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Abstract - We continue the study from [13] of the metric relations which
hold for some homeomorphisms f : D → D‘ between two domains from Rn

satisfying a generalized modular inequality. This relations are in connec-
tion with the well known property of local quasisymetry of quasiconformal
mappings.
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If D ⊂ Rn is a domain, we set A(D) the set of all path families Γ from
D and if Γ ∈ A(D), we put F (Γ) = {ρ : Rn → [0,∞] Borel maps|

´
γ
ρds ≥ 1

for every γ ∈ Γ locally rectifiable}. We define for p > 1, Γ ∈ A(D) and
ω ∈ L1

loc(D) the p modulus of weight ω, Mp
ω(Γ) = inf

ρ∈F (Γ)

´
Rn

ρp(x)dx. The

systematic utilization of the arbitrary weight p modulus in the mapping
theory was initiated by Cabiria Andreian in [1] and [2].

Let D,D‘ be domains in Rn and f : D → D‘ a homeomorphism. We say
that f satisfies condition (N) if µn(f(A)) = 0 for every A ⊂ D with µn(A) =
0 (here µn denotes the Lebesgue measure in Rn). If x ∈ D, we set L(x, f) =

lim sup
h→0

|f(x+h)−f(x)|
|h| and if B(x, r) ⊂ D, we set L(x, f, r) = sup

|y−x|=r
|f(y) −

f(x)|, l(x, f, r) = inf
|y−x|=r

|f(y)− f(x)| and Hf (x) = lim sup
r→0

L(x,f,r)
l(x,f,r) . We say

that f is K quasiconformal if Mn(Γ)
K ≤ Mn(f(Γ)) ≤ KMn(Γ) for every Γ ∈

A(D) (the geometric definition of the quasiconformality). This definition
is equivalent with the metric definition of the quasiconformality which says
that f is quasiconformal if there exists H ≥ 1 such that Hf (x) ≤ H for
every x ∈ D. We recommend the reader the book [33] for some basic facts
concerning the theory of quasiconformal mappings.

We say that f is η-quasisymetric if there exists a homeomorphism η :
[0,∞)→ [0,∞) such that |f(z)−f(x)|

|f(y)−f(x)| ≤ η( |z−x||y−x|) if x, y, z ∈ D, x 6= y, x 6= z.
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If f is η-quasisymetric, then Hf (x) ≤ η(1) for every x ∈ D and hence f
is quasiconformal. Also, if f is quasiconformal and B(x, 3r) ⊂ D, then
f |B(x, r) : B(x, r) → f(B(x, r)) is η-quasisymetric and if f : Rn → Rn is a
homeomorphism, then f is quasiconformal if and only if f is η-quasisyemtric.

An important class of continuous, open, discrete mappings which gen-
eralizes the class of quasiconformal mappings is the class of quasiregular
mappings (see [22], [23], [34] for some basic facts concerning this theory). In
the last 20 years were studied in [5-21], [24-32] more general classes of contin-
uous, open discrete mappings (the so called mappings of finite distortion).
For all of them a modular inequality of type ”Mn(f(Γ)) ≤ Mn

KI,n(f)(Γ)”

holds for every Γ ∈ A(D) and this is the main instrument which permits
to prove that a lot of the important facts from the theory of quasiregular
mappings still hold in this new classes of mappings. We must say that using
this modular method, Cabiria Andreian proved with 50 years before in 1959
in [1] that analogues of the theorems of Fatou, Nevanlinna-Frostman and
Beurling still hold for very general classes of plane homeomorphisms.

In some recent papers [9-13] we studied classes of continuous, open,
discrete mappings f : D ⊂ Rn → Rn for which a modular inequality of
type ”Mq(f(Γ)) ≤ γ(Mp

ω(Γ))” holds for every Γ ∈ A(D) and some p > 1,
q > n− 1, ω ∈ L1

loc(D) and a strictly increasing function γ : [0,∞)→ [0,∞)
with lim

t→0
γ(t) = 0. We extended partially basic facts from the theory of

quasiregular mappings and from the classes of mappings of finite distortion
mentioned before. Using the modulus method, we gave Liouville, Picard,
Montel type theorems, equicontinuity results, eliminability and boundary
extension results and we gave estimates of the modulus of continuity. In the
last paper [13] we studied the metric relations which hold for some home-
omorphisms f : D → D‘ between two domains in Rn satisfying a modular
inequality of type ”Mq(f(Γ)) ≤ γ(Mp

ω(Γ))”. We continue this researches in
the present paper.

