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Abstract - In this article the Jensen-Poisson Formula is extended to al-
gebroid functions. Some important consequences, analogous to the case of
meromorphic functions in the complex plane, can be derived from this gen-
eral version. In particular Schottky theorem for algebroid functions of order
n, defined in a finite disc is obtained following the ideas of Yang Lo [8] , mak-
ing use of the value distribution theory for algebroid functions developped
by H.LSelberg.
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1. Introduction

In this work we shall obtain the extension of Schottky Theorem for analytic
functions in the plane to the wider class of holomorphic algebroid functions
as a consequence of Selberg Main Theorem of the value distribution theory
of algebroid function following the lines of Yang-Lo [8] in the plane. In order
to do this we shall need previously some basic estimates for the maximum
modulus of the function which, in the plane case, derive from Jensen-Poisson
Formula. We shall show the validity of Jensen-Poisson Formula in the frame
of algebroid functions. Schottky Theorem is a key step in the classical proof
of the Great Picard Theorem for meromorphic functions in C, so that its
extension to algebroid functions should allow to obtain the corresponding
result in this wider setting.

2. Algebroid functions. Notation and basic facts

An algebroid function w = w (z) of order n is a mutivalued function which
we shall assume to defined in the plane or in a finite disc D (0, R) by an
equation of the form

F (w, z) = An (z)wn +An−1 (z)wn−1 + ...+A0 (z) = 0 , (2.1)
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where A0 (z) , .., An (z) are meromorphic functions in D (0, R) , 0 < R ≤ ∞ ,
with no common zeros or poles and F (w, z) is irreducible, that is, it cannot
be decomposed as a product

F (w, z) = F1 (w, z) · F2 (w, z) ,

where F1 (w, z) , F2 (w, z) are two non-constant functions of the same type
as F (w, z) .

In these conditions (2.1) defines a n−valued meromorphic function w (z)
outside the critical points where An (z) has a zero or one of the
Ai (z), i = 1, .., n, has a pole and also outside the set of points where the
so-called discriminant of w (z) vanishes, where two or more branches wi (z)
of w (z) ar equal. The algebroid functions are a natural extension of mero-
morphic functions which can be considered are algebroid functions of order
one.

Next we present a description of algebroid functions in terms of holo-
morphic mappings on coverings of C.

Given an algebroid function w (z) of order n satisfying the equation
F (w, z) = 0 , we can associate to this function the Riemann surface XF

XF = {(z, wi (z)) |z ∈ C , i = 1, .., n} ,

where the wi
′s are the branches of the algebroid function.

On XF we can define the functions

P : XF → C
(z, wi (z)) → z

,

which is known as the canonical projection and also

F : XF → Ĉ
(z, wi (z)) → wi (z)

,

which is a uniform holomorphic map on XF and which we denote with the
same symbol F as in the equation defining the algebroid function.

Next, we introduce some subsets of XF which will play the role of the
discs in the plane.

We denote by XF [r] the subset of XF

XF [r] = {(z, w) ∈ ||P (z, w)| ≤ r} ,

similarmente

XF (r) = {(z, w) ∈ ||P (z, w)| < r} ,

and

XF 〈r〉 = {(z, w) ∈ ||P (z, w)| = r} .
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We can also define the angle measure form σXF and the area form dAXF
by pulling back by P the corresponding normalized measures in C , that is

σXF = P ∗
(
dθ

2π

)
, dAXF = P ∗ (dA) ,

where dA is th area Lebesgue measure in the plane.

3. Value distribution theory of algebroid functions. The theory of
H.L. Selberg

3.1. Notation and the First Main Theorem

The analogous functions to those of Nevanlinna are defined in this context
as follows

m (r, a, w) =
1

n

∫
XF 〈r〉

log+
∣∣∣∣ 1

w (reiθ)− a

∣∣∣∣σXF ,

m (r,∞, w) =
1

n

∫
XF 〈r〉

log+
∣∣∣w (reiθ)∣∣∣σXF ,

this is the proximity function, as for the counting function we call

n (r, a, w) = no of roots of w (z) = a in XF [r] ,

and the average counting function

N (r, a, w) =
1

n

∫ r

0

n (t, a, w)− n (0, a, w)

t
dt+

n (0, a, w)

n
log r,

and the characteristic function is defined by

T (r, w) = m (r,∞, w) +N (r,∞, w) .

