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1. Introduction

The connection between the existence of a radial limit and an angular limit
for a holomorphic function defined on the unit disc is described by Lehto and
Virtanen [6, Theorem 5] in terms of the growth of the spherical derivative.

For a precise description we introduce several terms and notation.

We introduce the notation U := {z ∈ C : |z| < 1} for the unit disc in C.
Let α > 1. A non-tangential region Γα(ξ) for α > 1 and an angular region
Aθ(ξ) for θ ∈ (0, 2π) at ξ ∈ ∂U are defined as follows:

Γα(ξ) := {z ∈ U : |1− zξ| < α

2
(1− |z|2)},

Aθ(ξ) := {z ∈ U : π − θ < arg(z − ξ) < π + θ}.

It is to be noted that non-tangential regions and angular regions are equiv-
alent: For every α > 1 there is a θ ∈ (0, π2 ) such that Γα(ξ) ⊂ Aθ(ξ) and
for every θ ∈ (0, π2 ) there is an α > 1 and a disk d centered at ξ such that
Aθ(ξ) ∩ d ⊂ Γα(ξ).

To see this let d1 be the be the unit disk with center ξ, z ∈ U and
ϕ = π − arg(z − ξ). From the law of cosines

|z|2 = 1− 2 cosϕ|ξ − z|+ |ξ − z|2.
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Since |ξ| = 1 we have |ξ − z| = |1− zξ| and

|1− zξ|
1− |z|2

=
1

2 cosϕ− |1− zξ|
.

Thus,
1

2 cosϕ
≤ |1− zξ|

1− |z|2
for z ∈ U,

and
|1− zξ|
1− |z|2

≤ 2

cosϕ
for z ∈ U ∩ d1.

We say that a holomorphic function function f in U [notation f ∈ O(U)]
has the non-tangential limit L at ξ ∈ ∂U if f(z) → L as z → ξ, z ∈ Γα(ξ);
has radial limit L at ξ if limt→1 f(tξ) = L.

Define the spherical derivative of f(z) to be

f ](z) =
|f ′(z)|

1 + |f(z)|2
.

Now we can reformulate Theorem 5 in [6] as follows:

Theorem 1.1. If f ∈ O(U) has a radial limit at the point ξ ∈ ∂U, then it
has an non-tangential limit at this point if and only if for any fixed α > 1
in the non-tangential region Γα(ξ)

(1− |z|)f ](z) ≤ O(1). (1.1)

Let Bn := {z ∈ Cn : |z| < 1} and let

Dα(ξ) :=
{
z ∈ Bn : |1− (z, ξ)| < α

2
(1− |z|2)

}
,

where (z, ξ) = z1ξ1 + . . .+ znξn and |z|2 = (z, z).

Following Koranyi [4], we say that a holomorphic function f in Bn

(henceforth, in symbols, f ∈ O(Bn)) has admissible limit L at ξ if for every
α > 1 for every sequence {zj} in Dα(ξ) that converges to ξ, f(zj) → L as
j →∞. (The case L =∞ is not excluded.)

It is clear that the notions of admissible limit and non-tangential limit
coincides when n = 1.

We call

f ](z, v) =

∣∣∣∑n
j=1

∂f
∂zj

(z)vj

∣∣∣
1 + |f(z)|2

the spherical derivative of function f in the direction v ∈ Cn. It is clear that
f ](z, v) = f ](z)|v| when n = 1.
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An analogue of Theorem 1.1 for admissible limit fails in several complex
variables. The function f(z1, z2) = z22(2(1−z1))−1 is holomorphic in B2 and
bounded there, since |f(z)| < (1− |z1|)2(2(1− |z1|))−1 ≤ 1.

Applying Schwarz’z lemma to the restriction of the map f : Bn → ∆ to
the complex line passing through the point z ∈ Bn in the direction of the
vector v ∈ Cn, is not difficult to get the estimate

f ](z, v) <
|v|

1− |z|
.

Set zj = (1− 1/j, 1/
√
j) for j = 4, 5, . . . . It is clear that zj → ζ = (1, 0) as

j →∞. A simple calculation shows that zj ⊂ Dα(ζ) if j is sufficiently large.

Notice that limr→1− f(rζ) = limr→1− 0 = 0 and f(zj) = 1/j
2/j = 1

2 , and so f
does not have admissible limit at ζ.

In the present paper, we prove a criterion of existence of admissible
limits of holomorphic functions of several complex variables. We also give
an extension of Lindelöf’s principle.

