On a class of meromorphic functions of Janowski type

Oana Crişan and Grigore Ş. Sălăgean*
Dedicated to Professor Cabiria Andreian Cazacu on her 85th Birthday

Abstract

In this paper, we introduce and investigate a new subclass of meromorphic functions of Janowski type, giving the coefficient bounds, a sufficient condition for a function to belong to the considered class and also a convolution property. The results presented provide generalizations of results given in earlier works.

Key words and phrases : meromorphic functions, subordination, coefficient bounds, convolution.

Mathematics Subject Classification (2010) : 30C45.

1. Introduction

Let Σ denote the class of all meromorphic functions having the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disk

$$
\mathcal{U}^{*}:=\{z \in \mathbb{C}: 0<|z|<1\}=: \mathcal{U} \backslash\{0\} .
$$

Also, let \mathcal{A} be the class of analytic functions h in \mathcal{U} given by

$$
h(z)=z+\sum_{n=1}^{\infty} h_{n} z^{n} .
$$

For a function $f \in \Sigma$ given by (1.1) and a function $g \in \Sigma$ having the form

$$
\begin{equation*}
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

[^0]the convolution (or Hadamard product) of f and g is defined by
$$
(f * g)(z) \equiv f(z) * g(z):=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}
$$

If f and g are two functions analytic in \mathcal{U}, then f is said to be subordinate to g, written as $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function ω (i.e. analytic in \mathcal{U}, with $\omega(0)=0$ and $|\omega(z)|<1, z \in \mathcal{U}$) such that $f(z)=g(\omega(z))$. In particular, if g is univalent in \mathcal{U}, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.

A function $f \in \Sigma$ is said to be meromorphic starlike of order $\alpha(0 \leq \alpha<$ 1) if it satisfies the inequality

$$
-\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad\left(z \in \mathcal{U}^{*}\right)
$$

The class of all functions meromorphic starlike of order α is denoted by $\Sigma^{*}(\alpha)$, with $\Sigma^{*}:=\Sigma^{*}(0)$. Also, a function f is in the class $\mathcal{M C}$ of meromorphic close-to-convex functions if there exista a function $g \in \Sigma^{*}$ such that the following condition holds:

$$
-\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0 \quad\left(z \in \mathcal{U}^{*}\right)
$$

Gao and Zhou [1] introduced and studied the class \mathcal{K}_{s} consisting of all the functions h in \mathcal{A} such that

$$
\Re\left(\frac{z^{2} h^{\prime}(z)}{g(z) g(-z)}\right)<0 \quad(z \in \mathcal{U})
$$

where g belongs to the class $\mathcal{S}^{*}(1 / 2)$ of analytic starlike functions of order $1 / 2$ (i.e. the class of functions $g \in \mathcal{A}$ which satisfy the inequality $\left.\Re\left(z g^{\prime}(z) / g(z)\right)>1 / 2, z \in \mathcal{U}\right)$. For several recently investigated classes of analytic functions related to the above mentioned class \mathcal{K}_{s}, we refer to [2], [3], [9], [11] or [13].

Wang et al. [12] considered the class $\mathcal{M K}$ of meromorphic functions f from Σ which satisfy the inequality

$$
\Re\left(\frac{f^{\prime}(z)}{g(z) g(-z)}\right)>0 \quad\left(z \in \mathcal{U}^{*}\right)
$$

where $g \in \Sigma^{*}(1 / 2)$. More recently, Sim and Kwon [7] investigated the class $\Sigma(A, B)$ of functions $f \in \Sigma$ with the property

$$
\frac{f^{\prime}(z)}{g(z) g(-z)} \prec \frac{1+A z}{1+B z},
$$

with $-1 \leq B<A \leq 1$ and $g \in \Sigma^{*}(1 / 2)$, and in a similar manner, Soni and Kant [8] introduced and discussed $\mathcal{M K}(t, A, B)$ consisting of functions $f \in \Sigma$ for which the following subordination holds:

$$
\frac{-f^{\prime}(z)}{\operatorname{tg}(z) g(t z)} \prec \frac{1+A z}{1+B z},
$$

where $0<|t| \leq 1$ and A, B and g are defined as above.
Motivated by the aforementioned works, we introduce and investigate the following subclass of meromorphic functions:

Definition 1.1. Let $-1 \leq B<A \leq 1$ and $0 \leq \alpha \leq 1$. A function $f \in \Sigma$ of the form (1.1) is said to be in the class $\Sigma(A, B ; \alpha)$ if there exists $g \in \Sigma^{*}(1 / 2)$ such that the following subordination is satisfied:

$$
\begin{equation*}
\frac{(1-2 \alpha) f^{\prime}(z)-\alpha z f^{\prime \prime}(z)}{g(z) g(-z)} \prec \frac{1+A z}{1+B z} . \tag{1.3}
\end{equation*}
$$

The class $\Sigma(A, B ; \alpha)$ provides a generalization of the classes studied by Wang, Sun and $\mathrm{Xu}[12]$ (the case $\alpha=0, A=-1$ and $B=1$) and Sim and Kwon [7] (the case $\alpha=0$). Recently Shi, Yi and Wang [10] obtained results on the class $\Sigma(A, B ; \alpha)$ when $\alpha \leq 0$.

Remark 1.1. If $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$, then $\Sigma\left(A_{1}, B_{1} ; \alpha\right) \subset$ $\Sigma\left(A_{2}, B_{2} ; \alpha\right)$. To prove this, let $f \in \Sigma\left(A_{1}, B_{1} ; \alpha\right)$. Then

$$
\frac{(1-2 \alpha) f^{\prime}(z)-\alpha z f^{\prime \prime}(z)}{g(z) g(-z)} \prec \frac{1+A_{1} z}{1+B_{1} z} .
$$

But since $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$, the following subordination is true:

$$
\begin{equation*}
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z} . \tag{1.4}
\end{equation*}
$$

Indeed, when $-1<B_{2} \leq B_{1}$, the images of \mathcal{U} under these two functions are two circles orthogonal on the real axis and also we have that

$$
\begin{aligned}
& \min _{z \in \partial \mathcal{U}} \Re \frac{1+A_{2} z}{1+B_{2} z}=\frac{1-A_{2}}{1-B_{2}} \leq \min _{z \in \partial \mathcal{U}} \Re \frac{1+A_{1} z}{1+B_{1} z}=\frac{1-A_{1}}{1-B_{1}} \\
\leq & \max _{z \in \partial \mathcal{U}} \Re \frac{1+A_{1} z}{1+B_{1} z}=\frac{1+A_{1}}{1+B_{1}} \leq \max _{z \in \mathscr{U}} \Re \frac{1+A_{2} z}{1+B_{2} z}=\frac{1+A_{2}}{1+B_{2}},
\end{aligned}
$$

which shows that the image of \mathcal{U} under $\left(1+A_{1} z\right) /\left(1+B_{1} z\right)$ is included in the image of \mathcal{U} under $\left(1+A_{2} z\right) /\left(1+B_{2} z\right)$, and so the subordination (1.4) holds. A similar argument shows the subordination is also true when $-1=B_{1}=B_{2}$ or $-1=B_{1}<B_{2}$. It therefore follows that $f \in \Sigma\left(A_{2}, B_{2} ; \alpha\right)$.

In our investigation of the class $\Sigma(A, B ; \alpha)$ we shall need the following lemmas:

Lemma 1.1. (see [12]) Let $g \in \Sigma^{*}(1 / 2)$. Then

$$
-z g(z) g(-z) \in \Sigma^{*}
$$

Lemma 1.2. (see [12]) Let

$$
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} \in \Sigma^{*}(1 / 2) .
$$

Then

$$
\left|B_{2 n-1}\right| \leq \frac{1}{n} \quad(n \in \mathbb{N}=\{1,2, \ldots\}),
$$

where

$$
\begin{equation*}
B_{2 n-1}=2 b_{2 n-1}+2 b_{1} b_{2 n-3}-2 b_{2} b_{2 n-4}+\cdots+(-1)^{n-1} b_{n-2} b_{n}+(-1)^{n} b_{n-1}^{2} . \tag{1.5}
\end{equation*}
$$

Lemma 1.3. (see [4]) Let $G \in \Sigma^{*}$. Then for $|z|=r, 0<r<1$, we have

$$
\frac{(1-r)^{2}}{r} \leq|G(z)| \leq \frac{(1+r)^{2}}{r}
$$

We need at this moment to give the definition of prestarlike functions. For $\gamma<1$, the class $\mathcal{R}(\gamma)$ of prestarlike functions of order γ consists of all the normalized analytic functions f which satisfy the subordonation

$$
f(z) * \frac{z}{(1-z)^{2-2 \gamma}} \in \mathcal{S}^{*}(\gamma) .
$$

The class $\mathcal{R}(1)$ is formed with analytic normalized functions f for which the inequality $\Re(f(z) / z)>1 / 2$ holds true.