Finally, we define the ramification terms

NRam (r, P ) , NRam (r, w) ,

the first one measures the ramifications corresponding to the surface XF ,
the second one measures the multiple values of the function w (z) .

In order to define these two terms, we consider the power expansion of
one of the branches wi (z) near a point z = z0

wi (z) = wi (z0) + γτ (z − z0)
τ
λ + ... , γτ 6= 0,

if wi (z) has not a pole at z = z0 and

wi (z) = γ−τ (z − z0)−
τ
λ + ... , γ−τ 6= 0,



86 Arturo Fernandez Arias

in the case that wi (z) has a pole at z = z0.
Then we set

nRam(r, P ) =
∑
XF [r]

(λ− 1) ,

nRam(r, w) =
∑
XF [r]

(τ − 1) ,

where in both sums, we are taking into account the numbers λ, τ corre-
sponding to all the branches wi (z) , i = 1, 2, .., n.

Now, we can already introduce the ramification terms as the average
functions

NRam (r, P ) =

∫ r

0

nRam (t, P )

t
dt,

NRam (r, w) =

∫ r

0

nRam (t, w)

t
dt,

and it can be checked the following relation

NRam (r, w)−NRam (r, P ) = 2N (r, w) +N

(
r,

1

w′

)
−N

(
r, w′

)
. (3.1)

Now we state the First Main Theorem of the value distribution theory
for algebroid functions due to H.L.Selberg

Theorem 3.1. First Main Theorem. Given al algebroid function w (z)
of order n , then for every a ∈ Ĉ , it holds

m (r, a) +N (r, a) = T (r, w) + α (r, a) ,

where α (r, a) is a bounded term as r → ∞ and we have the following esti-
mate

α (r, a) ≤ log+ |a|+ log 2 +
1

k

∣∣∣∣∣
k∑
ν=1

λν log |cν |

∣∣∣∣∣ ,

where c1, c2, ..., cν are the first non-vanishing coefficients of the different
power expansions at z = 0 of the different branches wi (z) and λ1, λ2, ..., λν
the corresponding λ′s as described above.

3.2. The Second Main Theorem

Next we present a limited version of the Second Main Theorem where we
shall consider the particular values ∞, 0, 1, 2, ..., 2n though in the general
statement we can take q ≥ 2n + 1 arbitrary values in Ĉ. The proof is
essentially due to Yang-Lo [8], and we keep track of all th constants involved.
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Theorem 3.2. Second Main Theorem. Let w (z) be an algebroid func-
tion of order n. If wi (0) 6= 0, 1, 2, ..., 2n,∞ and w′i (0) 6= 0 for every
i = 1, 2, .., n, then we get for every r

2nT (r, w)≤N(r, w)+
2n−1∑
k=0

N

(
r,

1

w − k

)
−NRam (r, P )+NRam (r, w)+S (r, w),

(3.2)
where

S (r, w) = m

(
r,
w′

w

)
+

2n∑
k=1

m

(
r,

w′

w − i

)
+ C, (3.3)

where C = C (n,wi (0) , w′i (0)) , i = 1, .., n.

3.3. The Selberg ramification theorem

The term NRam (r, w) is estimated in terms of T (r, w) by means of the
Selberg Ramification Theorem. We make the assumption that the so-called
discriminant D of w (z), namely

D (z) =
∏
i 6=j

(wi (z)− wj (z)) ,

does not vanish at zero, otherwise some further modifications would be re-
quired.