Let D be a bounded domain in Cn, n > 1, with C2-smooth boundary ∂D,
then at each ξ ∈ ∂D the tangent space T cξ (∂D) and the unit outward normal
vector νξ are well-defined. We denote by T cξ (∂D) and N c

ξ (∂D) the complex
tangent space and the complex normal space, respectively. The complex
tangent space at ξ is defined as the (n − 1) dimensional complex subspace
of Tξ(∂D) and given by T cξ (∂D) = {z ∈ Cn : (z, w) = 0, ∀w ∈ N c

ξ (∂D)},
where (·, ·) denotes canonical Hermitian product of Cn. Let p(z, Tξ(∂D)) is
the Euclidean distance from z to the real tangent plane Tξ(∂D).

An admissible domain Aα(ξ) with vertex ξ ∈ ∂D and aperture α > 0 is
defined as follows [8]:

Aα(ξ) = { z ∈ D : |(z − ξ, νξ)| < (1 + α)rξ(z), |z − ξ|2 < αrξ(z) }, (1.2)

where rξ(z) = min{r(z), p(z, Tξ(∂D))}.

For the ball Bn the set Dα(ξ) essentially coincides with (1.2). The region
Aα(ξ) allows parabolic approach to ∂D at ξ in the “T cξ (∂D) directions,” and
non-tangential approach in the “N c

ξ (∂D) direction.”

The existence of admissible limits (in Fatou’s theorem in the space Cn,
n > 1) was discovered by Koranyi [1] and Stein [2]; the complex geometrical
nature of this phenomenon has been investigated by Chirka [3].

In Fatou’s theorem for strongly pseudoconvex domains it is essentially
impossible to replace the class of admissible domains by a wider class of sets.
However, in arbitrary domains each boundary point has its own optimal
approach, in general, wider than over the admissible domains and Fatous
theorem is still true for such maximal admissible domains.

The function f, defined in a domain D in Cn has a limit L, L ∈ C,
along the normal νξ to ∂D at the point ξ iff limt→0 f(ξ− tνξ) = L; f has an
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admissible limit L, at ξ ∈ ∂D iff

lim
Aα(ξ)3z→ξ

f(z) = L

for every α > 0; f is admissible bounded at ξ if supz∈Aα(ξ) |f(z)| < ∞ for
every α > 0.

We can now state our main result:

Theorem 1.2. Let D be a domain in Cn, n > 1, with C2-smooth boundary.
If f ∈ O(D) has a limit L along the normal to ∂D at the point ξ, then at the
point ξ ∈ ∂D the function f has an admissible limit L if and only if in every
admissible domain with vertex ξ the spherical derivative of f in the normal
and complex tangent directions increases like o(1/rξ(z)) and o(1/

√
rξ(z)),

respectively.

The example above shows that the Lindelöf principle for bounded func-
tions – formulated in terms of admissible convergence – fails. However the
following refinement of Lindelöf’s theorem holds.

Theorem 1.3. Let D be a domain in Cn, n > 1, with C2-smooth boundary.
If a function f in D has a limit L, L ∈ C, along the normal νξ at a point
ξ ∈ ∂D, and in every admissible domain with vertex ξ the function f is
holomorphic, L is his omitted value and the spherical derivative of f in the
normal and complex tangent directions grows no faster than K/d(z) and
K/
√
d(z), respectively, then f has an admissible limit L at ξ.

2. A criterion of existence of admissible limits

Our main concern for the moment will be the proof of Proposition 2.1. For
this it will be convenient to introduce a slightly modified family of approach
regions which also will be useful in the rest of the paper.

Let xj , yj be the real coordinates of z ∈ Cn such that zj = xj + iyj .
At times it will be convenient to use real variable notations by identifying
z with (x1, ζ) ∈ R2n, where ζ = (y1, x2, y2, . . . , xn, yn) ∈ R2n−1. After a
unitary transformation of Cn, if necessary, we may assume the inner normal
to ∂D at 0 points the positive x1 direction, T c0 (∂D) = {z ∈ Cn : z1 = 0}. Let
π denote the map which projects Cn onto N0, i.e., if z = (z1, . . . , zn) ∈ Cn
then π(z) = (z1, 0, . . . , 0).

