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1. Introductory remarks

In this paper, we continue investigation of properties of mappings with con-
trolled p-module. The main characterization of these mappings requires ex-
tension of underlying quasiinvariance property of p-moduli (of appropriate
order) under quasiconformal and quasiisomertic mappings. This approach
involves the integral restrictions for the growth of moduli of families of curves
of type

Mp(f(Γ(S1, S2, A))) ≤
∫
A

Q(x) ηp(|x− x0|) dm(x). (1.1)

Here the test subdomains A ⊂ G are spherical rings A = A(r1, r2, x0) =
{x ∈ G : r1 < |x − x0| < r2}, 0 < r1 < r2 < r0 := dist (x0, ∂G), and η is
arbitrary measurable function η : (r1, r2)→ [0,∞] such that

r2∫
r1

η(r)dr ≥ 1, (1.2)

and Q : G → [0,∞] is a given measurable function. The point x0 is fixed
in G.
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The mappings satisfying (1.1) are called ring (p,Q)-mappings at the point
x0. We also say that a mapping is ring (p,Q)-mapping in the domain G if it
is ring (p,Q)-mapping at any x0 ∈ G. The study of such homeomorphisms
was started in [9]; on their differential and geometric properties see [10], [12].
Such mappings in Rn are close to bilipschitz mappings (see e.g. [8], [28],
[30]). Note also that right-hand side in (1.1) can be treated as a weighted p-
module; cf. [1], [32], [5]. For the study of mappings admitting close modular
descriptions, we also refer to [2], [3], [6], [16], [18], [23], [25], [33], [34].

The p-module (p ≥ 1) of a family Γ of curves in Rn, n ≥ 2, is defined by

Mp(Γ) = inf
%∈adm Γ

∫
Rn

%p(x) dm(x) , (1.3)

where the infimum is taken over all Borel functions % : Rn → [0,∞] with∫
γ

%(x) |dx| ≥ 1, ∀ γ ∈ Γ;

such % are called admissible for Γ (abbr. % ∈ adm Γ). Here m stands for
n-dimensional Lebesgue measure in Rn.

It is known that homeomorphisms f : G → Rn of a domain G ∈ Rn
(n ≥ 2) admitting quasiinvariance of p-module for n− 1 < p < n, i.e. such
that

K−1Mp(Γ) ≤ Mp(f(Γ)) ≤ KMp(Γ), (1.4)

are lipschitzian which means that

lim sup
x→x0

|f(x)− f(x0)|
|x− x0|

≤ C for all x0 ∈ G.

It was established in [8] that, in fact, it suffices to apply only the right-hand
side in (1.4) and take the constant C = K1/(n−p).

We consider much more general class of open discrete mappings satis-
fying (1.4) in some integral sense and establish for those the logarithmic
version of the classical Hölder’s continuity,

lim sup
x→x0

|f(x)− f(x0)|
(

log
1

|x− x0|

)α
≤ C, α > 0. (1.5)

Clearly, any Hölder continuous mapping with a positive exponent satisfies
(1.5). Thus, the inequality (1.5) provides a natural extension of the Hölder
continuity and can be regarded as a logarithmic Hölder continuity.

For many questions concerning quasiconformal mappings and their gen-
eralizations it would be interesting to have criteria for the Lipschitz or Hölder
continuity or giving more general regularity conditions in a prescribed point
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or on a given set; see, e.g. [14], [15], [17], [20], [30]. Our main results state
that for every n−1 < p < n and any locally integrable Q with the exponent
exceeding n/(n− p) the corresponding mapping is Hölder continuous while
for the degree n/(n − p) it is logarithmically Hölder continuous. An illus-
trative example shows that the degree n/(n− p) cannot be reduced without
additional restrictions of the majorant. Other results concern the equiconti-
nuity and normality of the mapping families. In particular, it is established
that a family of mappings of finite distortion from the Orlicz-Sobolev class
is eqicontinuous and normal.

2. p-capacity of condensers and related estimates

We need some basic definitions and auxiliary results.

2.1. p-capacity

Recall that a pair E = (A, C) , where A is an open set in Rn, and C is a
compact subset of A, is called condenser in Rn. A quantity

capp E = capp (A, C) = inf
u∈W0(E)

∫
A

|∇u|p dm(x) ,

where W0(E) = W0 (A, C) is a family of all nonnegative absolutely contin-
uous on lines (ACL) functions u : A → R with compact support in A and
such that u(x) ≥ 1 on C, is called p-capacity of the condenser E .

For the general properties of p-capacities and their relation to the map-
ping theory, we refer, e.g. to [13] and [24]. In particular, when 1 < p < n,

capp E ≥ nΩ
p
n
n

(
n− p
p− 1

)p−1

[m(C)]
n−p
n , (2.1)

where Ωn denotes the volume of the unit ball in Rn, and m(C) is the n-
dimensional Lebesgue measure of C.