Let D ⊂ Rn be a domain and f : D → Rn a map. We say that f is
ACL if f is continuous and for every cube Q ⊂⊂ D with the sides parallel
to coordinate axes and for every face S of Q it results that f |P−1

S (y) ∩Q :
P−1
S (y)∩Q→ Rn is absolutely continuous for a.e. y ∈ S, where PS : Rn → S

is the projection on S. An ACL map has a.e. first partial derivatives and
if q > 1, we say that f is ACLq if f is ACL and the first partial derivatives
are locally in Lq. If q > 1, we denote by W 1,q

loc (D,Rn) the Sobolev space of
all functions f : D ⊂ Rn → Rn which are locally in Lq together with their
first order distributional derivatives. We see from Proposition 1.2 page 6 in
[23] that if f ∈ C(D,Rn), then f is ACLq if and only if f ∈W 1,q

loc (D,Rn).

If f ∈L1(D) andA⊂D is measurable, we set
ffl
A

f(x)dx =
´
A

f(x)dx/µn(A)

and we also denote it by fA. We say that a map f ∈ L1(D) is in the
BMO(D) class if there exists M > 0 such that

ffl
B(x,r) |f(z) − fB(x,r)|dz ≤
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M for every ball B(x, r) ⊂ D. If D ⊂ Rn is open, E,F ⊂ D, we set
∆(E,F,D) = {γ : [0, 1] → Rn path|γ(0) ∈ E, γ(1) ∈ F and γ((0, 1)) ⊂ D}
and if x ∈ Rn and 0 < r < R, we set Γx,r,R = ∆(B(x, r), S(x,R), B(x,R) \
B(x, r)). We denote by Vn the volume of the unit ball in Rn, by ωn−1 the
area of the unit sphere in Rn and if A ∈ L(Rn,Rn), we set l(A) = inf

|x|=1
|A(x)|.

If f : D → D‘ is a homeomorphism between two domains from Rn and
g is its inverse, we see that µf : B(D)→ [0,∞] given by µf (A) = µn(f(A))
for every A ∈ B(D) is a set function and hence µ‘

f (x) exists a.e. and µ‘
f

is a Borel function and we define a.e. the q inner dilation of f , KI,q(f) by
KI,q(f)(x) = L(f(x), g)µ‘

f (x). If f is differentiable in x and Jf (x) 6= 0, we

see that KI,q(f)(x) =
|Jf (x)|
l(f ‘(x))q

. (See also [13] for more details).

Given r > 0, let Φn(r) be the set of all rings A = R(C0, C1) such that
0 ∈ C0 and there exists a ∈ C0 ∩ S(0, 1) and such that ∞ ∈ C1 and there
exists b ∈ S(0, r)∩C1 (see also [33], page 33-36). As in [4], we set Hn,q(r) =

inf
A∈Φn(r)

Mq(ΓA) for q > 1 and r > 0. Here ΓA = ∆(C0, C1,Rn) if A is a ring

A = R(C0, C1). Then Hn,q : (0,∞)→ (0,∞) is decreasing and if n−1 < q <
n there exists a constant Q(n, q) > 0 such that Hn,q(r) ≥ Q(n, q)(1− rn−q)
for every 0 < r < 1 and Hn,q(r) ≥ Q(n,q)