Without loss of generality, there is a real valued C2 function ψ defined
on T0(∂D) = {(0, ζ), ζ ∈ R2n−1} so that ∂D = {(ψ(ζ), ζ), ζ ∈ R2n−1} and
D = {(x1, ζ), x1 > ψ(ζ)}. (This is certainly true in the neighborhood of 0
by the implicit function theorem, and our concerns are purely local here.)
The fact that T0(∂D) is tangent to ∂D at 0 implies ∇φ(0) = 0.
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For z = (x1, ζ) ∈ D we set

d(z) := min{x1, x1 − ψ(ζ)},

and define an approach region

Aα(ξ) := { z ∈ D : |z|2 < αd(z), |y1| < αx1}. (2.1)

Observe that

lim
D3z→0

r(z)

x1 − ψ(ζ)
= 1,

and hence

lim
Aα(0)3z→0

r0(z)

d(z)
= 1.

It follows that the regions Aα(ξ) are ”equivalent” to the admissible regions
Aγ(α)(ξ) in the sense that

Aβ(α)(ξ) ⊆ Aα(ξ) ⊆ Aγ(α)(ξ).

As in [8, p. 59] set

|5F (z)|2 := d(z)2 · |51F (z)|2 + d(z) · |52,nF (z)|2,

where

|51F (z)|2 :=
∣∣∣ ∂F
∂z1

(z)
∣∣∣2, | 52,n F (z)|2 :=

n∑
j=2

∣∣∣∂F
∂zj

(z)
∣∣∣2.

Proposition 2.1. Let D be a domain in Cn, n > 1, with C2-smooth bound-
ary. Suppose that f ∈ O(D) has a limit L along the normal νξ to ∂D at the
point ξ equal to L, L 6=∞. If

|∇f(z)|
1 + |f(z)|2

is admissible bounded at ξ, then f admissible bounded at ξ.

Proof. Since the domain D has C2-smooth boundary, then there is a
constant r > 0 such that the ball Br(−rν0) ⊂ D and ∂Br(−rν0)∩∂D = {ξ}.
Without restriction we may suppose that ξ = (1,′ 0) and r = 1.

Let f has the finite limit L along the normal ν0 to ∂D at the point 0.
Since d(z) ≥ dB1(0)(π(z)) = 1− |z1| for all z ∈ B1(ξ) we have

(1− |z1|) · | ∂f∂z1 (π(z))|
1 + |f(π(z))|2

<
|∇f(π(z))|

1 + |f(π(z))|2
< O(1), z ∈ Aα(0) ∩N c

0(∂D).
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Therefore f(π(z)) fulfills all the hypotheses of Theorem 1.1. Hence
f(π(z))→ L as z → 0, z ∈ Aα(0) ∩N c

0(∂D).

Assume, to reach a contradiction, that f is not admissible bounded at
0. Let {zm} be any sequence of points from Aα(0) such that zm → 0 as
m→∞ and f(zm)→∞ as m→∞.

For the biholomorphic mapping Φb(z) = (w1(z), . . . , wn(z)), where b ∈
Cn, w1(z) = z1−b1

cd(b) , wµ(z) =
zµ−bµ
c
√
d(b)

, µ = 2, . . . , n, the polydisc

P (b, c) := {z ∈ Cn : |z1 − b1| < cd(b), |zµ − bµ| < c
√
d(b), µ = 2, . . . , n, }

is mapped to the unit polydisc Un = {w ∈ Cn : |wµ| < 1, µ = 1, . . . , n}.
By [7, Lemma 7.2] the exists c = c(α) such that P (b, c) ⊂ A2α(0) for all
sufficiently small b ∈ Aα(0). Therefore with each point b ∈ Aα(0) sufficiently
close to 0 we can associate a function gb = f(Φ−1b (w)) which is well defined
and holomorphic in the polydisc Un.

By [7, Lemma 5.2] there exists c = c(α), c < 1/2, so that if z = (x1, ζ)
sufficiently small and |z| < αd(z) we have d(z) ≥ cx1. Let t be an arbitrary
point of the interval [zm, π(zm)]. Note that xm1 ≥ d(t) ≥ cxm1 .

Choose an integer N such that α < cN/2. From the definition of the set
Aα(0) it follows that |zm−π(zm)|2 < cNxm1 /2. Then the interval [zm, π(zm)]
may be covered by km polydiscs, where km < N + 1,

Pm,k(c) := P (bm,k, c) =

{z ∈ Cn : |z1 − bm,k1 | < cd(bm,k), |zµ − bm,kµ | < c
√
d(bm,k), µ = 2, . . . , n}

such that bm,1 = (zm1 ,
′ 0), bm,km = zm, bm,k ∈ [zm, π(zm)], k = 2, . . . , km−1,

Pm,k(c/2) 3 bm,k+1 (and hence Pm,k(c/2) ∩ Pm,k+1(c/2) 6= ∅) for all m ≥ 1,
k < km. To each point bm,k we associate a function gm,k = gbm,k as above.

