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1. Preamble and main theorems

1.1. Introductory remarks

In 1963, Ahlfors posed in [1] (and repeated in his book [2]) the following ques-
tion which gave rise to various investigations of quasiconformal extendibility
of univalent functions.

Question. Let f be a conformal map of the disk (or half-plane) onto a
domain with quasiconformal boundary (quasicircle). How can this map be
characterized?

He conjectured that the characterization should be in analytic properties
of the invariant (logarithmic derivative) f ′′/f ′. Many results were estab-
lished on quasiconformal extensions of holomorphic maps in terms of f ′′/f ′

and other invariants (see, e.g., the survey [10] and the references there).

The purpose of this note is to give a somewhat complete answer by
applying the Grunsky coefficient inequalities.

Recall that, due to the classical Grunsky theorem [6], a holomorphic
function f(z) = z+ const +O(z−1) in a neighborhood of z =∞ is continued
to a univalent holomorphic function on the disk

∆∗r = {z ∈ Ĉ = C ∪ {∞} : |z| > r}
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if and only if its Grunsky coefficients αmn defined by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmnr
m+nz−mζ−n, (z, ζ) ∈ (∆∗r)

2, (1.1)

satisfy the inequality∣∣∣ ∞∑
m,n=1

√
mn αmnr

m+nxmxn

∣∣∣ ≤ 1, (1.2)

for any sequence x = (xn) from the unit sphere S(l2) of the Hilbert space l2

with norm ‖x‖ =
(∞∑

1
|xn|2

)1/2
. Here the principal branch of the logarithmic

function is chosen and 0 < r <∞. The quantity

κr(f) = sup
{∣∣∣ ∞∑

m,n=1

√
mn αmnr

m+nxmxn

∣∣∣ : x = (xn) ∈ S(l2)
}
≤ 1 (1.3)

is called the Grunsky norm of f in ∆∗r , and the minimal dilatation k(f) =
inf{k(wµ) = ‖µ‖∞ : wµ|∂D∗ = f} is called the Teichmüller norm of f .

Consider the class Σr(0) of nonvanishing univalent hydrodynamically
normalized functions

f(z) = z + b0 + b1z
−1 + . . .

on D∗r with quasiconformal extensions to Ĉ satisfying f(0) = 0 (hence, with
Beltrami coefficients µf (z) = ∂f/∂f supported on the disk ∆r = {|z| < r}.

More generally, let L be a quasiconformal curve in C with the interior and
exterior domains D, D∗ 3 ∞. Consider the Beltrami coefficients supported
in D, i.e., the elements of the unit ball

Belt(D)1 = {µ ∈ L∞(C) : µ(z)|D∗ = 0, ‖µ‖∞ < 1}.

Any such µ determines a linear functional 〈µ, ψ〉D =
∫∫
D µψdxdy on L1(D)

whose norm equals ‖µ‖∞.
The subspace A1(D) in L1(D) formed by holomorphic functions in D is

intrinsically connected with exremal µ ∈ Belt(D)1. Let A2
1(D) be its subset

consisting of ψ = ω2 with ω holomorphic on D, and

αD(fµ) = sup{|〈(µ/‖µ‖∞)ψ〉D| : ψ ∈ A2
1(D), ‖ψ‖A1 = 1}.

In the case r = 1, we shall use the notations ∆, ∆∗, Σ(0) and apply to
f ∈ Σ(0) the root transform

Rp : f(z) 7→ fp(z) := f(zp)1/p = z +
b0
p
z−p+1 + . . . , (1.4)
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where p ≥ 2 is an integer. Every image fp = Rpf is p-symmetric with
respect to rotation around the origin, i.e.,

fp(e
2nπi/pz) = e2nπi/pfp(z), n = 0, 1, . . . , p− 1; p ≥ 2,

for any z ∈ ∆∗, and is connected with its original f ∈ Σ0 by the commutative
diagram

C̃p
Rpf−−−−→ C̃p

πp

y yπp
Ĉ f−−−−→ Ĉ

where C̃p denotes the p-sheeted sphere Ĉ branched over 0 and ∞, and the
projection πp(z) = zp. In view of the assumption f(0) = 0, the covering
map Rpf is well defined and commutes with the projection πp on the sphere

