{R}<|z|<R, R>1$, providing (5.2) and the analyticity in an annulus $\frac{1}{R^{\prime}}<|z|<R^{\prime}$ with some $R^{\prime}, 0<$ $R^{\prime}<R$?

References

[1] C. Andreian Cazacu, Reprezentări cvasiconforme, in C. Andreian Cazacu, C. Constantinescu, M. Jurchescu, Probleme moderne de teoria funcţiilor, Ed. Acad. Rep. Pop. Române, Bucureşti 1965; pp. 209-309.
[2] C. Andreian Cazacu, Suprafeţe riemanniene, in C. Andreian Cazacu, A. Deleanu, M. Jurchescu, Topologie - categorii - suprafeţe riemanniene, Ed. Acad. Rep. Soc. România, Bucureşti 1966; pp. 243-393.
[3] C. Andreian Cazacu, Foundations of quasiconformal mappings, Handbook of Complex Analysis: Geometric Function Theory, Volume 2, pp. 687-753, Elsevier, Amsterdam, 2005, http://dx.doi.org/10.1016/s1874-5709(05)80021-6.
[4] W. von Koppenfels and F. Stallmann, Praxis der konformen Abbildung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959 [Russ. transl: Moscow 1963], http://dx.doi.org/10.1007/978-3-642-94749-0.
[5] S.L. Krushkal, Quasiconformal extensions and reflections, Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, Elsevier, Amsterdam, 2005, pp. 507553, http://dx.doi.org/10.1016/s1874-5709(05)80015-0.
[6] R. Kühnau, Koeffizientenbedingungen für schlicht abbildende Laurentsche Reihen, Bull. Acad. Polon. Sciences, Sér. math., astr., phys., 20 (1972), 7-10 .
[7] R. Kühnau, Möglichst konforme Spiegelung an einer Jordankurve, Jahresberichte d. Deutschen Math.-Verein, 90 (1988), 90-109.
[8] R. Kühnau, Interpolation by extremal quasiconformal Jordan curves, Siberian Math. J., 32 (1991), 257-264, http://dx.doi.org/10.1007/bf00972772.
[9] R. Kühnau, Möglichst konforme Jordankurven durch vier Punkte, Rev. Roumaine Math. Pures Appl., 36 (1991), 383-393.
[10] R. Kühnau, Einige neuere Entwicklungen bei quasikonformen Abbildungen, Jahresberichte d. Deutschen Math.- Verein, 94 (1992), 141-169.
[11] R. Kühnau, Quasiconformal reflection coefficient and Fredholm eigenvalue of an ellipse of hyperbolic geometry, Publ. Inst. Math. (Beograd), Nouv. Sér.), 75, 89 (2004), $77-86$, http://dx.doi.org/10.2298/pim0475077k.
[12] Z. Nehari, Conformal mapping, McGraw-Hill, New York-Toronto-London, 1952.
[13] C. Pommerenke, Univalent functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.

Reiner Kühnau

FB Mathematik und Informatik, Martin-Luther-Universität Halle-Wittenberg
D-06099 Halle-Saale, Germany
E-mail: kuehnau@mathematik.uni-halle.de

