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Abstract - For weighted Carnot–Carathéodory spaces, we deduce the
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1. Introduction

The goal of the paper is to study local geometry of equiregular weighted
Carnot–Carathéodory spaces, i.e., spaces with arbitrary degrees of basis vec-
tor fields under assumption that these fields belong to the class C1 or C1,α,
α > 0.

The case of a weighted Carnot–Carathéodory space is new in comparison
to the classical one where a degree of a vector field is defined by the order
of the commutator of horizontal vector fields (see also Definition 2.1 below).
See, e.g., papers [42, 16] for some results on this new case.

Carnot–Carathéodory geometry is applied for studying hypoelliptic ope-
rators (see, e.g., [10, 19, 41]), and it is also extensively used in the theory of
partial differential equations (see, e.g., [13, 7, 48, 4]).

2. Basic definitions and results

First of all, recall the definition of an «ordinary» Carnot–Carathéodory
space.

Definition 2.1. (see [4]; cf. [17, 23, 37]) Fix a connected Riemannian C∞-
manifold M of topological dimension N . The manifold M is called the Carnot–
Carathéodory space if the tangent bundle TM has a filtration

HM = H1M ( . . . ( HiM ( . . . ( HMM = TM

by subbundles such that every point p ∈M has a neighborhood U ⊂M
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equipped with a collection of C1-smooth vector fields X1, . . . , XN enjoying
the following two properties.

(1) At every point v ∈ U we have a subspace

HiM(v) = Hi(v) = span{X1(v), . . . , XdimHi(v)} ⊂ TvM

of the dimension dimHi independent of v, i = 1, . . . ,M .
(2) The inclusion [Hi, Hj ] ⊂ Hi+j, i+ j ≤M , holds.
Moreover, if the third condition holds then the Carnot–Carathéodory space

is called the Carnot manifold:
(3) Hj+1 = span{Hj , [H1, Hj ], [H2, Hj−1], . . . , [Hk, Hj+1−k]}, where k =[ j+1

2

]
, H0 = {0}, j = 1, . . . ,M − 1.

The subbundle HM is called horizontal.
The number M is called the depth of the manifold M.

Properties of Carnot-Carathéodory spaces and Carnot manifolds under
assumptions of regularity mentioned in Definition 2.1 can be found in [23,
22, 50, 4, 16]. Many classical and modern results, development trends of the
theory of Carnot-Carathéodory spaces and their applications can be found
in [1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 15, 17, 18, 19, 20, 21, 27, 29, 30, 31, 32,
33, 34, 35, 36, 37, 39, 41, 44, 45, 46, 47, 49, 51].

Recall now the definition of a weighted Carnot–Carathéodory space.
Definition 2.2. ([25]; cf. Definition 2.1 and [42, 43]) Fix a connected Rie-
mannian C∞-manifold M of topological dimension N . The manifold M is
called the weighted Carnot–Carathéodory space if the tangent bundle TM has
a filtration

HM = H1M ( . . . ( HiM ( . . . ( HMM = TM

by subbundles with assigned natural numbers l1 < l2 < . . . < lM such that
every point p ∈ M has a neighborhood U ⊂ M equipped with a collection of
C1-smooth vector fields X1, . . . , XN enjoying the following two properties.

(1) At every point v ∈ U we have a subspace
HiM(v) = Hi(v) = span{X1(v), . . . , XdimHi(v)} ⊂ TvM

of the dimension dimHi independent of v, i = 1, . . . ,M .
(2) The inclusion [Hi, Hj ] ⊂ Hm holds where m = max{p : li + lj ≥ lp}.
The number M is called the depth of the manifold M.

Remark 2.1. Emphasize that depths M from Definitions 2.1 and 2.2 may
differ. Moreover, in Definition 2.2 M may coincide with the topological
dimension N .

Remark 2.2. To this end, we assume that weighted Carnot–Carathéodory
spaces under consideration have the same collection of basis vector fields for
all points.
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Example 2.1. In [22], an example of a 4-dimensional Carnot manifold of
a depth 3 with C1-smooth basis vector fields is given. If we put in that
example wgtY = 1, wgtX = 2, wgtZ = 3, wgtT = 4 then we obtain a
weighted Carnot — Carathéodory space.