Set Gm = gm,km , m ≥ 1. Since f(zm) → ∞ as m → ∞ and Pm,km(c) 3
zm we have gm,km(0) = f(zm) → ∞ as m → ∞. Suppose that there is
a sequence of points {wm} which belongs to some polydisc P2, P 2 ⊂ Un,
such that Gm(wm) 6→ ∞ as m → ∞. It follows that the family {Gm} is
not normal in Un and by Marty’s criterion (see, e.g., [2]) there are points
pm ∈ P 2 and vectors vm ∈ Cn with |vm| = 1 such that∣∣∣dGmpm(vm)

∣∣∣
1 + |Gm(pm)|2

> m, (m = 1, 2, . . .), (2.2)

where

dGmpm(vm) =

n∑
µ=1

∂Gm

∂wµ
(pm)vmµ .



On admissible limits of holomorphic functions 77

According to the rule of differentiation of composite functions

∂Gm

∂w1
(pm) = cd(bm,1)

∂f

∂z1
(tm)

∂Gm

∂wµ
(pm) = c

√
d(bm,1)

∂f

∂zµ
(tm), (µ = 2, . . . , n),

where tm = Φ−1
bm,1

(pm) ∈ Pm,1(c) ⊂ A2α(0). By [7, Lemma 5.2] there exists
c1 = min{1/2, 1/2Kα} so that if z = (x1, ζ) ∈ A2α(0) is sufficiently small
then x1 > d(z) ≥ c1x1. Since bm,11 = xm1 and (1− c)xm1 ≤ Re tm1 ≤ (1 + c)xm1
we have

c1
1 + c

≤ d(bm,1)

d(tm)
≤ 1

(1− c)
.

This, together with the Bunyakovskĭi-Schwarz inequality, implies from (2.2)
that

|∇f(tm)|
1 + |f(tm)|2

> O(1)m.

This is in contradiction to the assumption that |∇f(z)|/(1 + |f(z)|2) is ad-
missible bounded in 0. This suggests that the sequence {Gm} converges to
∞ uniformly on compact subsets of Un. Set Gm = gm,{km−1}, m ≥ 1. (Note
that we set gm,{km−1} ≡ gm,km if km − 1 ≤ 0.) Since

Pm,km−1(c/2) ∩ Pm,km(c/2) 6= ∅

we have Gm(0)→∞ as m→∞ and we may repeat the above argument. Af-
ter finite number of steps the proof will be completed since Pm,1(c) 3 π(zm)
and f(π(zm))→ L as m→∞. We get |∇f(z)|/(1 + |f(z)|2) is not admissi-
ble bounded in 0, contrary to the hypothesis on |∇f(z)|/(1 + |f(z)|2). This
contradiction proves our claim. 2

With this result we can obtain the following theorem

Theorem 2.1. Let D be a domain in Cn, n > 1, with C2-smooth boundary.
If a function f holomorphic in D has a limit along the normal νξ at a point
ξ ∈ ∂D, then it has an admissible limit at this point if and only if for every
α > 0

|∇f(z)|
1 + |f(z)|2

→ 0 (2.3)

as z → ξ, z ∈ Aα(ξ).

Proof. Necessity. Assume ξ = 0, without loss of generality. First, let
f has finite admissible limit L at 0. Without loss of generality, assume
L = 0 at 0. Let P1(z) denote the polydisc centered at z, whose radii are
essentially cx1, c

√
x1, . . . , c

√
x1, with c sufficiently small. By [7, Lemma

7.2] exists c = c(α) such that P1(z) ⊂ A2α(ξ). Let P (z) denote the polydisc
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centered at z, whose radii are essentially cd(z), c
√
d(z), . . . , c

√
d(z). Since

d(z) = min{x1, x1−ψ(ζ)} ≤ x1 we have P (z) ⊆ P1(z) ⊂ D. The one variable
Cauchy’s estimate shows that

51f(z) ≤
sup{w∈P (z)} |f(w)|

cd(z)
, 52,nf(z) ≤

sup{w∈P (z)} |f(w)|
c
√
d(z)

.

Since f(z)→ 0 as z → 0, z ∈ Aα(0), we have

|∇f(z)| → 0

as z → 0, z ∈ Aα(0). It remains to observe that |∇f(z)| ≥ |∇f(z)|/(1 +
|f(z)|2).