Lemma 1.4. (see [6]) Let $\gamma \leq 1, f \in \mathcal{R}(\gamma)$ and $g \in \mathcal{S}^{*}(\gamma)$. Then

$$
\frac{f * g F}{f * g}(\mathcal{U}) \subset \overline{\operatorname{co}}(F(\mathcal{U}))
$$

where F is an analytic function in \mathcal{U} and $\overline{\operatorname{co}}(F(\mathcal{U}))$ denotes the closed convex hull of $F(\mathcal{U})$.

Lemma 1.5. (see [5]) Let

$$
h(z)=1+\sum_{n=1}^{\infty} h_{n} z^{n} \text { and } k(z)=1+\sum_{n=1}^{\infty} k_{n} z^{n}
$$

be two analytic functions in \mathcal{U}. If k is convex and $h \prec k$, then

$$
\left|h_{n}\right| \leq\left|k_{1}\right| \quad(n \in \mathbb{N})
$$

2. Main results

The following result gives a sufficient condition for a function to belong to the investigated class $\Sigma(A, B ; \alpha)$.

Theorem 2.1. Let $-1 \leq B<A \leq 1,0 \leq \alpha \leq 1$ and

$$
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n} .
$$

If $f \in \Sigma$ given by (1.1) satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[(1+|B|)|1-\alpha-\alpha n|\left|a_{n}\right| n+(1+|A|)\left|B_{2 n-1}\right|\right]<A-B \tag{2.1}
\end{equation*}
$$

where the coefficients $B_{2 n-1}$ are given by (1.5), then $f \in \Sigma(A, B ; \alpha)$.
Proof. To prove $f \in \Sigma(A, B ; \alpha)$ it suffices to show that

$$
\begin{equation*}
\left|\frac{(1-2 \alpha) f^{\prime}(z)-\alpha z f^{\prime \prime}(z)}{g(z) g(-z)}-1\right|<\left|A-B \frac{(1-2 \alpha) f^{\prime}(z)-\alpha z f^{\prime \prime}(z)}{g(z) g(-z)}\right| . \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
G(z)=-z g(z) g(-z) . \tag{2.3}
\end{equation*}
$$

It is obvious that $G(-z)=-G(z)$ and by Lemma 1.1 we deduce that G is a meromorphic odd starlike function. Therefore, G has the form

$$
\begin{equation*}
G(z)=\frac{1}{z}+\sum_{n=1}^{\infty} B_{2 n-1} z^{2 n-1} \tag{2.4}
\end{equation*}
$$

where $B_{2 n-1}$ is given by (1.5).
On taking

$$
\begin{aligned}
\Delta= & \left.\mid(1-2 \alpha) z f^{\prime}(z)-\alpha z^{2} f^{\prime \prime}(z)+G(z)\right) \mid \\
& -\left|A G(z)+B\left[(1-2 \alpha) z f^{\prime}(z)-\alpha z^{2} f^{\prime \prime}(z)\right]\right| \\
= & \left|\sum_{n=1}^{\infty}(1-\alpha-\alpha n) n a_{n} z^{n}+\sum_{n=1}^{\infty} B_{2 n-1} z^{2 n-1}\right| \\
& -\left|(A-B) \frac{1}{z}+\sum_{n=1}^{\infty} A B_{2 n-1} z^{2 n-1}+\sum_{n=1}^{\infty} B(1-\alpha-\alpha n) n a_{n} z^{n}\right|,
\end{aligned}
$$

by (2.1), we obtain the inequalities

$$
\begin{aligned}
\Delta \leq & \sum_{n=1}^{\infty}\left|(1-\alpha-\alpha n) a_{n}\right| n|z|^{n}+\sum_{n=1}^{\infty}\left|B_{2 n-1}\right||z|^{2 n-1} \\
& -\left((A-B) \frac{1}{z}-\sum_{n=1}^{\infty}\left|A B_{2 n-1}\right||z|^{2 n-1}-\sum_{n=1}^{\infty}\left|B(1-\alpha-\alpha n) a_{n}\right| n|z|^{n}\right) \\
= & -(A-B) \frac{1}{z}+\sum_{n=1}^{\infty}(1+|B|)\left|(1-\alpha-\alpha n) a_{n}\right| n|z|^{n} \\
& +\sum_{n=1}^{\infty}(1+|A|)\left|B_{2 n-1}\right||z|^{2 n-1} \\
< & -(A-B)+\sum_{n=1}^{\infty}(1+|B|)\left|(1-\alpha-\alpha n) a_{n}\right| n+\sum_{n=1}^{\infty}(1+|A|)\left|B_{2 n-1}\right| \\
\leq & 0 .
\end{aligned}
$$

Thus, because $\Delta<0$, relation (2.2) holds true and we conclude that $f \in \Sigma(A, B ; \alpha)$.