Definition 2.3. Consider the initial value problem

γ̇(t) =
N∑
i=1

yiXi(γ(t)), t ∈ [0, 1], γ(0) = x,

where the vector fields X1, . . . , XN are C1-smooth. Then, for the point y =

γ(1), we write y = exp
( N∑
i=1

yiXi

)
(x).

The mapping (y1, . . . , yN ) 7→ exp
( N∑
i=1

yiXi

)
(x) is called the exponential

mapping.

Definition 2.4. Consider u∈M and (v1, . . . , vN )∈BE(0, r), where BE(0, r)
is a Euclidean ball in RN . Define a mapping θu : BE(0, r)→M as follows:

θu(v1, . . . , vN ) = exp

( N∑
i=1

viXi

)
(u).

It is known that θu is a C1-diffeomorphism if 0 < r ≤ ru for some ru > 0.
The collection {vi}Ni=1 is called the normal coordinates or the coordinates of
the 1st kind (with respect to u ∈M) of the point v = θu(v1, . . . , vN ).

Proposition 2.1. (see, e.g., [26]) There exists a compactly embedded neigh-
borhood U b M such that θu(BE(0, ru)) ⊃ U .

Definition 2.5. The weight wgtXk equals min{lm | Xk ∈ Hm}, k = 1, . . . , N .

Remark 2.3. The condition (2) of Definition 2.2 implies

[Xi, Xj ](v) =
∑

k: wgtXk≤wgtXi+wgtXj

cijk(v)Xk(v), (2.1)

i, j = 1, . . . , N .

For weighted spaces, the following result is true.

Theorem 2.1. (cf. [23]) Fix u ∈M. The collection

c̄ijk =

{
cijk(u) of (2.1) if wgtXi + wgtXj = wgtXk,

0 otherwise

constitutes a structure of a nilpotent Lie algebra.
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We construct the Lie algebra gu of Theorem 2.1 as a nilpotent Lie al-
gebra of vector fields {(X̂u

i )′}Ni=1 on RN such that the exponential mapping

(x1, . . . , xN ) 7→ exp
( N∑
i=1

xi(X̂
u
i )′
)

(0) is the identity [40, 6, 17, 28, 38]. As

soon as this mapping is the identity, we have xi = exp
(
xi
(
X̂u
i

)′)
(0). It fol-

lows that derivative with respect to xi at 0 of the left-hand side, equal to the
vector ei of the canonical basis in RN , coincides with the derivative of the
right-hand side, equal to (X̂u

i )′(0). Thus the condition for the exponential
mapping to be identical one implies the initial value

(X̂u
i

)′
(0) = ei (2.2)

for the vector fields (X̂u
i

)′, i = 1, . . . , N .
By Definition 2.4, we have [(θu)∗〈ei〉](0) = Dθu(0)〈ei〉 = Xi(u). From

here and (2.2) it follows

[(θu)∗〈(X̂u
i )′〉](0) = Xi(u), i = 1, . . . , N. (2.3)

By the construction, the vector fields {(X̂u
i )′}Ni=1 satisfy

[(X̂u
i )′, (X̂u

j )′] =
∑

wgtXk=wgtXi+wgtXj

cijk(u)(X̂u
k )′ (2.4)

everywhere on RN .
Other properties of this Lie algebra of vector fields and the construction

of the corresponding nilpotent Lie group GuM are similar to those described
in [26] with the new notions of weights instead of degrees, see Definitions 5
and 6 and Remark 4 there.

Below the necessary properties, notations and assumptions are cited (see
also [23, 26]).

Notation 2.1. We use the following standard notation: for each N -dimen-
sional multi-index µ = (µ1, . . . , µN ), its homogeneous norm equals |µ|h =
N∑
i=1

µi wgtXi.