2n ((r2 + 2)
n−q
2 − rn−q) if r ≥ 1. If

q = n, we set Hn,n = Hn and we see from [34] that Hn : (0,∞) → (0,∞)
is a decreasing homeomorphism. We see from Theorem 9 in [4] that if
n − 1 < q ≤ n and A = R(C0, C1) is a ring such that a, b ∈ C0, c,∞ ∈ C1,

then Mq(ΓA) ≥ |b − a|n−qHn,q(
|c−a|
|b−a|). We see from [3] that if x ∈ Rn,

0 < a < b, D = B(x, b) \B(x, a), n− 1 < q, E,F ⊂ D are disjoint such that
S(x, t)∩E 6= φ, S(x, t)∩F 6= φ for every a < t < b, then Mq(∆(E,F,D)) ≥
C(n, q)(bn−q − an−q) if q 6= n and Mn(∆(E,F,D)) ≥ C(n) ln( ba), where
C(n, q) is a constant depending only on n and q and C(n) is a constant
depending only on n. Throughout this paper we shall keep the notations
Q(n, q), C(n, q), C(n) for the constants from the papers of Caraman [3-4].

We also denote by ln =
∞∑
k=1

1
kn and tn =

∞∑
k=1

1
kn−1 for n ≥ 2.

In [7] and [8] we gave the following estimates of the modulus of Γx,r,R:

Lemma A. Let n ≥ 2, p > 1, x ∈ Rn, 0 < r < R, ω ∈ L1(B(x, r)) and
suppose that one of the following conditions hold:

1) sup
0<δ<R

´
B(x,δ)

ω(z)dz/δp = M <∞.

2) sup
0<δ<R

ffl
B(x,δ)

|ω(z)− ωB(x,r)|dz = M <∞.

Then, if condition 1) holds, it results that Mp
ω(Γx,r,R) ≤ Meplp

(ln ln(Re
r

))p
.

If condition 2) holds and n ≥ 3, then

Mn
ω (Γx,r,R) ≤

Vne
n((M +

ffl
B(x,R) ω(z)dz)ln +Mentn)

(ln ln(Rer ))n
.
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If condition 2) holds and n = 2, then

M2
ω(Γx,r,R) ≤

V2e
2(M +

ffl
B(x,R)

ω(z)dz)l2

(ln ln(Rer ))2
+

V2e
4M

ln ln(Rer )
.

The following theorem from [13] ensures very general conditions in order
that a homeomorphism f : D → D‘ between two domains from Rn to satisfy
some generalized modular inequalities:

Lemma B. Let n ≥ 2, q > 1, D,D‘ be domains in Rn, let f : D → D‘ a
homeomorphism satisfying condition (N), let g be its inverse and suppose
that g is ACLq. Then Mq(f(Γ)) ≤ M q

KI,q(f)(Γ) for every Γ ∈ A(D) and if´
G‘

L(y, g)qdy < ∞ for every open set G‘ ⊂⊂ D‘, then
´
G

KI,q(f)(x)dx < ∞

for every open set G ⊂⊂ D. Also, if 1 < q < p and

C =

ˆ
D

KI,q(f)(x)p/(p−q)dx


p−q
p

<∞,

then Mq(f(Γ)) ≤ CMp(Γ)
q
p for every Γ ∈ A(D).

Theorem 1. Let n ≥ 2, n − 1 < q ≤ n, p > 1, D,D‘ be domains in Rn,
ω ∈ L1

loc(D), γ : [0,∞) → [0,∞) be increasing with lim
t→0

γ(t) = 0 and let

f : D → D‘ be a homeomorphism such that Mq(f(Γ)) ≤ γ(Mp
ω(Γ)) for every

Γ ∈ A(D). Then, if |y − x| ≤ |z − x| ≤ R and B(x,R) ⊂ D, we see that

Hn(
|f(z)− f(x)|
|f(y)− f(x)|

) ≤ γ(Mp
ω(Γx,|y−x|,|z−x|)) if q = n (1)

|f(y)− f(x)|n−qQ(n, q) ≤ |f(y)− f(x)|n−q·

·Hn,q(
|f(z)− f(x)|
|f(y)− f(x)|

) ≤ γ(Mp
ω(Γx,|y−x|,|z−x|)) if n−1 < q < n (2)