It can be proved, see E.Ullrich [7], H.L.Selberg [6] that

NRam (r, w) ≤ 1

n
N

(
r,

1

D

)
, (3.4)

and from the First Main Theorem we obtain

N

(
r,

1

D

)
≤ T (r,D) +

1

n
log+ |D (0)| . (3.5)

On the other hand

1

n
N (r,D) ≤ 2 (n− 1)N (r, w) , (3.6)

and also
1

n
m (r,D) ≤ 2 (n− 1)m (r, w) + (n− 1) log 2, (3.7)

so that we conclude from (3.5) , (3.6) and (3.7)

1

n
N

(
r,

1

D

)
≤ 2 (n− 1)T (r, w) + (n− 1) log 2,

this together with (3.4) yields the
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Theorem 3.3. Selberg Ramification Theorem. Let w (z) be an alge-
broid function of order n, then under the assumption D (0) 6= 0, we have
the estimate

NRam (r, w) ≤ 2 (n− 1)T (r, w) + (n− 1) log 2 +
1

n
log+ |D (0)| .

Selberg Ramification Theorem together with the Fundamental Inequal-
ity (3.2) yield

T (r, w) ≤ N (r, w) +

2n−1∑
k=0

N

(
r,

1

w − k

)
+ S (r, w) , (3.8)

bearing in mind that NRam (r, P ) is a positive term and where now

S(r, w)=m

(
r,
w′

w

)
+

2n∑
k=1

m

(
r,

w′

w − k

)
+C
(
n,wi (0) , w′i (0)

)
+

1

n
log+ |D (0)| .

(3.9)

4. The Jensen-Poisson formula for algebroid functions

In this section we shall prove the Jensen-Poisson Formula fo algebroid func-
tions.

Theorem 4.1. Jensen-Poisson Formula for algebroid functions.
Let w (z) be an algebroid function of order n and let aµ, µ = 1, ..,M , bν ,
ν = 1, .., N be the zeros and poles of w (z) in XF [R] . Then, for z = reiθ,
0 ≤ |z| < r < R , such that wi (z) 6= 0,∞, for every i = 1, .., n, it holds

log
n∏
i=1

|wi (z)| =
1

2π

∫
XF 〈R〉

logw
(
Reiϕ

) R2 − r2

R2 + r2 − 2Rr cos (ϕ− θ)
dϕ

+
M∑
µ=1

log

∣∣∣∣R (z − aµ)

R2 − aµz

∣∣∣∣− N∑
ν=1

log

∣∣∣∣R (z − bν)

R2 − bνz

∣∣∣∣ ,
with modifications if wi (z) = 0 or ∞ for some i = 1, .., n.

Proof. For a fixed z = reiθ, which we can assume not to be a branch point,
we shall map the disc D (ζ,R) onto the unit disc D (0, 1) by means of

λ =
R (ζ − z)
R2 − zζ

,

which sends ζ = z to λ = 0, and consider the algebroid function
w (λ) = w (ζ (λ)), which is given by the equation

Fλ (w, λ) = F (w, ζ (λ)) = 0.
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For this algebroid function, we can consider the associated Riemann
surface XFλ in such a way that there is a biholomorphic fiber preserving
map

XFλ [1]→ XF [R] .

We make initially the further assumption that neither the zeros nor the
poles are branch points. Otherwise we might consider for ε > 0, the modified
function wε (z) given by the equation

Fε (w, z) = F (w, z + ε) ,

so that for ε′s sufficiently close to zero our late assumption is fulfilled and
then taking into account the continuity of all the terms in Jensen-Poisson
formula, we let ε→ 0.

Under these assumptions we cut the surface XFλ [1] along a ray cj from
every branch point of XFλ [1] up to the boundary of XFλ [1], taking care that
these rays cj do not go through any of the points λ (an) , λ (bn) and that
two of these rays do not intersect what clearly can be done since there are
only a finite number of branch points, zeros and poles in XF [R] , and as a
consequence in XFλ [1] .

We obtain in this way a decomposition of XFλ [1] in a set of n disjoint
simply connected regions Rλi , all of them projecting biholomorphically onto
D (0, 1), excluding the projections of the slits cj , which go from the projec-
tions of the branch points up to the boundary C (0, 1) of D (0, 1) .