Theorem 2.2. (see [12]) If { ∂
∂xl
}Nl=1 is a standard basis in RN then the jth

coordinate of a vector field (X̂u
i )′(x) =

N∑
j=1

zji (u, x) ∂
∂xj

equals

zji (u, x) =


δij if j ≤ dimHwgtXi ,∑
|µ+ei|h=wgtXj ,

µ>0

F jµ,ei(u)xµ if j > dimHwgtXi ,

i = 1, . . . , N .
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Remark 2.4. Theorems 2.1 and 2.2 imply that the collection {l1, . . . , lM}
defines the algebraic structure corresponding to local groups and vice versa.
I.e., if we have a collection of vector fields with weights {l1, . . . , lM} and a
corresponding filtration like the one in Definition 2.2 then we have a «tri-
angular» table of commutators similar to (2.1) and constants defining the
structure of the corresponding Lie algebra. Moreover, if we have a table
of commutators then it defines a filtration of the tangent bundle and the
collection of the weights of the vector fields.

Definition 2.6. Let M be a weighted Carnot–Carathéodory space of topo-
logical dimension N and depth M , and u ∈ M. For x, v ∈ U ⊂ GuM such

that x = exp

(
N∑
i=1

xiX̂
u
i

)
(v), we define the quasimetric du∞(x, v) as follows:

du∞(x, v) = max
i=1,...,N

{|xi|
1

wgtXi }.

Denote the ball {v ∈ GuM : du∞(x, v) < r} of radius r centered at x by
Boxu(x, r).

Remark 2.5. The function du∞ is homogeneous with respect to dilatations
corresponding to the filtration and to the collection of the weights {l1, . . . , lN}.

It follows from the definition of GuM that function du∞ is a quasimetric,
i.e., the generalized triangle inequality is valid for it locally on M (see. e.g.,
[26]).

Definition 2.7. Let M be a weighted Carnot–Carathéodory space. Given

u ∈ U and v ∈ U such that v = exp
( N∑
i=1

viXi

)
(u), define the mapping ∆u

ε as

∆u
ε (v) = exp

( N∑
i=1

viε
wgtXiXi

)
(u)

for ε > 0 such that the right-hand side of this relation is well-defined.

Definition 2.8. Let M be a weighted Carnot–Carathéodory space of topolog-

ical dimension N and depth M , and put x = exp
( N∑
i=1

xiXi

)
(u). Define the

metric function d∞(x, u):

d∞(x, u) = max
i=1,...,N

{|xi|
1

wgtXi }.

Denote the ball {u : d∞(x, u) < r} of radius r centered at x by Box(x, r).
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Note that Propositions 1–3 of [26] hold on weighted Carnot–Carathéodory
spaces. It means that for each point z ∈ M there exists a neighborhood
U b M, U 3 z, such that d∞(v, w) and du∞(v, w) are well-defined for all
u, v, w ∈ U .

The following assertion is true.

Theorem 2.3. (see [24, 25]) Let M be a weighted Carnot–Carathéodory
space with C1,α-smooth basis vector fields, α ∈ [0, 1] (if α = 0 then the vector
fields are just C1-smooth). For each w ∈ M, there exists a neighborhood
O 3 w, O b M, such that for u, x ∈ O the representations

Xq(∆
u
εx) =

N∑
p=1

auq,p(∆
u
εx)X̂u

p (∆u
εx),

where

auq,p(∆
u
εx) =


O(εl1), wgtXp < wgtXq,

δpq +O(εl1), wgtXp = wgtXq,

O(εmin{αl1,1}+wgtXp−wgtXq), wgtXp > wgtXq and α > 0,

o(εwgtXp−wgtXq), wgtXp > wgtXq and α = 0

(2.5)
hold, q = 1, . . . , N , and the above estimates are uniform on O.