Proof. Let Γ = Γx,|y−x|,|z−x|. Then f(Γ) = R(C0, C1) and f(x), f(y) ∈ C0

and ∞, f(z) ∈ C1. We see from Theorem 9 in [4] that

|f(y)− f(x)|n−qHn,q(
|f(z)− f(x)|
|f(y)− f(x)|

) ≤Mq(f(Γ)) ≤ γ(Mp
ω(Γ)). 2

Theorem 2. Let n ≥ 2, D,D‘ be domains in Rn, ω ∈ BMO(D), γ :
[0,∞) → [0,∞) be increasing with lim

t→0
γ(t) = 0 and let f : D → D‘ be
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a homeomorphism such that Mn(f(Γ)) ≤ γ(Mn
ω (Γ)) for every Γ ∈ A(D).

Then, if B(x,R) ⊂ D and M = sup
B(x,r)⊂D

´
B(x,r)

|ω(z) − ωB(x,r)|dz, we have

the following inequalities:

|f(y)− f(x)|
|f(z)− f(x)|

≤ (1/H−1
n (γ(

Vne
n((M +

ffl
B(x,|z−x|) ω(u)du)ln +Mentn)

(ln ln( e|z−x||y−x| ))
n

)))

if n ≥ 3 (3)

|f(y)− f(x)|
|f(z)− f(x)|

≤ (1/H−1
2 (γ(

V2e
2(M +

ffl
B(x,|z−x|) ω(u)du)l2

(ln ln( e|z−x||y−x| ))
2

+
MV2e

4

ln ln( e|z−x||y−x| )
)))

if n = 2. (4)

Proof. We use Theorem 1 and Lemma A. 2

Theorem 3. Let n ≥ 2, p > 1, D,D‘ be domains in Rn, ω ∈ L1
loc(D),

γ : [0,∞) → [0,∞) be increasing with lim
t→0

γ(t) = 0 and let f : D → D‘ be

a homeomorphism such that Mn(f(Γ)) ≤ γ(Mp
ω(Γ)) for every Γ ∈ A(D).

Then, if B(x,R) ⊂ D and Cx,R,p = sup
0<r<R

´
B(x,R)

ω(u)du/rp < ∞, we have

the following inequalities:

|f(y)− f(x)|
|f(z)− f(x)|

≤ (1/H−1
n (γ(

Cx,R,pe
plp

(ln ln( e|z−x||y−x| ))
p
))) if |y − x| ≤ |z − x| ≤ R

2
(5)

|f(y)− f(x)|
|f(z)− f(x)|

≤
exp(γ(Cx,R,p(2 + 2|y−x|

|z−x|
p
)/C(n)))

H−1
n (γ(

Cx,R,peplp
(ln ln(2e))p ))

if |z−x|2 ≤ |y − x| ≤ |z − x| ≤ R
6 (6)

|f(y)− f(x)|
|f(z)− f(x)|

≤ exp(
γ(Cx,R,p(2 + |y−x|

|z−x| )
p)

C(n)
) if |z−x| ≤ |y−x| ≤ R

3
(7)

|f(y)− f(x)|
|f(z)− f(x)|

≤ exp(
γ(Cx,R,p(1 + |y−x|

|z−x| )
p)

C(n)
) if |z − x| ≤ |y − x|

2
≤ R

6
. (8)

Proof. The results from (7) and (8) are proved in Theorem 2 in [13].
Using Theorem 1, Lemma A and the results from [4], we see that if |y−x| ≤
|z − x| ≤ R, then Hn( |f(z)−f(x)|

|f(y)−f(x)|) ≤ γ(Mp
ω(Γx,|y−x|,|z−x|)) ≤ γ(

Cx,R,pe
plp

(ln ln(
e|z−x|
|y−x| ))p

)

and relation (5) is now proved. Let now |z−x|
2 ≤ |y−x| ≤ |z−x| ≤ R and let

w ∈ S(x, 2|y−x|). We see from (5) that |f(y)−f(x)|
|f(w)−f(x)| ≤ (1/H−1

n (γ(
Cx,R,pe

plp
(ln ln(2e))p ))).
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Since |z − x| ≤ |w − x|, we use (7) and we see that |f(w)−f(x)|
|f(z)−f(x)| ≤