In each of these regions Rλi , i = 1, .., n, it is defined a uniform branch
wi (λ) and these regions correspond through ζ (λ) biholomorphically to cer-

tain simply connected regions Rζi , i = 1, .., n in XF [R], which project bil-
holomorphically onto D (0, R), excluding some slits, namely the projections
of the images γj by ζ (λ) of the above described slits cj in XFλ [1], these pro-
jections will be simple arcs going from the interior of D (0, R) to C (0, R),

and in the regions Rζi are defined uniform branches wi (ζ) of w (ζ).

Moreover the projection of each of these regions contains an entire disc
D (0, δ).

Let us assume initially that the function w (ζ (λ)) has no zeros nor poles
in one of these regions Rλi of XFλ [1], and make another cross-cut C going
from Γiδ, the curve in Rλi projecting over C (0, δ), up to Γi1, the part of the
boundary ∂Rλi projecting over C (0, 1) .

Now we obtain a new simply connected region Rλ,Ci , where the function

logw (λ)

λ

is analytic, so that if the boundary ∂Rλi is oriented positively, we conclude
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Figure 1.

from Cauchy Theorem

∫
∂Rλi

logwi (λ)
dλ

λ
=

∫
C(0,1)

logwi (λ)
dλ

λ
−
∫
C(0,δ)

logwi (λ)
dλ

λ

+
∑
j

(∫
c+j

−
∫
c−j

)
+

∫
C+

−
∫
C−

= 0. (4.1)

But, we clearly have

∫
c+j

−
∫
c−j

= 0 for every j

and ∫
C+

−
∫
C−

= 0,

so that we conclude (4.1)

∫
C(0,δ)

logwi (ζ (λ))
dλ

λ
=

∫
C(0,δ)

logwi (λ)
dλ

λ
=

∫
C(0,1)

logwi (λ)
dλ

λ

=

∫
C(0,1)

logwi (ζ (λ))
dλ

λ
,
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whence from the Residues Theorem

logwi (z) = logwi (ζ (0)) =

∫
C(0,δ)

logwi (ζ (λ))
dλ

λ

=

∫
C(0,1)

logwi (ζ (λ))
dλ

λ

=

∫
C(0,R)

logwi (ζ)

(
R2 − |z|2

)
dζ

(R2 − zζ) (ζ − z)

=
1

2π

∫ π

0
logwi

(
Reiϕ

) R2 − r2

R2 − 2Rr cos (θ − ϕ) + r2
dϕ.

In the case where wi (z) has zeros and poles in the region Rζi , say
ai1, .., a

i
Mi

, bi1, .., b
i
Ni

, we consider the auxiliary meromorphic function in XF

ψ (ζ) = w (ζ)

Ni∏
ν=1

R(ζ−biν)
R2−biνζ

Mi∏
µ=1

R(ζ−aiµ)
R2−aiµζ

,

which has, as w (ζ), uniform branches in the simply connected regions

Rζi , i = 1, , .., n.

In particular, in the region Rζi the function ψ (ζ) has no zeros nor poles
and since for the corresponding branches holds |ψi (ζ)| = |wi (ζ)| on |ζ| = R,
we conclude

log |wi (z)| =
1

2π

∫ 2π

0
logwi

(
Reiϕ

) R2 − r2

R2 − 2Rr cos (θ − ϕ) + r2
dϕ

+

Mi∑
µ=1

log

∣∣∣∣∣R
(
z − aiµ

)
R2 − aiµz

∣∣∣∣∣−
Ni∑
ν=1

log

∣∣∣∣∣R
(
z − biν

)
R2 − biνz

∣∣∣∣∣ . (4.2)

Finally, summing over all the branches we conclude the Jensen-Poisson
Formula for algebroid functions, where at the left hand side we take into
account all the zeros aµ and all the poles bν in XF [R] .

log

n∏
i=1

|wi (z)| =
1

2π

∫
XF 〈R〉

logwi
(
Reiϕ

) R2 − r2

R2 − 2Rr cos (θ − ϕ) + r2
σXF

+

Mi∑
µ=1

log

∣∣∣∣∣R
(
z − aiµ

)
R2 − aiµz

∣∣∣∣∣−
Ni∑
ν=1

log

∣∣∣∣∣R
(
z − biν

)
R2 − biνz

∣∣∣∣∣ . 2

As a consequence of (4.2), we obtain for analytic algebroid functions the
following estimates, analogous to analytic functions in the plane

T (r, w) ≤ log+M (r, w) ≤ nR+ r

R− r
T (R,w) , (4.3)
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where

M (r, w) = max
p∈XF [R]

|w (p)| .