Another lower estimate of p-capacity of a condenser E = (A,C) in Rn is
given by

capp E = capp (A,C) ≥
(
c1

(d(C))p

(m(A))1−n+p

) 1
n−1

, p > n− 1, (2.2)

where c1 depends only on n and p and d(C) denotes the diameter of C (see
[21, Proposition 6]).

A curve γ in Rn (Rn ) is a continuous mapping γ : ∆→ Rn (Rn ), where
∆ is an interval in R. Its locus γ(∆) is denoted by |γ|. Let Γ be a family of
curves γ in Rn. The p-module of the family Γ is defined by (1.3). For the
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basic features of Mp(Γ), we refer to [33, 6.1]; see also [34], [25]. Here we
recall only some of them.

If adm Γ = ∅ we set Mp(Γ) = ∞. Note that Mp(∅) = 0; Mp(Γ1) ≤

Mp(Γ2) whenever Γ1 ⊂ Γ2, and moreover Mp

( ∞⋃
i=1

Γi

)
≤
∞∑
i=1
Mp(Γi) (see

[33, Theorem 6.2]).

We say that Γ1 is minorized by Γ2 and write Γ2 < Γ1 if every γ ∈ Γ1

has a subcurve which belongs to Γ2. The relation Γ2 < Γ1 implies that
adm Γ2 ⊂ adm Γ1 and therefore Mp(Γ1) ≤Mp(Γ2).

Let E0, E1 are two sets in D ⊂ Rn. Denote by Γ(E0, E1, D) a family of
al curves joining E0 and E1 in D. For such families, we need the following
statement given in [25, Proposition 10.2, Ch. II].

Proposition 2.1. Let E = (A, C) be a condenser in Rn and let ΓE be
the family of all curves of the form γ : [a, b) → A with γ(a) ∈ C and
|γ| ∩ (A \ F ) 6= ∅ for every compact F ⊂ A. Then capq E =Mq (ΓE) .

Note that Proposition 2.1 allows us to give a natural extension of p-
capacity of a condenser E ⊂ Rn by capq E =Mq (ΓE) .

2.2. Upper bound for p-capacity

Denote B(x0, r) = {x ∈ Rn : |x− x0| < r} and let Bn = B(0, 1). For any
Lebesgue measurable function Q : G→ [0,∞] one can define (for almost all
r > 0) the mean

qx0(r) =
1

ωn−1rn−1

∫
S(x0,r)

Q(x) dHn−1 ,

where S(x0, r) = {x ∈ Rn : |x − x0| = r} and Hn−1 denotes the (n − 1)-
dimensional Hausdorff measure.

For a spherical ring A(x0, r1, r2) centered at x0 with radii r1 and r2,
denote

I = I(x0, r1, r2) =

r2∫
r1

dr

r
n−1
p−1 q

1
p−1
x0 (r)

. (2.3)

A necessary and sufficient condition for a discrete open mapping f to be
ring Q-mapping with respect to p-module is given by

Proposition 2.2. (see [31]) Let G be a domain in Rn, let Q : G → [0, ∞]

be a locally integrable function in G and let E =
(
B(x0, r2), B(x0, r1)

)
,

0 < r1 < r2 < dist (x0, ∂D) be a condenser. An open discrete mapping
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f : G→ Rn is ring (p,Q)-mapping at a point x0 ∈ G if and only if for any
0 < r1 < r2 < d0 = dist (x0, ∂G), the following inequality

capp f(E) ≤ ωn−1

Ip−1

holds, where I is defined by (2.3).

Note that the minimum of the integrals in (1.1) among η satisfying (1.2)
is attained on the metric

η0(r) =
1

Ir
n−1
p−1 q

1
p−1
x0 (r)

.

2.3. Equicontinuity and normality

Let f : G → Rn be a discrete open mapping, β : [a, b) → Rn be a curve,
and x ∈ f−1 (β(a)) . A curve α : [a, c)→ G is called a maximal f -lifting of
β starting at x, if (1) α(a) = x ; (2) f ◦ α = β|[a, c); (3) for c < c′ ≤ b,
there is no curves α′ : [a, c′)→ G such that α = α′|[a, c) and f ◦α ′ = β|[a, c′).
The assumption on f yields that every curve β with x ∈ f −1 (β(a)) has a
maximal f -lifting starting at x (see [25, Corollary II.3.3], [22, Lemma 3.12]).

Let (X, dX) and (Y, dY ) be two metric spaces with distances dX and
dY , respectively. A family F of continuous mappings f : X → Y is called
equicontinuous at a point x0 ∈ X if for every ε > 0 there is δ > 0 such that
dY (f(x), f(x0)) < ε for all f ∈ F and any x ∈ X provided that dX(x, x0) <
δ. The family F is called equicontinuous in X if F is equicontinuous for
every x0 ∈ X.