≤ exp(
γ(Cx,R,p(2+

2|y−x|
|z−x| )p)

C(n) ) and now also (6) is proved. 2

Remark 1. Let η : [0,∞)→ [0,∞) be defined by

η(t) =



(1/H−1
n (γ(

Cx,R,pe
plp

(ln ln( e
t
))p ))), if 0 ≤ t < 1

2
exp(γ(Cx,R,p(2+2t)p/C(n)))

H−1
n (γ(

Cx,R,pe
plp

(ln ln(2e))p
))

, if 1
2 ≤ t < 1

exp(
γ(Cx,R,p(2+t)p)

C(n) ), if 1 ≤ t < 2

exp(
γ(Cx,R,p(1+t)p)

C(n) ), if t ≥ 2.

We see that η is continuous, bounded and increasing on each interval [0, 1
2),

[1
2 , 1), [1, 2) and [2,∞) and lim

t→0
η(t) = 0 and we proved in Theorem 3 that if

B(x, R6 ) ⊂ D, y, z ∈ B(x, R6 ), z 6= x, y 6= x, then |f(y)−f(x)|
|f(z)−f(x)| ≤ η( |y−x||z−x| ). We

can easy find a homeomorphism θ : [0,∞) → [0,∞) such that |f(y)−f(x)|
|f(z)−f(x)| ≤

θ( |y−x||z−x| ) if B(x, R6 ) ⊂ D and y, z ∈ B(x, R6 ), z 6= x, y 6= x, and θ depends
only on p, n, γ and Cx,R,p. This relation is in connection with the well known
local quasisimetry property of quasiconformal mappings and we see that if
there exists K > 0 such that Cx,R,p ≤ K for every x ∈ D and every R > 0
such that B(x,R) ⊂ D, then it results that f is quasiconformal.

Theorem 4. Let n ≥ 2, p > 1, n − 1 < q < n, D,D‘ be domains in Rn,
ω ∈ L1

loc(D), γ : [0,∞) → [0,∞) be increasing with lim
t→0

γ(t) = 0 and let

f : D → D‘ be a homeomorphism such that Mq(f(Γ)) ≤ γ(Mp
ω(Γ)) for every

Γ ∈ A(D). Then, if B(x,R) ⊂ D and Cx,R,p = sup
0<r<R

´
B(x,R)

ω(u)du/rp <∞,

we have the following inequalities:

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤
γ(Cx,R,p(2 + |y−x|

|z−x| )
p)

C(n, q)

if |z − x| ≤ |y − x| ≤ R

3
(9)

|f(y)− f(x)|n−qQ(n, q) ≤ |f(y)− f(x)|n−qHn,q(
|f(z)− f(x)|
|f(y)− f(x)|

) ≤

≤ γ(
Cx,R,pe

plp

(ln ln( e|z−x||y−x| ))
p
) if |y − x| ≤ |z − x| ≤ R (10)

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤
γ(Cx,R,p(2 + 2|y−x|

|z−x| )
p)

C(n, q)

if
|z − x|

2
≤ |y − x| ≤ |z − x| ≤ R

6
(11)
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It also results that

Q(n, q)(|f(y)− f(x)|n−q − |f(z)− f(x)|n−q) ≤ γ(
Cx,R,pe

plp

(ln ln( e|z−x||y−x| ))
p
)

if |y − x| ≤ |z − x| ≤ R and |f(y)− f(x)| ≥ |f(z)− f(x)| (12)

and

Q(n, q)(n− q)3
n−q−2

2

2n
|f(y)− f(x)|2

|f(z)− f(x)|q+2−n ≤ γ(
Cx,R,pe

plp

(ln ln( e|z−x||y−x| ))
p
)

if |y−x| ≤ |z−x| ≤ R and |f(z)−f(x)| ≥ |f(y)−f(x)|. (13)

Proof. Relation (9) was proved in Theorem 2 in [13]. Suppose that
|y−x| ≤ |z−x| ≤ R. Using Theorem 1 and Lemma A, we find that |f(y)−
f(x)|n−qQ(n, q) ≤ |f(y)−f(x)|n−qHn,q(

|f(z)−f(x)|
|f(y)−f(x)|) ≤ γ(Mp

ω(Γx,|y−x|,|z−x|)) ≤
γ(

Cx,R,pe
plp

(ln ln(
e|z−x|
|y−x| ))p

) and relation (10) is proved.