If the function f has an admissible limit at the point 0 equal to infinity,
then for any α > 0 there is a ε > 0 such that 1/f ∈ O(Aα(0))∩Bε(0)). The
function F = 1/f has an admissible limit equal to zero at the point 0, so,
as we have proved, F satisfies (2.3). It remains to observe that outside the
zeros of f we obviously have (1+|F (z)|2)−1|∇F (z)| = (1+|f(z)|2)−1|∇f(z)|.

Sufficiency. (a) Suppose that the function f has a limit L along the
normal ν0 to ∂D at the point 0 equal to L, L 6=∞.

We may assume, without loss of generality, that L = 0. Write

f(z) = {f(z)− f(z1, 0, . . . , 0)}+ f(z1, 0, . . . , 0).

The first term on the right side is dominated by

|z(1)− z(0)| sup
{0<t<1}

|52,nf(z(t))|,

where z(t) = (z1, z2t, . . . , znt), t ∈ [0, 1], If z ∈ Aα(0), then by [7, Lemma
7.3] z(t) ∈ Aα(0), t ∈ [0, 1], and there d(z(t)) ≈ d(z) while |z(1) − z(0)| <
α
√
d(z). (The expression A ≈ B means that there are positive constants

c1 and c1 such that c1A < B < c2A.) By Proposition 2.1 f is admissible
bounded in 0 and therefore

|z(1)− z(0)| sup
{0<t<1}

| 52,n f(z(t))| ≤ O(1)
|5f(z(t0))|

1 + |f(z(t0)|2
,

where 0 ≤ t0 ≤ 1. Since |5f(z(t0))|/(1+|f(z(t0))|)→ 0 as z(t0)→ 0 we have
that f(z)− f(z1, 0, . . . , 0)→ 0 as z → 0 in Aα(0). Since f(z1, 0, . . . , 0)→ 0
as z → 0 in Aα(0) we conclude that

lim
Aα(0)3z→0

f(z) = 0.

The above proof is quite analogous to the proof in [8, p, 68].
(b) Let the function f has the infinite limit along the normal ν0 to ∂D

at the point 0. Let {zm} be any sequence of points from Aα(0) such that
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zm → 0 as m → ∞. As in the proof of Proposition 2.1 let {Gm}, be a
sequence of function defined on Un. Then as in Proposition 2.1 we obtain
f(zm) → ∞ as m → ∞. Since the sequence of points {zm} was arbitrary,
by definition this means that f has the admissible limit equal to infinity at
the point 0. The theorem is proved. 2

Now we can give the proof of Theorem 1.2: For each z near ∂D denote by
ζ(z) the point on ∂D closest to z. Choose the coordinate system z̃1, . . . , z̃n
in Cn such that ζ(z) = 0, and {z̃ ∈ Cn : (z̃1, 0 . . . , 0)} = N c

0(∂D), and
{z̃ ∈ Cn : (0, z̃2, . . . , z̃n)} = T c0 (∂D), and ν0 = (i, 0, . . . , 0). Denote by

gradCF =
(
∂F
∂z̃1

, . . . , ∂F∂z̃n

)
the complex gradient of function F. Write also

|5̃1F |2 =
∣∣∣ ∂F
∂z̃1

∣∣∣2, |5̃2,nF |2 =
n∑
j=2

∣∣∣∂F
∂z̃j

∣∣∣2.
Then |gradCF |2 = |5̃1F |2 + |5̃2,nF |2 but this splitting varies (with the
decomposition Cn = Nζ(z) ⊕ T cζ(z) ) as z varies in Aα(ξ)).

Observe that if z ∈ Aα(ξ) we have

d(z)2 · | 51 F (z)|2 + d(z) · | 52,n F (z)| ≈

d(z)2 · |5̃1F (z)|2 + d(z) · |5̃2,nF (z)|2 (2.4)

(see [8, pp. 61-62]). We write A ≈ B if the ration |A|/|B| is bounded
between two positive constants. From (2.4) follows that Theorem 2.1 is
actually equivalent to Theorem 1.2.

We also can obtain the following Theorem.

Theorem 2.2. Let D be a domain in Cn, n > 1, with C2-smooth boundary.
Let in every admissible domain with vertex ξ the function f is holomorphic
and its spherical derivative in the normal and complex tangent directions
grows no faster than K/d(z) and K/

√
d(z), respectively. If

lim
Aβ(ξ)3z→ξ

f(z) = L for some β > 0,

then f has an admissible limit at ξ.