Its proof repeats the proof of Theorems 4 and 5 of [24] (see also [25])
almost verbatim taking into account the facts that |∆u

εx − u| = O(εl1) and
that the minimal degree of ε for ∆u

εx is l1 instead of 1. More exactly, if α > 0
then in the proof of the first statement of Theorem 4 of [24] (see also [25])
the estimates of the summands in the formula

(Cu − Ctδεx)
( N∑
p=1

ŷpi (δεx, t)ep,

N∑
q=1

εwgtXqxqeq

)

=

N∑
p,q=1

∑
k: wgtXk=wgtXp+wgtXq

εwgtXq(cpqk(u)− cpqk(θu(tδεx))ŷpi (δεx, t)xqek

−
N∑

p,q=1

∑
k: wgtXk<wgtXp+wgtXq

εwgtXqcpqk(θu(tδεx))ŷpi (δεx, t)xqek.

are O(εl1(1+α)) and O(εl1) instead of O(ε1+α) and O(ε1), respectively. In the
proof of the second statement of Theorem 4 of [24] for α > 0 the estimate of
the first summand in the formula

(Cu − Cεtx)
(
ep, eq

)
=

∑
k: wgtXk=wgtXp+wgtXq

(cpqk(u)− cpqk(θu(tδεx))ek

−
∑

k: wgtXk<wgtXp+wgtXq

εwgtXp+wgtXq−wgtXkcpqk(θu(x))ek,
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is O(εαl1) instead of O(εα). Nevertheless, the estimate of the second sum-

mand is O(ε
min
k,p,q
{wgtXp+wgtXq−wgtXk}

), and the rough estimate is O(ε).
Arguments of the proof of Theorem 5 of [24] (see also [25]) are the same

with obvious changes.

Remark 2.6. The proof of Theorem 2.3 uses results of [16] that are formu-
lated for weighted Carnot–Carathéodory spaces where «degrees» of vector
fields vary from 1 to N . It turns out that the restriction wgtXi ≤ N ,
i = 1, . . . , N , is not essential.

Indeed, let l1 < l2 < . . . < lN be weights of the basis vector fields
of M. Consider the Cartesian product M × RlN−N with the collection
{X1, . . . ,XN , ej1 , . . . , ejlN−N }, where

Xi(x, y) = Xi(x), x ∈M, y ∈ RlN−N , i = 1, . . . , N,

and assign to each ejk the weight being equal to k-th element of the ordered
set

{1, 2, 3, . . . , lN − 1, lN} \ {l1, l2, . . . , lN},

k = 1, . . . , lN − N . Thus, we have an lN -dimensional weighted Carnot–
Carathéodory space enjoying all properties mentioned in [16]. Simple al-
gebraic arguments show that Lemma 3.1 and Proposition 3.2 of [16], and
Theorem 4 of [24] (see also [25]) hold for initial vector fields X1, . . . , XN .

Theorem 2.3 implies immediately Gromov type Convergence Theorem [17]
in the coordinates of the 1st kind (recall that here dilatations are constructed
with respect to weights).

Theorem 2.4. (see [16, 26] for «ordinary» Carnot–Carathéodory spaces)
Let M be a weighted Carnot–Carathéodory space with C1-smooth basis vector
fields. For each point, there exist a neighborhood O ⊂ M containing it and
a positive number r > 0 such that the uniform convergence Xε

i → X̂u
i as

ε → 0, i = 1, . . . , N , holds on Box(u, r), u ∈ O, and this convergence is
uniform in u ∈ O.

To make the understanding of the paper easier, we formulate all the
assumptions on a neighborhood U b M.

Assumption 2.1. (see also [26]) To this end, we consider a compactly em-
bedded neighborhood U b M such that

1) θu(BE(0, ru)) ⊃ U for all u ∈ U ;
2) U ⊂ GuM for all u ∈ U ;
3) θ̂uv (BE(0, ru,v)) ⊃ U for all u, v ∈ U (here one denotes θ̂uv (x1, . . . , xN ) =

exp

(
N∑
i=1

xiX̂
u
i

)
(v) and ru,v = sup{r : θ̂uv is a diffeomorphism on BE(0, r)});
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4) U b O, where O is a neighborhood from Theorem 2.3.
5) ‖Dθu〈ei〉‖, ‖Dθ̂uv 〈ei〉‖ ≥ T > 0 on U for all u, v ∈ U , i = 1, . . . , N .