The estimate at the left hand side follows from the definitions

T (r, w) = m (r, w) =

∫
XF 〈r〉

log+ |w (p)|σXF ≤ log+M (r, w) .

To check the right hand side inequality, we assume p to be in the i−sheet
of XF so that w (p) = wi (z) and from (4.2) follows

log+ |w (p)| = log+ |wi (z)|

≤ 1

2π

∫
C(0,R)

log
∣∣wi (Reiϕ

)∣∣ R2 − r2

R2 − 2Rr cos (θ − ϕ) + r2
dϕ

≤ 1

2π

∫
C(0,R)

log
∣∣wi (Reiϕ

)∣∣ R2 − r2

(R− r)2
dϕ

≤ R− r
R+ r

∫
C(0,R)

log+ |w (p)| dϕ

≤ R− r
R+ r

∫
XF 〈R〉

log+ |w (p)|σXF

= n
R− r
R+ r

m (R,w) = n
R− r
R+ r

T (R,w) .

5. The Logarithmic Derivative Lemma

Making use of (4.2), then arguing as Yang-Lo [8] and finally summing over
i = 1, .., n, we conclude the Logarithmic Derivative Lemma for algebroid
functions

Lemma 5.1. Logarithmic Derivative Lemma for Algebroid Func-
tions. Let w (z) be an algebroid function of order n then if 0 < r < ρ , it
holds

m

(
r,
w′

w

)
< 10n+ 4n log+

n∑
i=1

log+
1

|wi (0)|
+ 2n log+

1

r
+ 3n log+

1

ρ− r

+4 log+ ρ+ log+ T (ρ, f) . (5.1)
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As a consequence of (3.9) and (5.1) we also obtain

S (r, w) = m

(
r,
w′

w

)
+

2n∑
k=1

m

(
r,

w′

w − k

)
+ C

(
n,wi (0) , w′i (0)

)
+ +

1

n
log+ |D (0)|

≤ 2n (2n+ 1) log+
1

r
+3n (2n+ 1) log+

1

ρ− r
+4 (2n+ 1) log+ ρ

+ (2n+ 1) log+ ρ+ (2n+ 1) log+ T (ρ, f)

+C
(
n,wi (0) , w′i (0)

)
+

1

n
log+ |D (0)| . (5.2)

6. Schottly theorem for algebroid functions

We again make use of the ideas of Yang-Lo [8] to derive from (3.8) and (5.2)
the following estimate for T (r, w) in the case of an algebroid function w (z)
of order n in D (0, R) omitting the values 0, 1, 2, ..., 2n.

Theorem 6.1. Let w (z) an holomorphic algebroid function of order n in
D (0, R) such that wi (0) 6= 0 , w′i (0) 6= 0 , i = 1, .., n, D (0) 6= 0, and assume
that it omits the values 0, 1, 2, ..., 2n, then for every r ∈ 0 < r < R we have

T (r, w) <

C (n)

{
n∑
i

log+ |wi (0)|+
n∑
i

log+
1

R |w′i (0)|
+ log+ |D (0)|+ log

2R

R− r

}
,

where C (n) is a positive constant depending of the order of the algebroid
function w (z) .

Making use of (4.3), we can also derive from Theorem 6.1

Theorem 6.2. Schottky Theorem for Algebroid Functions. Let w (z)
be an algebroid function of order n in D (0, R) and let wi (0) 6= 0, w′i (0) 6= 0,
i = 1, .., n, D (0) 6= 0, and assume that it omits the values 0, 1, 2, ..., 2n, then
we have for every r, 0 < r < R

logM (r, w) <
C (n)R

R− r

{
n∑
i

log+ |wi (0)|+ log+ |D (0)|+ log
2R

R− r

}
,

where C (n) is a positive constant depending of the order of the algebroid
function w (z) .
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