Ĉ.
By the Kühnau-Schiffer theorem, the Grunsky norm κ(f) of any f ∈

Σ(0) is reciprocal to the least positive Fredholm eigenvalue %L of the curve
L = f(|z| = 1) given by

1

%L
= sup

|DG(u)−DG∗(u)|
DG(u) +DG∗(u)

, (1.5)

where G and G∗ are, respectively, the interior and exterior of L; D denotes
the Dirichlet integral, and the supremum is taken over all functions u contin-
uous on Ĉ and harmonic on G∪G∗ (see [15], [21]). This yields, in particular,
that

κ(Rpf) ≥ κ(f) for any p > 1.

Note that the Taylor and Grunsky coefficients of any Rpf are represented
as polynomials of the coefficients b0, b1, b2, . . . of the original functions f .

1.2. Main results

Consder for µ ∈ Belt(∆)1 the truncated Beltrami coefficients

µρ(z) =

{
µ(z), |z| < ρ,

0, |z| > ρ (ρ < 1)
(1.6)

and define for the corresponding function fµ ∈ Σ(0),

κ̂(fµ) = lim
ρ→1

sup
p

sup
ψ∈A2

1(∆ρ),‖ψ‖A1(∆ρ)=1

|〈R∗pµ, ψ〉∆ρ |. (1.7)

This quantity can be regarded as the outer limit Grunsky norm of f on
∆ (cf. the equality (2.6) below).



140 Samuel Krushkal

Theorem 1.1. Every nonvanishing conformal map f of the disk ∆∗ onto
a generic quasiconformal disk, with f(∞) = ∞, admits k-quasiconformal
extensions with dilatations k ≥ κ̂(f∗), where f∗ is obtained from f by ad-
missible translation and rescaling so that

f∗(z) = (f(z)− c)/f ′(∞) ∈ Σ(0). (1.8)

The lower bound κ̂(f∗) cannot be replaced by a smaller one for any f ∈ Σ(0).
In addition, the curve L = f(S1) is a k′-quasicircle (i.e., the image of

the unit circle S1 under k-quasiconformal maps of Ĉ with k ≥ k′), and its
reflection coefficient qL equals κ̂(f∗) and relates to the minimal dilatation k′

by
1 + qL
1− qL

=

(
1 + k′

1− k′

)2

. (1.9)

For odd univalent functions, this theorem yields a quantitatively com-
plete solution of Ahlfors’ problem.

Theorem 1.2. For any odd univalent function f(z) = z+b1z
−1+b3z

−3+. . .
in ∆∗, either κ(f) = 1 or f admits quasiconformal extensions across the
unit circle with dilatations k ≥ κ̂(f). The lower bound κ̂(f) is sharp for each
f . The reflection coefficient of the curve f(S1) relates to its quasiconformal
dilatation similar to (1.9).

Theorem 1.2 can be extended to arbitrary centrally symmetric quasidisks
D∗ 3 ∞ by applying the generalized Grunsky coefficients defined by

log
f(z)− f(ζ)

z − ζ
= −

∞∑
m,n=1

αmn χ(z)−mχ(ζ)−n, (1.10)

for univalent f in D∗ with exp[ansions f(z) = z+const +O(z−1) near z =∞.
Here χ denotes the conformal map of D∗ onto ∆∗ with χ(∞) =∞, χ′(∞) >
0, and

κD∗(f) = sup
x

∣∣∣ ∞∑
m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1, x = (xn) ∈ S(l2)

(cf. [6], [18], [19], [20], [22], [12]). Assume also that the origin z = 0 is
placed in the complementary domain D = C \D∗ and that quasiconformal
extensions of our functions f preserve the origin. The collection of such f
is denoted by Σ(D∗, 0). Then we have

Theorem 1.3. Every quasiconformal extension wµ of an odd f ∈ Σ(D∗, 0)
in a centrally symmetric domain D∗ has dilatation k(wµ) ≥ κ̂(fχ), where
fχ(t) = χ′(∞)f ◦ χ−1(t). This lower bound is sharp for any f .
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2. Proof of Theorem 1.1

We accomplish the proof in three stages.
10. We renormalize a given function f to get f∗ ∈ Σ(0) with the same
Beltrami coefficient and then will deal only with such f∗. For simplicity of
notations, the subscript ∗ will be omitted.