Theorem 2.3 has following corollaries. The first one is the generalized
triangle inequality.

Theorem 2.5. (see [23, 26] for «ordinary» case) Let M be a weighted Carnot–
Carathéodory space with C1-smooth basis vector fields. Assume that U b M
is a compactly embedded neighborhood small enough such that

1) θu(BE(0, ru)) ⊃ U for all u ∈ U ;
2) U ⊂ GuM for all u ∈ U ;
3) θ̂uv (BE(0, ru,v)) ⊃ U for all u, v ∈ U ;
4) U b O, where O is a neighborhood from Theorem 2.3.

The value d∞ is a quasimetric; i.e., for u, v, w ∈ U , the generalized triangle
inequality

d∞(v, w) ≤ c(d∞(v, u) + d∞(u,w))

holds, where the constant 0 < c <∞ depends only on U .

Statements of the following Local Approximation Theorem for d∞-quasi-
metrics for the case of C1-smooth basis vector fields are the second corollary
of Theorem 2.3. See Remark 3.1 for comments regarding the case of α > 0.

Theorem 2.6. (see [23, 26] for «ordinary» case) Let M be a weighted Carnot–
Carathéodory space with C1-smooth basis vector fields. Assume that U b M
is a compactly embedded neighborhood small enough such that

1) θu(BE(0, ru)) ⊃ U for all u ∈ U ;
2) U ⊂ GuM for all u ∈ U ;
3) θ̂uv (BE(0, ru,v)) ⊃ U for all u, v ∈ U ;
4) U b O, where O is a neighborhood from Theorem 2.3.

Suppose that Box(u, ε) ⊂ U . Then for any points v, w ∈ Box(u, ε) the fol-
lowing relation is valid:

|d∞(v, w)− du∞(v, w)| =

{
O(ε

1+
min{αl1,1}

lM ), {Xi}Ni=1 ∈ C1,α, α > 0,

o(ε), {Xi}Ni=1 ∈ C1,
(2.6)

as ε→ 0, and if u′ ∈ Box(u, ε) then

|du′∞(v, w)− du∞(v, w)| =

{
O(ε

1+
min{αl1,1}

lM ), {Xi}Ni=1 ∈ C1,α, α > 0,

o(ε), {Xi}Ni=1 ∈ C1,

as ε→ 0.
Moreover, o(1) and O(1) are uniform in u ∈ W, where W b U , and in

v, w, u′ ∈ Box(u, ε) b U .

Proofs of these two theorems are similar to those in [26] with the new
notions of weights.
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3. Main result

The goal of this section is to prove the following geometric property of
weighted Carnot — Carathéodory spaces.

Theorem 3.1. Let M be a weighted Carnot–Carathéodory space with C1,α-
smooth, α > 0, or C1-smooth basis vector fields. Then for each point of M,
there exists a sufficiently small neighborhood U b M such that

1) θu(BE(0, ru)) ⊃ U for all u ∈ U ;
2) U ⊂ GuM for all u ∈ U ;
3) θ̂uv (BE(0, ru,v)) ⊃ U for all u, v ∈ U ;
4) U b O, where O is a neighborhood from Theorem 2.3.

Moreover, this neighborhood U possesses the following property: for u, v ∈
U and w = γ(1) and ŵ = γ̂(1), where γ, γ̂ : [0, 1] → M are absolutely
continuous (in the classical sense) curves contained in Box(u, ε) such that

γ̇(t) =

N∑
i=1

bi(t)Xi(γ(t)), γ(0) = v, and ˙̂γ(t) =

N∑
i=1

bi(t)X̂
u
i (γ(t)), γ̂(0) = v,

and each measurable function bi(t) meets the property

1∫
0

|bi(t)| dt < SεwgtXi , (3.1)

S <∞, i = 1, . . . , N , we have

max{d∞(w, ŵ), du∞(w, ŵ)} =

{
O(ε

1+
min{αl1,1}

lM ), {Xi}Ni=1 ∈ C1,α, α > 0,

o(ε), {Xi}Ni=1 ∈ C1,

with O(1) and o(1) to be uniform in u ∈ U and all collections of functions
{bi(t)}Ni=1 with the property (3.1) as ε→ 0.