We next determine the coefficient estimates for functions in $\Sigma(A, B ; \alpha)$.
Theorem 2.2. Let $-1 \leq B<A \leq 1,0 \leq \alpha \leq 1$ and $f \in \Sigma(A, B ; \alpha)$ be given by (1.1). Then

$$
\begin{gather*}
\left|a_{1}\right| \leq 1 \\
\left|a_{2 n}\right| \leq \frac{A-B}{2 n|1-(2 n+1) \alpha|}\left(1+\sum_{k=1}^{n-1} \frac{1}{k}\right) \quad(n \in \mathbb{N}) \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|a_{2 n+1}\right| \leq \frac{A-B}{(2 n+1)|1-(2 n+2) \alpha|}\left(1+\sum_{k=1}^{n} \frac{1}{k}\right) \quad(n \in \mathbb{N}) \tag{2.6}
\end{equation*}
$$

Proof. Since $f \in \Sigma(A, B ; \alpha)$, we know that

$$
-\frac{(1-2 \alpha) z f^{\prime}(z)-\alpha z^{2} f^{\prime \prime}(z)}{G(z)} \prec \frac{1+A z}{1+B z},
$$

where $G(z)=-z g(z) g(-z)$ is given by (2.4). Setting

$$
\begin{equation*}
q(z)=-\frac{(1-2 \alpha) z f^{\prime}(z)-\alpha z^{2} f^{\prime \prime}(z)}{G(z)} \tag{2.7}
\end{equation*}
$$

it follows that

$$
q(z)=1+d_{1} z+d_{2} z^{2}+\cdots \text { and } q(z) \prec \frac{1+A z}{1+B z} .
$$

Moreover, by Lemma 1.5, we remark that

$$
\begin{equation*}
\left|d_{n}\right| \leq A-B \quad(n \in \mathbb{N}) \tag{2.8}
\end{equation*}
$$

Further, equation (2.7) gives

$$
\begin{aligned}
& \left(1+d_{1} z+d_{2} z^{2}+\cdots\right)\left(\frac{1}{z}+B_{1} z+B_{3} z^{3}+\cdots\right) \\
= & \frac{1}{z}-(1-2 \alpha) a_{1} z-2(1-3 \alpha) a_{2} z^{2}-\cdots \\
- & 2 n[1-(2 n+1) \alpha] a_{2 n} z^{2 n}-(2 n+1)[1-(2 n+2) \alpha] a_{2 n+1} z^{2 n+1}-\cdots,
\end{aligned}
$$

from which we obtain $d_{1}=0$,

$$
-2 n[1-(2 n+1) \alpha] a_{2 n}=d_{3} B_{2 n-3}+\cdots+d_{2 n-1} B_{1}+d_{2 n+1} \quad(n \in \mathbb{N})
$$

and
$-(2 n+1)[1-(2 n+2) \alpha] a_{2 n+1}=d_{2} B_{2 n-1}+d_{4} B_{2 n-3}+\cdots+d_{2 n} B_{1}+d_{2 n+2}(n \in \mathbb{N})$.
From (2.8) and also considering Lemma 1.2, it results that

$$
\begin{equation*}
2 n|1-(2 n+1) \alpha|\left|a_{2 n}\right| \leq(A-B)\left(\frac{1}{n-1}+\cdots+\frac{1}{2}+1+1\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
(2 n+1)|1-(2 n+2) \alpha|\left|a_{2 n+1}\right| \leq(A-B)\left(\frac{1}{n}+\frac{1}{n-1}+\cdots+\frac{1}{2}+1+1\right) \tag{2.10}
\end{equation*}
$$

The conclusion in (2.5) and (2.6) follows now from (2.9) and (2.10), whereas the estimation $\left|a_{1}\right| \leq 1$ is true for any meromorphic function f univalent in \mathcal{U}^{*}.