Every coefficient αmn(f) in (1.2) is represented as a polynomial of a
finite number of the initial coefficients b1, b2, . . . , bs of f . Hence it depends
holomorphically on Beltrami coefficients µ of quasiconformal extensions of
f running over the ball Belt(D)1. The same is true also for coefficients of
Rpf .

This implies the holomorphy of maps

hx,p(µ) =
∞∑

m,n=1

√
mn αmn(Rpfµ) rm+nxmxn : Belt(Dr)1 → ∆ (2.1)

for any fixed p, r and x = (xn) ∈ l2 with ‖x‖ = 1 (see, e.g. [11]). Note also
that

sup
x∈S(l2)

hx,p(µ) = κr(Rpfµ), (2.2)

and each norm κr(Rpfµ) is a continuous plurisubharmonic function of µ ∈
Belt(∆r)1.

We will use the following lemmas.

Lemma 2.1. For any quasidisk D∗ containing z = ∞, the Grunsky norm
κD∗(f) of every function f ∈ Σ(D∗, 0) is dominated by its Teichmüller norm
as follows

κD∗(f) ≤ k k + αD(f)

1 + αD(f)k
, (2.3)

and κD∗(f) < k unless

sup
{∣∣∣ ∫∫

D

µ(z)ψ(z)dxdy
∣∣∣ : ψ ∈ A2

1(D), ‖ψ‖A1 = 1
}

= ‖µ0‖∞. (2.4)

The last equality is equivalent to κD∗(f) = k(f).
If, in addition, the equivalence class of f (the collection of maps equal f

on ∂D∗) is a Strebel point, then µ0 is necessarily of the form

µ0(z) = ‖µ0‖∞|ψ0(z)|/ψ0(z) with ψ0 ∈ A2
1(D). (2.5)

This key lemma has been partially proved in [8] for the maps of circular
disks and extended in such form to generic quasiconformal disks in [12] using
Milin’s results on special orthonormal systems and univalence (such disks
arise in the proof of Theorem 1.3). For functions f ∈ Σr(0) holomorphic in
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the closed disk ∆∗r , the equality (2.5) was obtained by a different method in
[16].

Moreover, due to [12], the bound (2.6) can be strengthened for small
‖µ‖∞ as follows.

Lemma 2.2. The Grunsky norm of any f ∈ Σ(D∗, 0) with Teichmüller
quasiconformal extension satisfies the asymptotic equality

κD∗(f) = sup
∣∣∣ ∫∫
D

µ(z)ψ(z)dxdy
∣∣∣+O(‖µ‖2∞), ‖µ‖∞ → 0, (2.6)

with the same supremum as in (2.4).

Lemma 2.3. For a fixed ρ < 1, the restriction map ιρ : µ 7→ µρ given by
(1.6) is holomorphic in L∞ norm; hence, it induces a holomorphic map of
the ball Belt(∆)1 into itself.

Proof. The assertion of the lemma easily follows from the linearity of ιρ on
Belt(∆)1.

We proceed to the proof of the theorem and first consider the maps fµ ∈
Σ(0) having Teichmüller extremal extension, i.e., with Beltrami coefficients
in ∆ of the form

µ(z) = κ|ψ0(z)|/ψ0(z), ψ0 ∈ A1(∆).

If all zeros of ψ0 in ∆ are of even order, the theorem immediately follows
from Lemma 2.2. Similarly, if ψ0 has a single zero of odd order at the origin,
this lemma can be applied to the squared map R2f = f(z2)1/2 giving the
assertion of Theorem 1.1 with κ̂(f) = κ(R2f). Thus, starting if needed
with R2f , one only needs to consider fµ ∈ Σ(0) with µ defined by even
ψ0 ∈ A1(∆) of the form

ψ0(z) = cnz
n + cn+2z

n+2 + . . . (n ≥ 0 even, cn > 0),

having at least two zeros of odd order in ∆.
After applying the transform (1.4), we get the Teichmüller map Rpf =

fk|R
∗
pψ0|/R∗pψ0 determined by the quadratic differential

R∗pψ0 = ψ0(zp)p2z2p−2. (2.7)