Proof. Consider the case of C1,α-smooth fields, α > 0. The arguments for
the case of C1-smooth vector fields are similar.

Apply the normal coordinates θ−1u with respect to the point u to curves
γ and γ̂. To simplify notation, we set the field Dθ−1u 〈Xi〉 to be equal Yi and
denote Dθ−1u 〈X̂u

i 〉 by Ŷ u
i , i = 1, . . . , N . We also set γu(t) = θ−1u (γ(t)) and

γ̂u(t) = θ−1u (γ̂(t)) Let us rewrite the tangent vector to the curve γu at the
point γu(t) as

N∑
i=1

bi(t)Yi(γu(t)) =

=
N∑
i=1

bi(t)Ŷ
u
i (γu(t)) +

N∑
i=1

bi(t)
( N∑
j=1

[aui,j(γu(t))− δij ]Ŷ u
j (γu(t))

)
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The tangent vector to the curve δu(t) = γ̂u(1) + γu(t) − γ̂u(t), which joins
γu(1) and γ̂u(1), can be written as

δ̇u(t) =

=
N∑
i=1

bi(t)[Ŷ
u
i (γu(t))−Ŷ u

i (γ̂u(t))]+
N∑
i=1

bi(t)
( N∑
j=1

[aui,j(γu(t))−δij ]Ŷ u
j (γu(t))

)

=

N∑
i=1

bi(t)[Ŷ
u
i (γu(t))−Ŷ u

i (γ̂u(t))]+

N∑
j=1

( N∑
i=1

bi(t)[a
u
i,j(γu(t))−δij ]

)
Ŷ u
j (γu(t)),

where the coefficients {aui,j}Ni,j=1 coincide with those in (2.5). Taking into
account the coordinate representations of the vector fields {Ŷ u

i }Ni=1 (see The-
orem 2.2) we obtain the following ODE system for 1 ≤ k ≤ dimH1:

[δ̇u]k(t) =

dimH1∑
j=1

N∑
i=1

bi(t)[a
u
i,j(γu(t))− δij ]δkj .

What has been said above and the estimate |aui,j(γu(t)) − δij | = O(εl1) for
j ≤ dimH1 (see Theorem 2.3) imply

|[δu]k(t)− [δu]k(0)| ≤
1∫

0

dimH1∑
j=1

N∑
i=1

|bi(τ)|[|aui,j(γu(τ))− δij |] dτ = O(ε2l1)

t ∈ [0, 1]. Next, for dimH1 < k ≤ dimH2 we have

[δ̇u]k(t) =

dimH1∑
i=1

∑
|µ|h=l2−l1

bi(t)F
k
µ,ei(u)[γu(t)µ − γ̂u(t)µ]

+

dimH1∑
j=1

( N∑
i=1

bi(t)[a
u
i,j(γu(t))− δij ]

) ∑
|µ|h=l2−l1

F kµ,ej (u)γu(t)µ

+

dimH2∑
j=dimH1+1

N∑
i=1

bi(t)[a
u
i,j(γu(t))− δij ]δkj .

Note that in the first sum the multi-index µ may consist of more than one
element. Numbers of all these elements do not exceed dimH1, thus, we can
use the previous estimate: if µ = (µ1, . . . , µs, 0, . . . , 0) then

|γu(t)µ − γ̂u(t)µ| =
∣∣∣ ∏
k≤dimH1

(γ̂u(t)k + Skε
2l1)µk −

∏
k≤dimH1

(γ̂u(t)k)
µk
∣∣∣

≤ S0ε
2l1+

(dimH1∑
k=1

µk−1
)
·l1

= S0ε
l2−l1+l1 = S0ε

l2 .
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Next, taking into account the facts that δu(t)−δu(0) = γu(t)−γ̂u(t) and that,
by Theorem 2.3, in the last sum we have |aui,j(γu(t))| = O(εl2−l1+min{αl1,1})

for wgtXi = 1 and |aui,j(γu(t)) − δij | = O(εl1) for wgtXi ≥ 2, similarly to
previous cases we have O(εl1) in the middle sum, and finally we obtain

|[δu]k(t)− [δu]k(0)| = O(εmin{αl1,1}+l2), t ∈ [0, 1].

