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1. Introduction

The theory of analytic functions and of conformal mappings became im-
portant new aspects and a great enrichment by introducing quasiconformal
mappings. The latest great survey of this field was given by Cabiria An-
dreian Cazacu in her profound Handbook article [3]. Furthermore, beside
her own important contributions, she also gave one of the first introduction
to the foundation: [1], [2].

Here we will consider the following question. Let a (closed) Jordan curve
C be given in the complex w-plane. Then we have a great variety of contin-
uous parametric representations of the form

w = w(z) with z = eit, 0 ≤ t ≤ 2π,

where w(z) is a continuous and schlicht mapping of the unit circle |z| = 1
onto C. Our aim is the question: Is there a distinguished parametric repre-
sentation, from the point of view of complex analysis? For this reason, we
ask for an extension of such a parametric representation w(z) to a contin-
uous and schlicht mapping of the whole Riemann sphere onto itself. It is
known that there exists such a mapping which is quasiconformal if and only
if C is a quasicircle; cf. [3], [5], [7], [10]. Obviously, the “optimal” case of
an extension which is even conformal exists only in the trivial case of a cir-
cle C. Therefore, there arises the question for an “extremal quasiconformal
parametric representation of the quasicircle C” (in the original sense of H.
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Grötzsch called “möglichst konform”). That means a parametric represen-
tation for which the extremal quasiconformal extension to the whole sphere
has as a dilatation bound which is as small as possible.
Of course, such an extremal quasiconformal parametric representation al-
ways yields again such a representation after an arbitrary Möbius transfor-
mation of the unit circle |z| = 1 onto itself.

In the following, we always denote by QC the “reflection coefficient” of
the quasicircle C. That is the smallest dilatation bound in the class of all
quasiconformal reflections at C; cf. [5], [7], [10].

Our starting point is the

Theorem 1.1. For every quasicircle C there exists an extremal quasicon-
formal parametric representation. The smallest dilatation bound is

√
QC. If

C is, e.g., analytic then the extremal representation is unique up to a Möbius
transformation of the unit circle |z| = 1 onto itself. It then has a constant
dilatation and can be described by a quadratic differential.

It is difficult to give concrete examples for curves C with a known ex-
tremal quasiconformal parametric representation. We can offer here only
the example of an ellipse C. Even in this case the solution does not look
simply.

We can assume the ellipse C in the form

C :
1

Q2
(Re w)2 + (Im w)2 = 1 (1.1)

with Q = QC because here the reflection coefficient is the quotient of the
semiaxes [7].

Theorem 1.2. We have for the by (1.1) defined ellipse C, under the nor-
malization w(1) = Q, w(i) = i, w(−1) = −Q, w(−i) = −i, the (then
uniquely determined) extremal quasiconformal parametric representation

w
(
eit
)

= Q cos

(
π

K(κ)
F (κ, ϕ)

)
+ i sin

(
π

K(κ)
F (κ, ϕ)

)
(1.2)

with the usual abbreviations

F (κ, ϕ) =

∫ ϕ

0

dt√
1− κ2 sin2 ϕ

, K(κ) = F
(
κ,
π

2

)
(1.3)

for the elliptic integral of the first kind, resp. for the complete elliptic integral
of the first kind, further

κ =

(
2q1/4 + 2q9/4 + 2q25/4 + · · ·

1 + 2q + 2q4 + 2q9 + · · ·

)2

, q =

√√
Q− 1√
Q+ 1

, (1.4)
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ϕ = arctan

(
1

4
√

1− κ2
tan

t

2

)
. (1.5)

The dilatation of the extremal quasiconformal extension of this extremal
quasiconformal parametric representation to the whole Riemann sphere is
constant and equals

√
Q =

√
QC.

Here we have in the first equation (1.4) in the nominator and in the
denominator a theta series.
In particular, the Theorem 1.2 means that in the case of an ellipse the
corresponding affine mapping (with the dilatation QC) does not yield the
extremal quasiconformal parametric representation.

In Section 3 we give a generalization and in Section 4 a discretization of
our problem.

As an addendum, we will consider in the last Section 5 for an analytic
quasicircle C also a modified problem.

2. Proof of Theorem 1.1 and 1.2

The Proof of Theorem 1.1 follows the idea in [7] (p. 95), [11] (p. 78). We
start with an extremal quasiconformal reflection at C. Here we observe the
infinitesimal ellipses which transform onto infinitesimal circles. If the dilata-
tion is p (quotient of the semiaxis) we take now the ellipses with dilatation√
p and the same orientation of the axis. This means the solution of a Bel-

trami equation. In this manner, we obtain as in [7], [11] by some sort of
factorization the Theorem 1.1 .