Fix rj arbitrarily close to 1 and pick pj so large that all zeros of odd order of
R∗pjψ0 are placed in the annulus {rj < |z| < 1}. Then, taking the truncated
Beltrami coefficients for

R∗pjµ = k|R∗pjψ0|/R∗pjψ0
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by (1.6) with ρ = rj and applying to these Lemma 2.1, one obtains that the

corresponding maps f
[R∗pjµ]

rj satisfy

κrj
(
f

[R∗pjµ]
rj
)

= sup
(xn)∈S(l2)

∣∣∣ ∞∑
m,n=1

√
mn αmn

(
f

[R∗pjµ]
rj
)
rm+n
j xmxn

∣∣∣ = k.

(2.8)
Put µ∗ = µ/‖µ‖∞ and note that the Beltrami coefficient µ and its trun-
cations are extremal in their classes. Thus the equalities (2.5) and (2.8)
imply that there exist holomorphic functions hxj ,pj (ν) of type (2.1) on the
ball Belt(∆)1 mapping this ball into the unit disk ∆ and such that on the
extremal coefficients tµ∗ ∈ Belt(∆)1 these functions are estimated by

hxj ,pj (tµ
∗) = |t| − γj , |t| < 1, (2.9)

with γj → 0 as j →∞.
It follows from (2.9) that the quantity

lim
j→∞

tanh−1 hxj ,pj (tµ
∗) = tanh−1 κ̂(f tµ

∗
)

coincides with the Carathéodory distance on the ball Belt(∆)1 between tµ∗

and 0 as well as with the Kobayashi and Teichmüller distances between
these points, because all these distances are equal to the hyperbolic length

d∆(0, tµ∗) = tanh−1 ‖tµ∗‖∞ = tanh−1 |t|

of the radial segment [0, |t|] in the unit disk.
This implies, taking t = ‖µ‖∞, the desired equality κ̂(fµ∗ ) = k(fµ∗ ) = k.

For any other extension f µ̃∗ of f∗ preserving 0, we have ‖µ̃‖∞ > k, thus

‖µ̃‖∞ ≥ κ̂(f µ̃∗ ). Thereby the first assertion of the theorem is proved for
f ∈ Σ(0) admitting Teichmüller extensions.

20. Now consider generic f ∈ Σ(0), and let µ be one of its exremal Beltrami
coefficients in ∆ (i.e., with minimal L∞ norm). Truncate this µ by (1.6) and
pick ρ′ > ρ close to ρ. Restricting µ to the disk ∆ρ′ = {|z| < ρ′}, one obtains,
in view of conformality of µρ on the annulus

Uρ,ρ′ = {ρ < |z| < ρ′}

that the equivalence class of fµρ ||z|=ρ′ is a Strebel point [23], i.e., the map
fµρ admits Teichmüller extension across the circle {|z| = ρ′} onto the disk
∆ρ′ . It has the Beltrami coefficient

µρ,ρ′(z) = kρ,ρ′ |ψρ,ρ′ |/ψρ,ρ′

which satisfies

kρ,ρ′ = ‖µρ‖∞ − o(1) = ‖µ‖∞ − o(1) < ‖µ‖∞,
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where o(1) = γ1(ρ′ − ρ) → 0 as ρ′ → ρ and both ρ, ρ′ → 1. The last
estimate follows from the properties of extremal quasiconformal maps (and
their Beltrami coefficients).

Applying to fµρ,ρ′ the arguments from the previous step, one gets the
equality

κp
(
fRpµρ,ρ′

)
= k

(
fRpµρ,ρ′

)
,

provided that p ≥ p0(ρ) is so large that the quadratic differential R∗pψρ,ρ′(z)
has no zeros of odd order in the annulus Uρ,ρ′ . Since every R∗pψρ,ρ′ also
is of the form (2.7), the corresponding Beltrami coefficient R∗pµρ,ρ′ is of
Teichmüller type, hence extremal in its class.