Theorem 2.3. If $-1 \leq B<A \leq 1,0 \leq \alpha \leq 1$ and $f \in \Sigma(A, B ; \alpha)$ then for $|z|=r, 0<r<1$, the following inequalities hold:

$$
\begin{equation*}
\frac{(1-r)^{2}}{r^{2}} \frac{1-A r}{1-B r} \leq\left|(1-2 \alpha) f^{\prime}(z)-\alpha z f^{\prime}(z)\right| \leq \frac{(1+r)^{2}}{r^{2}} \frac{1+A r}{1+B r} . \tag{2.11}
\end{equation*}
$$

Proof. Suppose $f \in \Sigma(A, B ; \alpha)$ and let

$$
q(z)=-\frac{(1-2 \alpha) z f^{\prime}(z)-\alpha z^{2} f^{\prime \prime}(z)}{G(z)}
$$

where G given in (2.3) is a meromorphically starlike function. Since

$$
q(z) \prec \frac{1+A z}{1+B z},
$$

by the subordination principle we obtain for $|z|=r, 0<r<1$, that

$$
\frac{1-A r}{1-B r} \leq|q(z)| \leq \frac{1+A r}{1+B r} .
$$

Making use of Lemma 1.3 , we readily obtain the desired inequalities, as asserted in (2.11).

We provide next a convolution property of functions from the class $\Sigma(A, B ; \alpha)$ considered.

Theorem 2.4. Let $-1 \leq B<A \leq 1,0 \leq \alpha \leq 1, \gamma \leq 1$ and $f \in \Sigma(A, B ; \alpha)$ such that the corresponding function $g \in \Sigma^{*}(1 / 2)$ satisfies the condition

$$
\begin{equation*}
-\Re\left(\frac{z g^{\prime}(z)}{g(z)}\right)<\frac{3}{2}-\frac{1}{2} \gamma \quad(z \in \mathcal{U}) \tag{2.12}
\end{equation*}
$$

If $\phi \in \Sigma$ with $z^{2} \phi(z) \in \mathcal{R}(\gamma)$, then $\phi * f \in \Sigma(A, B ; \alpha)$.
Proof. Let $f \in \Sigma(A, B ; \alpha)$ and let G and q be given by

$$
G(z)=-z g(z) g(-z), \quad q(z)=-\frac{(1-2 \alpha) z f^{\prime}(z)-\alpha z^{2} f^{\prime \prime}(z)}{G(z)} .
$$

As shown in the proof of Theorem 2.1, G is an odd meromorphic starlike function. Further, since

$$
\frac{z G^{\prime}(z)}{G(z)}=1+\frac{z g^{\prime}(z)}{g(z)}-\frac{z g^{\prime}(-z)}{g(-z)},
$$

inequality (2.12) implies

$$
-\Re\left(\frac{z G^{\prime}(z)}{G(z)}\right)<2-\gamma \quad(z \in \mathcal{U}),
$$

from which we obtain $z^{2} G(z) \in \mathcal{S}^{*}(\gamma)$.
Define $\varphi(z)=(\phi * G)(z)$ and $k(z)=\sqrt{z \varphi(z)} / z$. We observe that φ is also an odd and starlike meromorphic function. In order to prove this, let $F(z)=-z G^{\prime}(z) / G(z)$. Since

$$
\begin{aligned}
-\frac{z(\phi * G)^{\prime}(z)}{(\phi * G)(z)} & =\frac{\left(\phi *\left(-z G^{\prime}\right)\right)(z)}{(\phi * G)(z)}=\frac{\phi(z) * G(z) F(z)}{(\phi * G)(z)} \\
& =\frac{z^{2} \phi(z) * z^{2} G(z) F(z)}{z^{2} \phi(z) * z^{2} G(z)}
\end{aligned}
$$

with $z^{2} G(z) \in \mathcal{S}^{*}(\gamma)$ and $z^{2} \phi(z) \in \mathcal{R}(\gamma)$, we deduce, by Lemma 1.4, that

$$
-\frac{z(\phi * G)^{\prime}(z)}{(\phi * G)(z)} \in \overline{\operatorname{co}}(F(\mathcal{U})) .
$$

Because G is starlike meromorphic, we have $\Re F(z)>0$, and so the above relation yields $\phi * G$ is indeed also starlike. As a consequence, $k \in \Sigma^{*}(1 / 2)$ and $\varphi(z)=-z k(z) k(-z)$. Moreover, we have

$$
\begin{aligned}
& \frac{(1-2 \alpha)(\phi * f)^{\prime}(z)-\alpha z(\phi * f)^{\prime \prime}(z)}{k(z) k(-z)} \\
= & \frac{\phi *\left[-(1-2 \alpha) z f^{\prime}(z)+\alpha z^{2} f^{\prime \prime}(z)\right]}{\varphi(z)}=\frac{\phi(z) * q(z) G(z)}{(\phi * G)(z)} \\
= & \frac{z^{2} \phi(z) * q(z) z^{2} G(z)}{z^{2} \phi(z) * z^{2} G(z)} .
\end{aligned}
$$