Arguing by induction, we suppose that we have proved the inequality

|[δu]k(t)− [δu]k(0)| = O(εmin{αl1,1}+lr),

for dimHr−1 < k ≤ dimHr, r = 3, . . . , Q − 1, t ∈ [0, 1]. Then, using this
assumption and the preceding estimates, we obtain the following relation for
dimHQ−1 < k ≤ dimHQ:

[δ̇u]k(t) =

dimHQ−1∑
i=1

∑
|µ|h=lQ−wgtXi

bi(t)F
k
µ,ei(u)[γu(t)µ − γ̂u(t)µ]

+

dimHQ−1∑
j=1

( N∑
i=1

bi(t)[a
u
i,j(γu(t))− δij ]

) ∑
|µ|h=lQ−wgtXj

F kµ,ej (u)γu(t)µ

+

dimHQ∑
j=dimHQ−1+1

N∑
i=1

bi(t)[a
u
i,j(γu(t))− δij ]. (3.2)

From our assumption and by the standard arguments (see, e.g. [26]) it follows
that in the first sum for all µ with |µ|h = lQ − degXi we have

|γu(t)µ − γ̂u(t)µ| = O(εmin{αl1,1}+|µ|h) = O(εmin{αl1,1}+lQ−wgtXi).

Next, in the last sum in (3.2) we have

|ai,j(γu(t))− δij | = O(εlQ−wgtXi+min{αl1,1})

for wgtXi < lQ. If wgtXi ≥ lQ then |ai,j(γu(t))− δij | = O(εl1). Finally, in
the middle sum in (3.2) for wgtXj > wgtXi we obtain

|ai,j(γu(t))γu(t)µ| = O(εlQ−wgtXi+min{αl1,1}).

For wgtXj ≤ wgtXi we have |[ai,j(γu(t)) − δij ]γu(t)µ| = O(εlQ−wgtXj+l1).
This implies the following estimate for |[δu]k(t)− [δu]k(0)|:
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|[δu]k(t)− [δu]k(0)| = O(εlQ−wgtXi+min{αl1,1})

dimHQ−1∑
i=1

1∫
0

|bi(τ)| dτ

+

dimHQ−1∑
j=1

O(εlQ−wgtXj+l1)
∑

i: wgtXi≥wgtXj

1∫
0

|bi(τ)| dτ

+O(εlQ−wgtXi+min{αl1,1})
∑

i:wgtXi<wgtXj

1∫
0

|bi(τ)| dτ

+O(εlQ−wgtXi+min{αl1,1})
∑

i: wgtXi<lQ

1∫
0

|bi(τ)| dτ

+O(εl1)
∑

i: wgtXi≥lQ

1∫
0

|bi(τ)| dτ = O(εlQ+min{αl1,1}).

Let us estimate du∞(γu(1), γ̂u(1)). Recall that δu(t) = γ̂u(1)+γu(t)−γ̂u(t),
[δu(t)]k − [δu(0)]k = [γu(t)]k − [γ̂u(t)]k, k = 1, . . . , N , and the coordinates
of {[γu(1)]k}Nk=1 and {[γ̂u(1)]l}Nl=1 with respect to zero in the system {Ŷ u

i }
coincide with Cartesian ones. To obtain our estimate, we apply the group

operation in GuM: if γu(1) = exp
( N∑
i=1

wiŶ
u
i

)
(γ̂u(1)) then

wi = [δu(1)]i − [δu(0)]i

+
∑

|µ+β+ek+el|h=wgtXi

Giµ,β,ek,el(u)γu(1)µγ̂u(1)β([γu(1)]k[γ̂u(1)]l−[γu(1)]l[γ̂u(1)]k).