Let now |z−x|
2 ≤ |y− x| ≤ |z − x| ≤ R

3 and let ω ∈ S(x, 2|y− x|) be such
that L(x, f, 2|y − x|) = |f(w) − f(x)|. Then |f(y) − f(x)| ≤ |f(w) − f(x)|
and using (9), we see that |f(y) − f(x)|n−q − |f(z) − f(x)|n−q ≤ |f(w) −

f(x)|n−q − |f(z) − f(x)|n−q ≤
γ(Cx,R,p(2+

2|y−x|
|z−x

)p)

C(n,q) and relation (11) is now
proved.

Suppose now that |y−x| ≤ |z−x| ≤ R and |f(y)−f(x)| ≥ |f(z)−f(x)|.
We see from [4] that Hn,q(r) ≥ Q(n, q)(1 − rn−q) if 0 < r < 1, hence

Q(n, q)(|f(y)−f(x)|n−q−|f(z)−f(x)|n−q) ≤ |f(y)−f(x)|n−qHn,q(
|f(z)−f(x)|
|f(y)−f(x)|).

We apply now relation (10) and we obtain relation (12).
Suppose now that |y − x| ≤ |z − x| ≤ R and |f(y) − f(x)| ≤ |f(z) −

f(x)|. We see from [4] that Hn,q(r) ≥ Q(n,q)
2n ((r2 + 2)

n−q
2 − rn−q) for ev-

ery r ≥ 1. Let b = |f(z) − f(x)| and a = |f(y) − f(x)|. Then |f(y) −
f(x)|n−qHn,q(

|f(z)−f(x)|
|f(y)−f(x)|) = an−qHn,q(

b
a) ≥ Q(n,q)

2n ((b2 + 2a2)
n−q
2 − bn−q) =

Q(n,q)2a2(n−q)
2n(
√
b2+2a2+b)

cn−q−1(by the theorem of Lagrange and b < c <
√
b2 + 2a2)

≥ Q(n,q)(n−q)2a2

2n(b2+2a2) q+2−n
2

≥ Q(n,q)(n−q)

2n3
q+2−n

2

a2

bq+2−n = Q(n,q)(n−q)

2n3
q+2−n

2

|f(y)−f(x)|2
|f(z)−f(x)|q+2−n . We ap-

ply now relation (10) and we prove relation (13). 2

Theorem 5. Let n ≥ 2, D,D‘ be domains in Rn, let f : D → D‘ be a
homeomorphism satisfying condition (N) and such that its inverse is ACLn

and suppose that KI,n(f) ∈ BMO(D). Let x ∈ D and R > 0 be such
that B(x,R) ⊂ D and let M = sup

B(x,r)⊂D

ffl
B(x,r)

|KI,n(f)(z)−KI,n(f)B(x,r)|dz.

Then we have the following inequalities:

|f(y)− f(x)|
|f(z)− f(x)|

≤(1/H−1
n (

Vne
n((M+

ffl
B(x,|z−x|)KI,n(f)(u)du)ln +Mentn)

(ln ln( e|z−x||y−x| ))
n

))
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if n ≥ 3 (14)

|f(y)−f(x)|
f(z)−f(x)|

≤(1/H−1
2 (

V2e
2(M +

ffl
B(x,|z−x|)

KI,n(f)(u)du)l2

(ln ln( e|z−x||y−x| ))
2

+
MV2e

4

ln ln( e|z−x||y−x| )
))

if n = 2. (15)

Proof. We see from Lemma B that Mn(f(Γ)) ≤ Mn
KI,n(f)(Γ) for every

Γ ∈ A(D) and we apply now Theorem 2. 2

Theorem 6. Let n ≥ 2, D,D‘ be domains in Rn and let f : D → D‘ be a
homeomorphism satisfying condition (N) and such that its inverse is ACLn.
Then, if B(x,R) ⊂ D and Cx,R,n = sup