By applying Lemma 1.4 once again we deduce that

$$
\begin{equation*}
\frac{z^{2} \phi(z) * q(z) z^{2} G(z)}{z^{2} \phi(z) * z^{2} G(z)} \in \overline{\mathrm{co}}(q(\mathcal{U})) \tag{2.13}
\end{equation*}
$$

But since $f \in \Sigma(A, B ; \alpha)$, we have

$$
\begin{equation*}
q(z) \prec \frac{1+A z}{1+B z} . \tag{2.14}
\end{equation*}
$$

The function $(1+A z) /(1+B z)$ is convex and therefore equations (2.13) and (2.14) yield

$$
\frac{z^{2} \phi(z) * q(z) z^{2} G(z)}{z^{2} \phi(z) * z^{2} G(z)} \prec \frac{1+A z}{1+B z}
$$

which is equivalent to

$$
\frac{(1-2 \alpha)(\phi * f)^{\prime}(z)-\alpha z^{2}(\phi * f)^{\prime \prime}(z)}{k(z) k(-z)} \prec \frac{1+A z}{1+B z}
$$

Thus $\phi * f \in \Sigma(A, B ; \alpha)$ and so the proof is complete.

Acknowledgements

Part of this work was possible with the financial support of the Sectoral Operation Programme for Human Resources Development 2007-2013, cofinanced by the European Social Fund, under the project number POSDRU/107/ 1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

References

[1] C. GaO and S. Zhou, On a class of analytic functions related to the starlike functions, Kyungpook Math. J., 45 (2005), 123-130.
[2] P. Goswami, S. Bulut and T. Bulboacă, Certain properties of a new subclass of close-to-convex functions, Arab. J. Math., 1, 3 (2012), 309-317, http://dx.doi.org/10.1007/s40065-012-0029-y.
[3] J. Kowalczyk and E. Leś-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett., 23 (2010), 1147-1151, http://dx.doi.org/10.1016/j.aml.2010.03.004.
[4] C. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221-235, http://dx.doi.org/10.2140/pjm.1963.13.221.
[5] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. Series 2, 48 (1945), 48-82, http://dx.doi.org/10.1112/plms/s2-48.1.48.
[6] S. Ruscheweyh, Convolutions in Geometric Function Theory, in Séminaire de Mathématiques Supérieures, 83, Les Presses de l'Université de Montréal, Montréal, Canada, 1982, 54.
[7] Y.J. Sim and O.S. Kwon, A subclass of meromorphic close-to-convex functions of Janowski's type, Int. J. Math. Math. Sci., 2012, Article ID 682162, 12 pages, 2012, http://dx.doi.org/10.1155/2012/682162.
[8] A. Soni and S. Kant, A new subclass of meromorphic close-to-convex functions, J. Complex Anal., 2013, Article ID 629394, http://dx.doi.org/10.1155/2013/629394.
[9] B. Şeker, On certain new subclass of close-to-convex functions, Appl. Math. Comput., 218 (2011), 1041-1045, http://dx.doi.org/10.1016/j.amc.2011.03.018.
[10] L. Shi, J.-P. Yi and Z.-G. Wang, On certain subclass of meromorphic close-to-convex functions, Appl. Math. Comput., 219 (2013), 10143-10149, http://dx.doi.org/10.1016/j.amc.2013.03.087.
[11] Z.-G. Wang, C. Gao and S.-M. Yuan, On certain subclass of close-to-convex functions, Mat. Vesnik, 58 (2006), 119-124.
[12] Z.-G. Wang, Y. Sun and N. Xu, Some properties of certain meromorphic close-to-convex functions, Appl. Math. Lett., 25 (2012), 454-460, http://dx.doi.org/10.1016/j.aml.2011.09.035.
[13] Q.-H Xu, H.M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., 24 (2011), 396-401, http://dx.doi.org/10.1016/j.aml.2010.10.037.

Oana Crişan
E-mail: oana.crisan@ubbcluj.ro

Grigore Ş. Sălăgean
Department of Mathematics, Babeş-Bolyai University
400084 Cluj-Napoca, Romania
E-mail: salagean@math.ubbcluj.ro

[^0]: *Corresponding author