We define the chordal metric h in Rn by

h(x,∞) =
1√

1 + |x|2
, h(x, y) =

|x− y|√
1 + |x|2

√
1 + |y|2

, x 6=∞ 6= y ,

and the chordal diameter of a set E ⊂ Rn by

h(E) = sup
x ,y ∈E

h(x, y) , (2.4)

(see, e.g. [34]), and set (X, dX) = (G, | · |) and (Y, dY ) =
(
Rn, h

)
. Here G

is a domain in Rn, | · | and h denote the Euclidean and chordal metrics,
respectively.

The following notion is closely related to equicontinuity. A family F is
called normal if for any sequence {fm} of continuous mappings fm : X → Y
there exists a subsequence {fmk} that converges uniformly on each compact
set E ⊂ X.

The following well-known Ascoli’s theorem provides a sufficient condition
for an equicontinuous family F to be normal; see e.g. [33], [26].
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Proposition 2.3. If T is a separable topological space and Y is a compact
metric space, then every equicontinuous family F of mappings f : T → Y is
a normal family.

3. Distortion estimates for integrable majorant

One of the interesting problems in geometric function theory is to find
the conditions insuring the Hölder continuity of mappings. For the Q-
homeomorphisms with respect to conformal module, Q of BMO-class (boun-
ded mean oscillation), FMO-class (finite mean oscillation) and Lα see, e.g.
[23].

In this section we impose only integrability conditions on the majorant
Q in a domain G and establish that Q ∈ Lαloc(G) with an exponent α <
n/(n−p) implies the Hölder continuity of open discrete ring (p,Q)-mappings
with degree 1−n/(n−p)α. When Q is locally integrable with the exponent
n/(n−p), one can derive a stronger inequality. As was mentined above, this
kind of continuity can be regarded as a logarithmic Hölder continuity.

Denote as usual for α > 0,

‖Q‖α =

 ∫
B(x,δ)

Qα(x) dm(x)


1
α

. (3.1)

Theorem 3.1. Let G a domain in Rn, n ≥ 2, and x ∈ G. Let f : G→ Rn be
an open discrete ring (p,Q)-mapping at x0, n−1 < p < n, with Q(x) ∈ Lαloc,
α > n

n−p . Then for any pair of points x, x0 ∈ G such that |x − x0| < δ,

δ = 1
4dist (x0, ∂G), the following inequality holds

|f(x)− f(x0)| ≤ λp‖Q‖
1

n−p
α |x− x0|1−

n
α(n−p) , (3.2)

with a constant λp depending only on n, p and α.

Proof. Consider a spherical ring A = A(x0, ε1, ε2) centered at x0 ∈ G
and radii ε1, ε2, 0 < ε1 < ε2 < δ, such that A(x0, ε1, ε2) ⊂ G. Then

E =
(
B (x0, ε2) , B (x0, ε1)

)
and f(E) =

(
f(B (x0, ε2)), f(B (x0, ε1))

)
are

both condensers located in G and G∗, respectively. By Proposition 2.1,

capp f(E) =Mp(Γf(E)) ,

where Γf(E) stands for a family of curves described in this statement. Let Γ ∗

be a family of all maximal liftings of Γf(E) starting in B (x0, ε1) . Note that
Γ ∗ ⊂ ΓE and ΓE > Γ(S(x0, ε1), S(x0, ε2 − ε), A(x0, ε1, ε2)) for sufficiently
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small ε > 0. Now for every measurable function η : [ε1, ε2 − ε] → [0,∞]
satisfying

ε2−ε∫
ε1

η(r)dr ≥ 1 , (3.3)

the inequality (1.1) and Proposition 2.1 yield

capp f(E) ≤
∫

A(x0,ε1,ε2)

Q(x) · ηp(|x− x0|)dm(x) . (3.4)

The function

η(t) =

{ 1
ε2−ε−ε1 , t ∈ [ε1, ε2 − ε],
0, t /∈ [ε1, ε2 − ε],

satisfies (3.3) and by (3.4),

capp f(E) ≤ 1

(ε2 − ε1 − ε)p

∫
A(x0,ε1,ε2)

Q(x) dm(x) .

Letting ε→ 0, one obtains

capp f(E) ≤ 1

(ε2 − ε1)p

∫
A(x0,ε1,ε2)

Q(x) dm(x) ,

and by the Hölder inequality,

capp f(E) ≤ (Ωnε
n
2 )

α−1
α

(ε2 − ε1)p
‖Q‖α. (3.5)

Choosing ε1 = 2ε and ε2 = 4ε, one gets the upper bound for p-capacity

capp (f(B(x0, 4ε)), f(B(x0, 2ε)) ≤ γ1‖Q‖αε
αn−αp−n

α . (3.6)