Remarks. (i) In the Theorem 1.1 we restrict ourself mainly to the clear
case of an analytic quasicircle C. Of course, there remains the problem of
a systematic inquiry of properties of the extremal quasiconformal paramet-
ric representation and its extension, in dependence of properties of C, e.g.,
asymptotical conformality or smoothness.

(ii) If we replace in this consideration p by a p1, 1 ≤ p1 ≤ QC, we
obtain in the same manner also a parametric representation of C which is
Q1-quasiconformal in the exterior of the unit circle and Q2-quasiconformal
in the interior, with 1 ≤ Q1 ≤ QC, 1 ≤ Q2 ≤ QC, Q1Q2 = QC; cf. again [11]
(p. 78). Furthermore, it arises the question: Is it possible to arrange the
“splitting” of the dilatation in a function p1 (not necessarily constant) in
the exterior of C and p2 in the interior with p1p2 = QC such that at the unit
circle |z| = 1 a parametric representation with a prescibed property appears?

The case of an ellipse C is a great stroke of luck, because here we obtain
the mentioned Beltrami solution by a simple affine mapping. Namely, for
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the Proof of Theorem 1.2 we start with the conformal mapping W = W (z)
of the unit disk |z| < 1, z = eit, onto the interior of the stretched ellipse

1

Q
(ReW )2 + (ImW )2 = 1 (2.1)

with W (1) =
√
Q, W (i) = i, W (−1) = −

√
Q, W (−i) = −i. By [4] (p.

318/319), we obtain the boundary values

W
(
eit
)

=
√
Q cos

(
π

K(κ)
F (κ, ϕ)

)
+ i sin

(
π

K(κ)
F (κ, ϕ)

)
(2.2)

with (1.3), (1.4), (1.5). The following affine mapping

w =
√
Q ReW + i ImW

leaves us indeed with (1.2).

We add that in this exceptional case of an ellipse C it is also possible
to give explicit analytic expressions of the inverse mapping of the extremal
quasiconformal parametric representation (1.2); cf. again [4], in another
form using Tchebyshev polynomials in [12] (p. 258).

3. A generalization

Let n samples K1, · · · ,Kn of the unit disk be given in n complex planes. In
addition, let be given a fixed system

S =
n⋃

k,l=1

Sl,k (3.1)

of n(n−1) quasisymmetric and orientation preserving substitutions Sl,k be-
tween the boundaries ∂Kl and ∂Kk (beside the trivial identity substitutions
S1,1, · · · , Sn,n). We assume that this system of the substitutions

Sl,k : ∂Kk → ∂Kl (3.2)

satisfies for all k, l,m for the inverse and for the compositions

Sk,l = S−1l,k , Sm,k = Sm,l ◦ Sl,k. (3.3)

In particular, this means that after prescribing the special substitutions
S2,1, S3,2, · · · , Sn,n−1 we can obtain by composition with (3.3) also the
other Sl,k.
As a welding function, every Sl,k yields a quasicircle Cl,k = Ck,l (unique up to
a Möbius transformation), namely by conformal welding of Kk and Kl (resp.
the at the unit circle reflected Kl). This leaves us with

(
n
2

)
quasicircles.



Extremal quasiconformal parametric representation of a quasicircle 153

Now we take an additional unit disk K in the complex z-plane and a
system S = (S1, · · · , Sn) of quasisymmetric substitutions

Sk : ∂K→ ∂Kk, k = 1, · · · , n, (3.4)

which are linked by
Sl = Sl,k ◦Sk. (3.5)

One can think also of defining only one substitution, e.g., S1 and then gen-
erating the other by (3.3).
With this system S of substitutions, we consider systems of n quasiconfor-
mal mappings wk(z) with dilatation bounds Qk, satisfying

wk(z) : K → Kk which equals Sk at the unit circle. (3.6)

We can state the

Problem. For a given and fixed system S, what is the domain of vari-
ability of the systems Q1, · · · , Qn (in the n-dimensional space) if the sub-
stitutions S1 , · · · , Sn and the mappings w1 , · · · , wn vary.

This domain of variability will appear in dependence of the fixed system
S.

Here we can give only the complete solution in the simplest case n = 2.

Theorem 3.1. In the case n = 2, the exact domain of variability of all
possible pairs (Q1, Q2) is given by

Q1 ≥ 1, Q2 ≥ 1, Q1Q2 ≥ QC1,2 (3.7)

where QC1,2 is the reflection coefficient of the quasicircle C1,2 arising by the
substitution S1,2. In the case of an analytic substitution S1,2, that means in
the case of an analytic Jordan curve C1,2, there exists for every pair (Q1, Q2)
with Q1Q2 = QC1,2 , Q1 > 1, Q2 > 1 exactly one pair of corresponding
substitutions S1,S2 (up to Möbius transformations of the unit circle onto
itself).