We have |[δu(1)]i − [δu(0)]i| = O(εwgtXi+min{αl1,1}) and

|[γu(1)]k[γ̂u(1)]l − [γu(1)]l[γ̂u(1)]k|
≤ |[γu(1)]k| · |[γ̂u(1)]l − [γu(1)]l|+ |[γu(1)]l| · |[γu(1)]k − [γ̂u(1)]k|.

Therefore,

|wi|=O(εwgtXi+α)+O(ε|µ+β|h+wgtXk+wgtXl+min{αl1,1})=O(εwgtXi+min{αl1,,1}).

This implies du∞(γu(1), γ̂u(1)) = O(ε
1+

min{αl1,1}
lM ). Hence, the same estimate

holds for w = γ(1) and ŵ = γ̂(1). Next, we apply the arguments from
Remark 3.1 (they are similar to those in the remark after [25, Theorem 9])
and deduce

d∞(γ(1), γ̂(1)) = O(ε
1+

min{αl1,1}
lM ).

Since all the coefficients at O(1) are uniform on U , then so do O(1) in both
estimates. The theorem follows. 2
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Corollary 3.1. Let M be a weighted Carnot–Carathéodory space with C1,α-
smooth, α > 0, or C1-smooth basis vector fields. For each point of M, there
exists a sufficiently small neighborhood U b M such that

1) θu(BE(0, ru)) ⊃ U for all u ∈ U ;
2) U ⊂ GuM for all u ∈ U ;
3) θ̂uv (BE(0, ru,v)) ⊃ U for all u, v ∈ U ;
4) U b O, where O is a neighborhood from Theorem 2.3.

Moreover, for u, u′, v ∈ U such that d∞(u, u′) ≤ Cε for some 0 < C < ∞,
and points w = γ(1) and ŵ = γ̂(1), where γ, γ̂ : [0, 1] → M are absolutely
continuous (in the classical sense) curves lying in Box(u, ε) such that

γ̇(t)=

N∑
i=1

bi(t)X̂
u′
i (γ(t)), γ(0) = v, and ˙̂γ(t) =

N∑
i=1

bi(t)X̂
u
i (γ(t)), γ̂(0) = v,

and (3.1) holds, we have

max{du′∞(w, ŵ), du∞(w, ŵ)} =

{
O(ε

1+
min{αl1,1}

lM ), {Xi}Ni=1 ∈ C1,α, α > 0,

o(ε), {Xi}Ni=1 ∈ C1,

with O(1) and o(1) to be uniform in u ∈ U and all collections of functions
{bi(t)}Ni=1 with the property (3.1) as ε→ 0.

Remark 3.1. Note that statements of Theorem 2.6 follow directly from
Theorem 2.3 only for C1-smooth vector fields. If the basis vector fields
belong to the class C1,α, α > 0, then the scheme is the following. First of
all, we obtain the estimate of du∞ in Theorem 3.1, and the same estimate
for the particular case of constant functions bi, i = 1, . . . , N . After that we
apply the scheme of proof of Local Approximation Theorem from [23] and
derive all estimates in Theorem 2.6. Finally, we use it for the estimate of d∞
from Theorem 3.1.

Remark 3.2. The following sharper result is true. Let M be a weighted
Carnot–Carathéodory space with C1,α-smooth basis vector fields, α ∈ (0, 1].
For each w ∈ M, there exists a neighborhood O 3 w, O b M, such that for
u, x ∈ O the representations

Xq(∆
u
εx) =

N∑
p=1

auq,p(∆
u
εx)X̂u

p (∆u
εx),

where

auq,p(∆
u
εx)=


O(εl1), wgtXp<wgtXq,

δpq +O(εl1), wgtXp=wgtXq,

O(εmax{l1,min{αl1,1}+wgtXp−wgtXq}), wgtXp>wgtXq

hold, q = 1, . . . , N , and the above estimates are uniform on O.
This assertion is convenient for the cases where l1 is much bigger than

lM − l1.
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