On the other hand, one can derive from the inequality (2.1) the following
lower bound

capp (f(B(x0, 4ε)), f(B(x0, 2ε)) ≥ γ2 [m(f(B(x0, 2ε)))]
n−p
n , (3.7)

where γ2 is a positive constant depending only on p and n. Combining the
estimates (3.6) and (3.7), one gets the upper bound for the image of the ball
B(x0, 2ε),

m(f(B(x0, 2ε))) ≤ γ3‖Q‖
n
n−p
α ε

(αn−αp−n)n
α(n−p) , (3.8)

where γ3 is also a constant depending only on p and n.
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Now, letting in (3.5) ε1 = ε and ε2 = 2ε, one obtains

capp (f(B(x0, 2ε)), f(B(x0, ε))) ≤ γ4‖Q‖αε
αn−αp−n

α , (3.9)

and after applying the lower bound (2.2),(
capp (f(B(x0, 2ε)), f(B(x0, ε))

)n−1
≥ γ5

dp(f(B(x0, ε))

mp−1(f(B(x0, 2ε)))
. (3.10)

The inequalities (3.8), (3.9) and (3.10) result in

d(f(B(x0, ε)) ≤ γ‖Q‖
1

n−p
α ε

1− n
α(n−p)

with a constant γ depending only on p, α and n.
Now the desired estimate (3.2) follows from the obvious inequality

d(f(B(x0, ε))) ≥ |f(x)− f(x0)| for x ∈ S(x0, ε).

2

Theorem 3.2. Let G be a domain in Rn, n ≥ 2, and x0 ∈ G. Suppose

Q ∈ L
n
n−p
loc . Then for every open discrete ring (p,Q)-mapping f : G→ Rn at

x0, n− 1 < p < n, the following estimate

|f(x)− f(x0)|
(

log
1

|x− x0|

) p(n−1)
n(n−p)

≤ Cn,p ‖Q‖
1

n−p
n
n−p

, |x− x0| < r0,

holds for any x ∈ G provided that |x−x0| < δ = min{1,dist4(x0, ∂G)}; here
Cn,p is a positive constant depending only on n and p.

Proof. Consider a spherical ring A(x0, ε1, ε2) = {x : ε1 < |x − x0| <
ε2} with radii 0 < ε1 < ε2 such that A(x0, ε1, ε2) ⊂ G. Since E =(
B (x0, ε2) , B (x0, ε1)

)
is a condenser, (3.4) yields

capp f(E) ≤
∫

A(x0,ε1,ε2)

Q(x) · ηp(|x− x0|)dm(x)

for any η : [ε1, ε2 − ε] → [0,∞] obeying (3.3). Obviously, for sufficiently
small ε > 0, the function

η(t) =

{
1

t log
ε2−ε
ε1

, if t ∈ (ε1, ε2 − ε),

0, otherwise

satisfies (3.3); hence,

capp f(E) ≤ log−p
ε2 − ε
ε1

∫
A(x0,ε1,ε2)

Q(x)

|x− x0|p
dm(x) . (3.11)
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Letting in (3.11) ε→ 0, one gets

capp f(E) ≤ log−p
ε2

ε1

∫
A(x0,ε1,ε2)

Q(x)

|x− x0|p
dm(x) .

After applying to the integral in the right-hand side the Hölder inequal-
ity, one gets

capp f(E) ≤ log−p
ε2

ε1

 ∫
B(x0,r0)

Q
n
n−p (x) dm(x)


n−p
n
 ∫
A(x0,ε1,ε2)

dm(x)

|x− x0|n


p
n

,

and since
∫

A(x0,ε1,ε2)

dm(x)
|x−x0|n = ωn−1 log(ε2/ε1),

capp f(E) ≤ ω
p
n
n−1

 ∫
B(x0,r0)

Q
n
n−p (x) dm(x)


n−p
n

log
p(1−n)
n

ε2

ε1
(3.12)

Choosing ε1 = ε and ε2 =
√
ε, we have

capp f(E) ≤ C1

 ∫
B(x0,r0)

Q
n
n−p (x) dm(x)


n−p
n

log
p(1−n)
n

1

ε
(3.13)

with C1 depending only on p.

On the other hand, from (2.2),

(
capp (f(B(x0,

√
ε)), f(B(x0, ε)))

)n−1
≥ C2

dp(f(B(x0, ε)))

mp−n+1(f(B(x0,
√
ε)))

,

(3.14)
where C2 is a positive constant depending only on p and n.

Now, combining (3.13) and (3.14), we have

dp(f(B(x0, ε)))

mp−n+1(f(B(x0,
√
ε)))

≤ C3

 ∫
B(x0,r0)

Q
n
n−p (x) dm(x)


n−p
n

log−
p(1−n)2

n
1

ε
.