Using the same properties of extremal quasiconformal maps and the
density of Strebel points (see [4]), one concludes that

‖µ− µρ,ρ′‖∞ = γ(ρ′ − ρ),

with γ(ρ′ − ρ) → 0 as ρ′ → ρ and both ρ, ρ′ approach 1. This yields the
estimate ∫∫

|z|<ρ′

µ(z)zndxdy −
∫∫
|z|<ρ′

µρ,ρ′(z)z
ndxdy � γ(ρ− ρ′)

for all n = 0, 1, 2, . . . (and then for any integrable holomorphic ψ in the disk
∆ρ′). Since

κ̂(fµρ,ρ′ ) ≤ k(fµρ,ρ′ ) ≤ k(fµ),

one gets in the limit the desired bound κ̂(fµ) ≤ k = k(fµ) for the initial
map fµ.

30. Finally, any quasiconformal reflection σ with respect to the curve L =
f(|z| = 1) (i.e., an orientation reversing quasiconformal homeomorphism of
the sphere Ĉ which interchanges the interior and exterior domains of L and
keeps this curve pointwise fixed) can be represented in the form

σ = f̂ ◦ σ0 ◦ f−1,

where σ0 is the conformal symmetry w 7→ 1/w and f̂ is a quasiconformal
extension of the given function f across the unit circle. The reflection coeffi-
cient of L, being equal to the minimal dilatation among such σ, is connected
with extremal dilatation among quasiconformal maps of the plane moving
the unit circle into L by (1.9). This equality is one of the basic relations
in the theory of quasiconformal reflections (see, e.g., survey [10] and the
references given there).
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3. Proofs of Theorems 1.2 and 1.3

The odd functions

f(z) = z + b1z
−1 + b3z

−3 + · · · ∈ Σ(0) (3.1)

(with odd quasiconformal extensions) have some specific properties; thus
Theorems 1.2 and 1.3, being in fact the consequences of the key Theorem
1.1, provide somewhat more.

Such functions (different from the identity) have even Beltrami coef-
ficients, and f(0) = 0. If f admits a Teichmüller extension, its defining
quadratic differential ψ0 also is even, i.e., of the form ψ0(z) = c0 + c2z

2 +
c4z

4 + . . . . So, for the functions with expansion(3.1), f∗ given by (1.8)
coincides with its original f .

Proof of Theorem 1.2. Since f is univalent in D∗, the Grunsky theorem
yields κ(f) ≤ 1. If κ(f) = κ < 1, the function f admits, due to Pommerenke
and Zhuravlev, a κ1-quasiconformal extension to ∆ with κ1 = κ1(κ) ≥ κ
(see [20]; [13, pp.82-84], [24]). This bound κ1 can be given explicitly, but we
do not need it here.

The remaining assertions of Theorem 1.2 follow from Theorem 1.1.

The proof of Theorem 1.3 follows the same lines, since the conformal
map χ and its inverse both are centrally symmetric, and the same holds for
all composed maps f ◦ χ−1.

4. Additional remarks

1. Passing from f ∈ Σ(0) to their inversions

F (z) = 1/f(1/z) = z − b0z2 + (b20 − b1)z3 + a4z
4 + . . . , |z| < 1,

one gets the analogs of Theorems 1.1-1.3 for univalent functions in the unit
disk.

2. The restriction map ιρ of Lemma 2.2 does not descend to a holomorphic
map of the universal Teichmüller space obtained by appropriate factorization
of the ball Belt(∆)1.

3. The homotopies fr(z) = rf(z/r) : ∆∗ × [0, 1] of odd functions f ∈ Σ(0)
also admit some specific properties and have been investigated in [17] and
[11].

In [17], there was considered the action of the root transform Rp on odd
f holomorphic in the closed disk ∆∗ and with b1 6= 0 and established that
for all sufficiently small r,

κ({R2f)}r) = κ(fr). (4.1)
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For example, this holds when r2 +O(r4) < 0.36
√
|b1|.

Some close (though not explicit) results ensuring the equality κ(fr) =
k(fr) (and thereby (4.1)) for sufficiently small r are obtained in [11]. The
underlying features concern the distribution of zeros of the defining holo-
morphic quadratic differentials for f and fr.

4. It was conjectured in [5] (in an equivalent form) that for any f ∈ Σ(0),
we have

lim sup
p→∞

κ(Rpf) = k,

where k stands for the minimal dilatation of quasiconformal extensions of f
(preserving the origin).

The arguments in the proof of Theorem 1.1 provide simulatneously a
result of such type though it involves some other functions from Σ(0) out-
wardly related to a given f .
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