0<r<R

´
B(x,r)

KI,n(f)(z)dz/rn < ∞, we

have the following inequalities:

|f(y)− f(x)|
|f(z)− f(x)|

≤ (1/H−1
n (

Cx,R,ne
nln

(ln ln( e|z−x||y−x| ))
n

))

if |y − x| ≤ |z − x| ≤ R

2
(16)

|f(y)− f(x)|
|f(z)− f(x)|

≤
exp(Cx,R,n(2 + |y−x|

|z−x| )
n/C(n))

H−1
n (

Cx,R,nenln
(ln ln(2e))n )

if
|z − x|

2
≤ |y − x| ≤ |z − x| ≤ R

6
(17)

|f(y)− f(x)|
|f(z)− f(x)|

≤ exp(
Cx,R,n(2 + |y−x|

|z−x| )
n

C(n)
) if |z − x| ≤ |y − x| ≤ R

3
(18)

|f(y)− f(x)|
|f(z)− f(x)|

≤ exp(
Cx,R,n(1 + |y−x|

|z−x| )
n

C(n)
) if |z−x| ≤ |y − x|

2
≤ R

6
. (19)

Proof. We see from Lemma B that Mn(f(Γ)) ≤ Mn
KI,n(f)(Γ) for every

Γ ∈ A(D) and we apply Theorem 3. 2

Theorem 7. Let n ≥ 2, p > n, D,D‘ be domains in Rn and let f : D → D‘

be a homeomorphism satisfying condition (N) and such that its inverse is

ACLn and suppose that C = (
´
D

KI,n(f)(x)p/(p−n)dx)
p−n
p < ∞. Then, if

B(x,R) ⊂ D, we have the following inequalities:

|f(y)− f(x)|
|f(z)− f(x)|

≤ exp(
C

C(n)
(
Vn(|y − x|+ 2|z − x|)n

|z − x|p
)
n
p )

if |z − x| ≤ |y − x| ≤ R

3
(20)
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|f(y)− f(x)|
|f(z)− f(x)|

≤ (1/H−1
n (C(

nVn

(( p−1
p−n)(|z − x|

p−n
p−1 − |y − x|

p−n
p−1 ))p−1

)
n
p ))

if |z − x| ≤ |y − x| ≤ R

3
(21)

Proof. Relation (20) is proved in Theorem 4 in [13]. We see from Lemma B

thatMn(f(Γ)) ≤ CMp(Γ)
n
p for every Γ ∈ A(D). Using Theorem 1 and Prop.

18, page 535 in [3], we find that Hn( |f(z)−f(x)|
|f(y)−f(x)|) ≤ CMp(Γx,|y−x|,|z−x|)

n
p ≤

C( nVn

(( p−1
p−n

)(|z−x|
p−n
p−1 −|y−x|

p−n
p−1 ))p−1

)
n
p and relation (21) is proved. 2

Theorem 8. Let n ≥ 2, n − 1 < q < n, D,D‘ be domains in Rn and let
f : D → D‘ be a homeomorphism satisfying condition (N) and such that its
inverse is ACLq. Then, if B(x,R) ⊂ D and

Cx,R,q = sup
0<r<R

ˆ

B(x,R)

KI,q(f)(u)du/rq <∞,

we have the following inequalities:

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤
Cx,R,q(2 + |y−x|

|z−x| )
q

C(n, q)

if |z − x| ≤ |y − x| ≤ R

3
(22)

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤
Cx,R,q(2 + 2|y−x|

|z−x| )
q

C(n, q)

if
|z − x|

2
≤ |y − x| ≤ |z − x| ≤ R

6
(23)

|f(y)−f(x)|n−qQ(n, q)≤|f(y)−f(x)|n−qHn,q(
|f(z)−f(x)|
|f(y)−f(x)|

)≤
Cx,R,qe

qlq

(ln ln( e|z−x|y−x| ))
q

if |y − x| ≤ |z − x| ≤ R (24)