(3.15)

To find an upper bound for m(f(B(x0,
√
ε))) in (3.15), pick in (3.12)

ε1 =
√
ε and ε2 = 4

√
ε. Then one derives
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capp(f(B(x0,
4
√
ε)), f(B(x0,

√
ε)))

≤ C4

 ∫
B(x0,r0)

Q
n
n−p (x) dm(x)


n−p
n

log
p(1−n)
n

1

ε
. (3.16)

The capacity in the left-hand side of (3.16) is estimated by (2.1)

capp(f(B(x0,
4
√
ε)), f(B(x0,

√
ε))) ≥ C5

[
m(f(B(x0,

√
ε)))

]n−p
n ; (3.17)

here C5 depends only on p and n. Combining (3.16) and (3.17), we derive
the desired estimate

m(f(B(x0,
√
ε))) ≤ C6

(
log

1

ε

) p(1−n)
n−p

∫
B(x0,r0)

Q
n
n−p (x) dm(x)

with a constant C6 depending only on p and n.

Substituting this into (3.15), one obtains the estimate

d(f(B(x0, ε)))

(
log

1

ε

) p(n−1)
n(n−p)

≤ Cp,n

 ∫
B(x0,r0)

Q
n
n−p (x) dm(x)


1
n

which implies

|f(x)− f(x0)|
(

log
1

|x− x0|

) p(n−1)
n(n−p)

≤ d(f(B(x0, ε)))

(
log

1

ε

) p(n−1)
n(n−p)

≤ Cp,n ‖Q‖
1

n−p
n
n−p

,

where ‖Q‖ n
n−p

is the norm (3.1) defined over B(x0, r0) and Cp,n is a positive

constant depending only on p and n. 2

The lower bound for the exponent, namely α = n/(n − p), is sharp in
the following sense: this degree n/(n − p) can be reduced only by adding
more restrictions on the majorant Q. This will be illustrated in the following
example and in the next section.

Fix any p, n− 1 < p < n, consider a mapping f : Bn → Bn, defined by

f(x) =
x

|x|

(
1 +

n− p
p− 1

log
1

|x|

)− p−1
n−p

, x 6= 0, and f(0) = 0. (3.18)
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We show that f is a ring (p,Q)-homeomorphism at the origin with Q(x) =
|x|p−n. Using the spherical coordinates (ρ, ψi) and (r, ϕi), i = 1, . . . , n − 1,
for the image and the inverse image, respectively, one can rewrite (3.18) by

f(x)=

{
ρ=

(
1+

n− p
p− 1

log
1

r

)− p−1
n−p

, ψi = ϕi, 0<r<1, 0≤ ϕi<2π

}
, f(0) = 0.

The p-inner dilatation of this mapping can be calculated similar to [11], and
one obtains that this dilatation coefficient is equal to rp−n. Thus by [11,
Theorem 4.1 ], Q(x) = |x|p−n. On the other hand, a direct calculation yields

lim
x→0
|f(x)|

(
log

1

|x|

) p−1
n−p

=

(
p− 1

n− p

) p−1
n−p

.

This shows that the mapping f is neither Hölder continuous with any ex-
ponent α nor logarithmically Hölder continuous with the exponent p(n −
1)/n(n− p), because

p− 1

n− p
<

p(n− 1)

n(n− p)
,

and, moreover, the estimate given by Theorem 3.2 is sharp in the order.

The questions concerning equicontinuity and normality of various classes
of mappings are of a special interest. For the classical quasiconformal map-
pings we refer to [33], for more general mappings quasiconformal in the mean
see [26] (cf. [23]).

Theorem 3.3. Let G and G∗ be two domains in Rn, n ≥ 2, and let FQ be
a family of open discrete ring (p,Q)-mappings f : G → G∗ at x0, n − 1 <
p < n, with Q(x) ∈ Lα(G), α ≥ n

n−p . Then the family FQ is equicontinuous
at x0.

This theorem follows from Theorems 3.1 and 3.2.

Corollary 3.1. Let FQ be a family of all open discrete ring (p,Q)-mappings
f : G → G∗ in G, n − 1 < p < n, with Q(x) ∈ Lα(G), α ≥ n

n−p . Then the
family FQ is normal.

Here f is assumed to be a mapping between metric spaces (X, dX) :=
(G, | · |) and (Y, dY ) =

(
Rn, h

)
, where G is a domain in Rn, and | · | and h

stand for Euclidean metric in Rn and chordal metric in Rn, respectively.

Observe, that the assumption α ≥ n/(n−p) is essential. Indeed, the fol-
lowing theorem shows that reducing this lower bound cannot insure equicon-
tinuity.
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Theorem 3.4. Given ε ∈ (0, n/(n− p)) , there exist a function Q = Qε :
Bn → [0,∞] and a sequence of bounded ring (p,Q)-homeomorphisms fm :

Bn → Rn at x0 = 0 such that Q ∈ L
n
n−p−ε(Bn) and fm is not equicontinuous

at x0 = 0.

Proof. For a given 0 < α < 1, we set

Q(x) =
1

|x|(α−1)(p−1)+n−1
; (3.19)

then ∫
Bn

Qs(x)dm(x) <∞,

whenever s < n
(α−1)(p−1)+n−1 . Letting α → 0, one gets Q ∈ Ls for any s

sufficiently close to n/(n− p). This provides the integrability of Q with any
degree ε, 0 < ε < n/(n− p).