For the Proof, we first observe that for every Q1 with 1 ≤ Q1 ≤ QC1,2

there exists a pair of admissible quasiconformal mappings with dilatation
bounds Q1 and Q2 = QC1,2/Q1, that means Q1Q2 = QC1,2 ; cf. the Remark
(ii) of Section 2. And a pair (Q1, Q2) in the domain of variability with
Q1Q2 < QC1,2 is impossible because otherwise a Q1Q2-quasiconformal re-
flection at C1,2 would be follow.
Obviously, with an admissible pair (Q1, Q2) always also, e.g., tQ1, tQ2 or
tQ1, Q2 or Q1, tQ2 with t > 1 is an admissible pair. This means that the
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by (3.7) characterized domain is completely covered by the admissible pairs
(Q1, Q2).

It seems that in the case n > 2 the situation is more involved (beside
some special and obvious cases).

Remarks. (i) As in the case n = 2, it would be desirable, e.g. in the
case n = 3, to construct an appropiate conformal welding of K1,K2,K3

corresponding to the substitutions of the system S. This would be shape
the whole situation more suggestive. Of course, this is impossible in the
complex plane. Therefore, one has to try a welding in space, using three
simply-connected surfaces with common boundary.

(ii) In the case n = 3, if C1,2 and C2,3 are given then also the substitutions
S1,2 and S2,3, therefore by (3.3) also S1,3 and then C1,3 (up to a Möbius
transformation). It would be desirable to have a direct procedure which
yields for given C1,2 and C2,3 the third C1,3. Of course, this is possible
by cutting the planes along C1,2 and C2,3 followed by a suitable welding of
the interior of C1,2 and C2,3. But it arises the question for a more direct
procedure.

4. A discretization

Let n different points w1, · · · , wn be given and fixed in the complex w-
plane. Additionally, we consider in the z-plane n different (non fixed)
points z1, · · · , zn varying at the unit circle |z| = 1 and take into account
those quasiconformal mappings w(z) of the Riemann sphere onto itself with
w(zk) = wk, k = 1, · · · , n. Furthermore, we prescribe a homotopy class.
That means, the image of the unit circle |z| = 1 has to be a Jordan curve
through the wk in a given and fixed homotopy class. Using essentially results
of O. Teichmüller, in [8] was proven: In the class of these quasiconformal
mappings (varying the zk and the mappings) there exists an extremal quasi-
conformal mapping (that means with the smallest dilatation bound) which
is unique up to a Möbius transformation of the unit circle |z| = 1 onto itself.

In [8] there was additionally given a description of the extremal mapping
in more detail, e.g., with a quadratic differential.

Furthermore, in [9] the simplest non-trivial case n = 4 was studied ex-
plicitly, using elliptic functions and elliptic integrals.

5. Analytic Jordan curves

As an addendum, for the case of an analytic Jordan curve C we will consider
also a modified problem. Then there exists a parametric representation w =
w(z) which is a schlicht mapping of the unit circle |z| = 1 onto C and has an
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analytic and schlicht conformal extension to an annulus 1
R < |z| < R, R > 1.

Here we can choose R =∞ only in the case of a circle C.
For a given fixed w(z) and then all possible values R we ask now for sup

R. To this end, first we consider for |z| = |ζ| = 1 the development

log
w(z)− w(ζ)

z − ζ
=

∞∑
i,k=−∞

Aikz
iζk (Aik = Aki) (5.1)

to obtain the coefficients Aik. Then the solution of our problem is given by
the following generalized Grunsky inequalities.

Theorem 5.1. The desired sup R is the supremum of all R for which w(z)
is analytic in 1

R < |z| < R and satisfies with the corresponding coefficients
Aik the inequalities∣∣∣∣∣∣

n∑
i,k=−n

AikXiXk + 2

n∑
k=1

XkX−k
k(R4k − 1)

∣∣∣∣∣∣ ≤
n∑

k=1

|Xk|2 + |X−k|2

k(R2k −R−2k)
(5.2)

for all finite systems of complex numbers X−n, ..., Xn with X0 = 0.

The proof follows by a slight transformation of Satz 2 in [6].

It remains the desideratum: Is it possible to prove in the style of [13]
(middle of p. 59) the analyticity of w(z) in 1

R < |z| < R, R > 1, providing
(5.2) and the analyticity in an annulus 1

R′ < |z| < R′ with some R′, 0 <
R′ < R ?
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