We also have

Q(n, q)(|f(y)− f(x)|n−q − |f(z)− f(x)|n−q) ≤
Cx,R,qe

qlq

(ln ln( e|z−x||y−x| ))
q

if |y − x| ≤ |z − x| ≤ R and |f(y)− f(x)| ≥ |f(z)− f(x)| (25)

and
Q(n, q)(n− q)

2n3
q+2−n

2

|f(y)− f(x)|2

|f(z)− f(x)|q+2−n ≤
Cx,R,qe

qlq

(ln ln( e|z−x||y−x| ))
q
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if |y − x| ≤ |z − x| ≤ R and |f(z)− f(x)| ≥ |f(y)− f(x)|. (26)

Proof. We see from Lemma B that Mq(f(Γ)) ≤ M q
KI,q(f)(Γ) for every

Γ ∈ A(D) and we apply now Theorem 4. 2

Theorem 9. Let n ≥ 2, n − 1 < q < n, D,D‘ be domains in Rn and let
f : D → D‘ be a homeomorphism satisfying condition (N) and such that

its inverse is ACLq and suppose that C = (
´
D

KI,q(f)(x)n/(n−q)dx)
n−q
n <∞.

Then, if B(x,R) ⊂ D, we have the following inequalities:

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤ CV
q/n
n

C(n, q)
(2 +

|y − x|
|z − x|

)q

if |z − x| ≤ |y − x| ≤ R

3
(27)

|f(y)− f(x)|n−qQ(n, q) ≤ |f(y)− f(x)|n−qHn,q(
|f(z)− f(x)|
|f(y)− f(x)|

) ≤

≤ C(
ωn−1

(ln( |z−x||y−x|))
n−1

)q/n if |y−x| ≤ |z−x| ≤ R (28)

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤ CV
q/n
n

C(n, q)
(2 +

2|y − x|
|z − x|

)q

if
|z − x|

2
≤ |y−x| ≤ |z−x| ≤ R. (29)

It also results that

|f(y)− f(x)|n−q − |f(z)− f(x)|n−q ≤ C

Q(n, q)
(

ωn−1

(ln( |z−x||y−x|))
n−1

)q/n

if |y−x| ≤ |z−x| ≤ R and |f(y)−f(x)| ≥ |f(z)−f(x)| (30)

and
Q(n, q)(n− q)

2n3
q+2−n

2

|f(y)− f(x)|2

|f(z)− f(x)|q+2−n ≤ (
ωn−1

(ln( |z−x||y−x|))
n−1

)q/n

if |y−x| ≤ |z−x| ≤ R and |f(z)−f(x)| ≥ |f(y)−f(x)|. (31)

Proof. Relation (27) was proved in Theorem 4 in [13]. We see from Lemma
B that Mq(f(Γ)) ≤ CMn(Γ)q/n for every Γ ∈ A(D). Using Theorem 1 and
taking γ(t) = Ctq/n for t ≥ 0, we find that |f(y)−f(x)|n−qQ(n, q) ≤ |f(y)−
f(x)|n−qHn,q(

|f(z)−f(x)|
|f(y)−f(x)|) ≤ CMn(Γx,|y−x|,|z−x|)

q/n = C( ωn−1

(ln(
|z−x|
|y−x| ))

n−1
)q/n and

relation (28) is now proved. Using relation (28) and arguing as in Theorem
4, we prove relations (30) and (31).

Let now |z−x|
2 ≤ |y − x| ≤ |z − x| ≤ R and let ω ∈ S(x, 2|y − x|) be such

that L(x, f, 2|y − x|) = |f(w) − f(x)|. Then |f(y) − f(x)| ≤ |f(w) − f(x)|
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and using relation (27), we see that |f(y) − f(x)|n−q − |f(z) − f(x)|n−q ≤
|f(w)− f(x)|n−q − |f(z)− f(x)|n−q ≤ CV

q/n
n

C(n,q) (2 + 2|y−x|
|z−x| )

q and relation (29)
is also proved. 2
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