Now consider the sequence of homeomorphisms fm : Bn → Bn defined
by

fm(x) =
x

|x|
ϕm(|x|) , fm(0) = 0 , (3.20)

where

ϕm(s) =

1 +
n− p
p− 1

1∫
s

dt

t
n−1
p−1 q

1
p−1

0,m (t)


p−1
p−n

, p ∈ (1, n) , (3.21)

q0,m(r) :=
1

ωn−1rn−1

∫
|x|=r

Qm(x) dS ,

Qm(x) =

{
Q(x), |x| > 1/m ,

1 , |x| ≤ 1/m ,

To show that fm is a ring (p,Q)-homeomorphism at x0 = 0, pick arbitrary
r1, r2 ∈ R such that 0 < r1 < r2 < 1 and consider a condenser E =(
B(0, r2), B(0, r1)

)
. Clearly,

fm(E) =
(
B(0, ϕm(r2)), B(0, ϕm(r1))

)
also is a condenser for any m, and its p-capacity can be calculated by

cappfm(E) = ωn−1

(
p− 1

n− p

)1−p(
ϕ
p−n
p−1
m (r1)− ϕ

p−n
p−1
m (r2)

)1−p
, 1 < p < n,

(3.22)
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(cf. [8, p. 177]). Substituting the values of ϕm from (3.21) into (3.22) yields

cap pfm(E) = ωn−1/I
p−1 ,

where

I = I(r1, r2) =

r2∫
r1

dr

r
n−1
p−1 q

1
p−1

0 (r)

.

Hence, by Proposition 2.2, all fm are ring (p,Qm)-mappings at the origin,
and, therefore, they are (p,Q)-homeomorphisms. However,

|fm(xm)| =

1 +
n− p
p− 1

1∫
1/m

dt

t
n−1
p−1 q

1
p−1

0,m (t)


p−1
p−n

≥ σ > 0

for all m ∈ N and some σ > 0. Thus, fm is not equicontinuous at x0 = 0. 2

4. Distortion estimates for integrable majorant with additional
conditions

In this section we discuss the case when Q is locally integrable in a domain G
with a special behavior of the integral (2.3). The following theorem provides
a sufficient condition for (p,Q)-mappings to be equicontinuous at a prescribe
point.

Theorem 4.1. Let G and G∗ be two domains in Rn, n ≥ 2, and FQ be a
family of open discrete ring (p,Q)-mappings f : G→ G∗ at a point x0 ∈ G,
n− 1 < p < n. Assume that Q : G → [0, ∞] is a locally integrable function
in G such that lim

ε→0
I(x0, ε

2, ε) = ∞, where I(x0, r1, r2) is defined by (2.3).

Then the family FQ is equicontinuous at x0.

Proof. We start with estimating the n-Lebesgue measure of images of the

balls centered at x0. Consider a condenser E =
(
B (x0, ε2) , B (x0, ε1)

)
⊂ G.

By Proposition 2.2,

capp f(E) ≤ ωn−1Cx0
Ip−1(x0, r1, r2)

. (4.1)

Taking ε1 =
√
ε and ε2 = 4

√
ε, one gets

capp (f(B(x0,
4
√
ε)), f(B(x0,

√
ε))) ≤ ωn−1Cx0

Ip−1(x0,
√
ε, 4
√
ε)
. (4.2)

On the other hand, the inequality (2.1) yields

capp (f(B(x0,
4
√
ε)), f(B(x0,

√
ε))) ≥ Cn,p

[
m(f(B(x0,

√
ε)))

]n−p
n , (4.3)
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where Cn,p is a positive constant depending only on the dimension n and on
p.

Combining the inequalities (4.2) and (4.3), one derives the desired bound
for the volume of f(B(x0,

√
ε)),

m(f(B(x0,
√
ε))) ≤ αn,pC

n
n−p
x0

I
n(p−1)
n−p (x0,

√
ε, 4
√
ε)
. (4.4)

Here αn,p also is a positive constant depending only on n and p.

Letting in (4.1), ε1 = ε and ε2 =
√
ε, one gets

capp (f(B(x0,
√
ε)), f(B(x0, ε))) ≤

ωn−1Cx0
Ip−1(x0, ε,

√
ε)
, (4.5)

and using the lower estimate for p-capacity given by (2.2),

capp (f(B(x0,
√
ε)), f(B(x0, ε))) ≥

(
C̃n,p

dp(f(B(x0, ε)))

m1−n+p(f(B(x0,
√
ε)))

) 1
n−1

(4.6)
where C̃n,p depends on n p.

The estimates (4.5) and (4.6) result in(
C̃n,p

dp(f(B(x0, ε)))

m1−n+p(f(B(x0,
√
ε)))

) 1
n−1

≤ ωn−1Cx0
Ip−1(x0, ε,

√
ε)
.