Proof. Fix α > β. Let {zm} be an arbitrary sequence of Aα(ξ). Let
Gm = gm,1, m ≥ 1, be the sequence of function defined as in proof of
Proposition 2.1. The family {gm,1} is normal on P (this was proved in
Theorem 1.2). Since f(z)→ L as z → 0 in Aβ(0), without lost a generality,
we may assume that Pm,1(c) ⊂ Aβ(0) for all m = 1, 2, . . . . Hence Gm tends
to L uniformly on every compact subset of P.
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By [7, Lemma 5.2] there exists c1 = min{1/2, 1/2Kα} < 1/2 so that
if z = (x1, ζ) ∈ A2α(0) is sufficiently small then x1 > d(z) ≥ c1x1. Since
bm,11 = bm,21 = xm1 we have

c1 ≤
d(bm,2)

d(bm,1)
≤ 1

c1
.

Since

Φ−1
bm,2

(w) = (cd(bm,2)w + bm,21 , c
√
d(bm,2)w + bm,22 , . . . , c

√
d(bm,2)w + bm,2n ),

|bm,21 − bm,11 | < cd(bm,1)/2, and |bm,2µ − bm,1µ | < c
√
d(bm,1)/2, µ = 1, 2, . . . , n,

the little calculation shows that for for all w ∈ P (0, c1/4) ⊂ P

|w1cd(bm,2) + bm,21 − bm,11 | <
cc1
4

d(bm,2)

d(bm,1)
d(bm,1) +

c

2
d(bm,1) <

3c

4
d(bm,1)

and

|wµcd(bm,2) + bm,2µ − bm,1µ | <
cc1
4

d(bm,2)

d(bm,1)
d(bm,1) +

c

2

√
d(bm,1) <

3c

4

√
d(bm,1)

for all µ, µ = 1, 2, . . . , n. It follows gm,2 takes the same values on P (0, c1/4)

as f on Φ−1
bm,2

(P (0, c1/4)) ⊂ Pm,1(c) hence gm,2 → L on P (0, c1/5) ⊂ P.
The family {gm,2} is normal on P (this was proved in Theorem 1.2)

hence the family {gm,2} also tends to L uniformly on compact subsets of P.
After finite steps we obtain that f(zm)→ L as m→∞. Since the sequence
of points {zm} chosen from Aβ(0) is arbitrary, this completes the proof that
the function f has the admissible limit L at the point ξ. The theorem is
proved. 2

Remark 2.1. For bounded holomorphic functions this theorem appears in
Chirka’s paper [1], with the proof sketched there relying on certain estimates
on harmonic measures. A proof based on a different method was given by
Ramey [7, Theorem 2].

3. The proof of Theorem 1.3

By hypothesis of the theorem L 6∈ f(D) then (f(z) − L)−1 is holomorphic
on D and has a radial limit at ξ equal to ∞. It is thus sufficient to consider
the case L =∞.

By Theorem 1.1 and hypothesis on f we have f(π(z)) → ∞ as z → ξ,
z ∈ Aα(ξ) ∩N c

ξ (∂D). Let {zm} be any sequence of points from Aα(ξ) such
that zm → ξ as m → ∞. Since the spherical derivative of f in the normal
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and complex tangent directions grows no faster than K/d(z) and K/
√
d(z),

respectively, from (2.4) follows

d(z)2 · | 51 F (z)|2 + d(z) · | 52,n F (z)|2 ≤ O(1) (z ∈ Aα(ξ)).

Using the notation introduced in the proof of Proposition 2.1, the Bun-
yakovskĭi-Schwarz inequality and the fact that d(bm,1) ≈ d(z) for all z ∈ Pm,1
it follows that

|dGmp (v)|2

(1 + |Gm(p)|2)2
≤ O(1) (m = 1, 2, . . .)

for all p ∈ P and all v ∈ Cn, |v| = 1.

By Marty’s criterion (see, e.g., [2]) the family {Gm} are normal in Un.
Since Gm(π(zm)) = gm,1(0) → ∞ as m → ∞ it follows that the sequence
{Gm} converges uniformly on compact subsets of Un to ∞. Then as in
Theorem 2.1 we obtain f(zm)→∞ as m→∞.

Since the sequence of points {zm} chosen from Aβ(ξ) is arbitrary, this
completes the proof that the function f has the admissible limit L at the
point ξ. The theorem is proved. �
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