Together with (4.4), this yields

d(f(B(x0, ε))) ≤
αn,pC

n−1
p

x0

I
(p−1)(n−1)

p (x0, ε,
√
ε)

 βn,pC
n
n−p
x0

I
n(p−1)
n−p (x0,

√
ε, 4
√
ε)


1−n+p

p

(4.7)

with some constants αn,p and βn,p depending on n and p. Letting ε→ 0, one
derives the assertion of Theorem 4.1 because both integrals in (4.7) tend to
∞. 2

Replacing the condition lim
ε→0

I(x0, ε
2, ε) = ∞ by a stronger one, e.g.

qx0(r) ≤ Cx0rp−n, one can obtain an explicit distortion estimate. This esti-
mate also provides the local logarithmic Hölder continuity of open discrete
ring (p,Q)-mappings. We present this as

Corollary 4.1. Let f : G → Rn be a discrete open ring (p,Q)-mapping at
x0 ∈ G, n− 1 < p < n, with Q ∈ L1

loc(G) satisfying

qx0(r) ≤ Cx0rp−n for a.a. r ∈ (0, r0), r0 ∈ (0,min{1, d0}). (4.8)
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Then

lim sup
x→x0

|f(x)− f(x0)|
(

log
1

|x− x0|

) p−1
n−p
≤ λn,pC

1
n−p
x0 , (4.9)

with a positive constant λn,p depending only on n and p.

Since by assumption qx0(r)≤Cx0rp−n for a.a. r ∈(0, r0), r0 ∈(0,min{1, d0}),
we obtain from (4.7) that

d(f(B(x0, ε))) ≤
λn,pC

1
n−p
x0(

log 1
ε

) p−1
n−p

.

Letting ε→ 0, one derives the estimate (4.9).

The automorphism of the unit ball Bn defined by (3.18) shows that the
estimate (4.9) is sharp with respect to the order.

5. On applications to Orlicz–Sobolev spaces

In this section we apply the results on normality obtained above to homeo-
morphic mappings which belong to the Orlicz-Sobolev classes.

5.1. p-module of surface families

Let S be a k-dimensional surface, which means that S : Ds → Rn is a
continuous image of an open set Ds ⊂ Rk. We denote by

N(S, y) = cardS−1(y) = card{x ∈ Ds : S(x) = y}

the multiplicity function of the surface S at the point y ∈ Rn. For a given
Borel set B ⊆ Rn (or, more generally, for a measurable set B with respect
to the k-dimensional Hausdorff measure Hk), the k-dimensional Hausdorff
area of B in Rn associated with the surface S is determined by

AS(B) = AkS(B) =

∫
B

N(S, y) dHky,

see [7, 3.2.1]. If ρ : Rn → [0,∞] is a Borel function, the integral of ρ over S
is defined by ∫

S

ρ dA =

∫
Rn

ρ(y)N(S, y) dHky.

Let Sk be a family of k-dimensional surfaces S in Rn, 1 ≤ k ≤ n − 1
(curves for k = 1). The p-module of Sk is defined by (1.3), where the
infimum is taken over all Borel measurable functions ρ ≥ 0 such that∫

S

ρk dA ≥ 1
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for every S ∈ Sk. We call each such ρ an admissible metric for Sk (ρ ∈
admSk).

Following [19], a metric ρ is said to be extensively admissible for Sk
(ρ ∈ extpadmSk) with respect to p-module if ρ ∈ adm (Sk\S̃k) for any

subfamily S̃k with Mp(S̃k) = 0 (cf. [11]).
Accordingly, we say that a property P holds for almost every k-dimen-

sional surface, if P holds for all surfaces except a family of zero p-module.

The following statement concerns the equivalence of two notions “al-
most all” related to a family of k-dimensional surfaces depending on a real
parameter and to the parameter itself.

Lemma 5.1. Let D be a domain in Rn, n ≥ 2, p ∈ [n− 1,∞) and x0 ∈ D.
The following statements are equivalent:
(1) a property P holds for p-a.e. surfaces D(x0, r) := S(x0, r) ∩D;
(2) P holds for a.e. D(x0, r) with respect to the parameter r ∈ R.

Proof. The proof follows the lines of Lemma 9.1 in [23].
It suffices to establish the implication (1) ⇒ (2) when D is bounded.

Assume, in the contrary, that P holds for p-a.e. surfaces D(x0, r) :=
S(x0, r)∩D, however there is a Borel set B ⊂ R of positive one-dimensional
Lebesgue measure m1(B) provided that P fails for D(x0, r) at a.e. r ∈ B.
If a Borel function ρ : Rn → [0,∞] is admissible for the family Γ of spheres
S(x0, r), one obtains for its restriction to

E =
⋃
r∈B
{x ∈ D : |x− x0| = r}

(by the Hölder inequality),

∫
E

ρn−1(x) dm(x) ≤

∫
E

ρp(x) dm(x)

n−1
p
∫
E

dm(x)


p−n+1

p

.

This yields, together with the Fubini theorem,

∫
Rn

ρp(x) dm(x) ≥

(∫
E

ρn−1(x) dm(x)

) p
n−1

(∫
E

dm(x)

) p−n+1
k

≥ (m1(B))
p

n−1

c

for some c > 0; cf. [27, Theorem 8.1, Ch. III]. Thus, Mp(Γ) > 0, in
contradiction to (1).

To prove (2) ⇒ (1), consider the family Γ0 of all intersections Dr :=
D(x0, r) of the spheres S(x0, r) with D for which the property P does not
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hold. Let R be the set of all r ∈ R for which Dr ∈ Γ0. Since m1(R) = 0,
one concludes by Fubini’s theorem that m(E) = 0. Consider the function
ρ1 : Rn → [0,∞] which equals ∞ for all x ∈ E, and 0 otherwise. Then,
by the Lusin theorem, there is a Borel function ρ2 : Rn → [0,∞] such that
ρ2 = ρ1 a.e. in Rn (see, e.g. [7, Section 2.3.5]), and

Mp(Γ0) ≤
∫
E

ρp2dm(x) =

∫
E

ρp1dm(x) = 0.

Hence, Mp(Γ0) = 0, which completes the proof of Lemma 5.1. 2

5.2. Orlicz-Sobolev classes

Let ϕ : R+ → R+ be a measurable function. The Orlicz-Sobolev class
W 1,ϕ

loc (D) consists of all locally integrable functions f with the first distri-
butional derivatives whose gradient ∇f belongs locally in D to the Orlicz
space. Note that by definition W 1,ϕ

loc ⊂ W 1,1
loc . For ϕ(t) = tp, p ≥ 1, we shall

use the standard notation f ∈W 1,p
loc .

Later on, we also write f ∈W 1,ϕ
loc for a locally integrable vector-function

f = (f1, . . . , fm) of n real variables x1, . . . , xn if fi ∈W 1,1
loc and∫

D

ϕ (|∇f(x)|) dm(x) <∞

where |∇f(x)| =
√∑

i,j

(
∂fi
∂xj

)2
.

Recall that a homeomorphism f between domains D and D ′ in Rn,
n ≥ 2, is of finite distortion if f ∈W 1,1

loc and

‖f ′(x)‖n ≤ KO(x, f)J(x, f)

with a.e. finite function KO where ‖f ′(x)‖ stands for the matrix norm
of the Jacobian matrix f ′ of f at x ∈ D, ‖f ′(x)‖ = sup

h∈Rn,|h|=1
|f ′(x) · h|,

and J(x, f) = detf ′(x) denotes its Jacobian. For the mappings of finite
distortion, we refer to [18] and to the reference therein.

In a similar way, we define a counterpart of KO with respect to the real
parameter p, p ≥ 1, p 6= n, by

KO,p(x, f) =


‖f ′(x)‖p
J(x,f) , J(x, f) 6= 0 ,

0 , p > n and f ′(x) = 0 ,
∞ , otherwise.

The following lemma involves a Calderon type condition [4] and shows
how relate between the mappings of Orlicz-Sobolev’s spaces and (p,Q)-ho-
meomorphisms.
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Lemma 5.2. Let G and G∗ be domains in Rn, n ≥ 3, and let ϕ : [0,∞)→
[0,∞) be an increasing function satisfying the following Calderon type con-
dition

∞∫
1

[
t

ϕ(t)

] 1
n−2

dt <∞. (5.1)

Assume that KO,p(x, f) ∈ L
n−1
p−n+1

loc (G), p > n−1. Then each homeomorphism

f : G → G∗ of finite distortion and such that f ∈ W 1,ϕ
loc is a ring (α, Q̃)-

homeomorphism at every point x0 ∈ G; here Q̃(x) = K
n−1
p−n+1

O,p (x) and α =
p

p−n+1 .

The proof of Lemma 5.2 follows from [29, Theorem 5.1] and [12, Theorem
7.1].

5.3. Equicontinuity of Orlicz-Sobolev classes

Observe that α = p
p−n+1 ∈ (n − 1, n), whenever p ∈

(
n, (n−1)2

n−2

)
. So one

can apply the results obtained in the previous sections to such p and α. For
example, Theorem 3.3, Lemma 5.2 and Corollary 3.1 yield:

Theorem 5.1. Let G and G∗ be two domains in Rn, n ≥ 3, and let Q :

G → [0,∞] be a Lebesgue measurable function from L
n−1
p−n+1

β

loc (G), with β ≥
n

n−α . Assume that ϕ : [0,∞) → [0,∞) is an increasing function satisfying

(5.1). Then the family FQ,ϕ of all homeomorphisms W 1,ϕ
loc of finite distortion

such that KO,p(x) ≤ Q(x), with p ∈
(
n, (n−1)2

n−2

)
, is equicontinuous in G.

Moreover, the family FQ,ϕ is normal.
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