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Abstract - A connection between the Riemann Hypothesis and the distri-
bution of the zeros of the derivative ¢’ of the Riemann Zeta function ¢ has
been revealed 80 years ago, but it remained dormant until recently, when
a lot of studies began to be devoted to the distribution of the zeros of the
derivatives of ¢. Although the first ideas were based on geometric grounds,
the recent studies have more a number-theoretical flavour. We revive in
this paper the initial geometrical ideas and study the problem in the larger
context of the family of Dirichlet L-functions, to which the Riemann Zeta
function belongs.
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1. Introduction

The idea of using the pre-image of the real axis (die Methode der reellen
Ziige) in the study of the location of the zeros of (' is present in Speiser’s
paper [13] who was inspired by the thesis of A. Utzinger, Uber die reellen
Zige der Riemannschen Zetafunction, Zirich 1934. However, the lack of
modern computational tools did not allow him to fully benefit of the power
of this method. In particular, it was impossible at that time to find the
fundamental domains of the Riemann Zeta function, which are essential in
the visualization of the conformal mapping realized by this function. This
has been accomplished in [3]-[5] and [7]-[9]. Moreover, in [6] we succeeded
to do the same thing for arbitrary Dirichlet L-functions.

Let us present the concepts we need in order to tackle this problem. A
Dirichlet character modulo ¢, with ¢ a positive integer, is a totally mul-
tiplicative periodic function y of period ¢ defined on Z (see [11], [6]). A
Dirichlet L-series is a series of the form

Lisi) =3 X (1.1)

nS

n=1
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It is known (see [11]) that every Dirichlet L-series can be extended to an
analytic function in the whole plane, except possibly at s = 1, where it can
have a simple pole. Such a function is called Dirichlet L-function. The
Riemann Zeta function is the particular Dirichlet L-function obtained for
q = 1. If d|qg and x* is a Dirichlet character modulo d, then x(n) = x*(n) if
(n,q) =1 and x(n) = 0 otherwise, defines a character modulo ¢ for which

Lo =) TT (1-52). (1.2

S
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where p are prime numbers. We say that x* induces x. A Dirichlet character
x is called primitive if it is not induced by any other character. The formula
(1.2) shows that if x* induces x, then L(s;x) and L(s;x*) have the same
zeros, except for the zeros of the product, which are all on the imaginary
axis. We consider them as trivial zeros of L(s;x) and therefore L(s;x)
and L(s;x*) have the same non trivial zeros. We would like to do a similar
classification of the zeros of the derivative L'(s; x). This was straightforward
for the derivative of the Riemann Zeta function for which the real zeros were
considered naturally as trivial, while the others were considered non trivial.
A criterion of triviality for the zeros of L'(s;x) could come from the way
these zeros are generated by the zeros of L(s;x). Indeed, we have seen in
[6] that for any bounded region D of the plane, we can find > 0 such that
the intersection of D with the pre-image of a circle ~, centred at the origin
and of radius r is a set of disjoint closed curves containing each one a unique
zero of L(s;x) situated in D. When r increases, these curves expand and for
some value rg of r two of them touch each other at a point vg. This point is
a branch point of the branched Riemann surface generated by L(s;x) and
therefore a zero of L'(s; x). By letting r increase past ro the two curves fuse
into a unique closed curve containing both zeros and for a greater value of r
some other zeros of L'(s;y) are obtained and so on. For the Riemann Zeta
function, the trivial zeros of ¢ have generated in this way the trivial zeros of
¢’ and the non trivial zeros of ¢ have generated the non trivial zeros of (’.
The situation becomes more complicated for arbitrary Dirichlet L-functions,
since trivial zeros on the imaginary axis and non trivial ones can generate
together zeros of its derivative. Which ones of these zeros will be called
trivial and which ones non trivial? In order to device a proper criterion, we
need to remember (see [6] and [8]) that all the zeros of L(s;x) and L'(s;x)
are simple zeros. Moreover, there are unbounded strips Sk, k # 0 bounded
each one by a couple of unbounded curves which are mapped bijectively by
L(s;x) onto the interval (1,400) of the real axis such that every S contains
Jr > 1 non trivial zeros located on the critical axis Re s = 1/2 and a number
my, > 0 of trivial zeros located on the imaginary axis. There is also a strip Sy
bounded by the same type of curves which contains all the trivial real zeros
of L(s;x). The zeros of L'(s;x) are obtained by expanding the components
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of the pre-image by L(s;x) of . If both components touching at a vy ;
contain non trivial zeros of L(s;x), we will say that vy ; is a non trivial
zero of L'(s;x), otherwise we will call it trivial. This definition agrees with
the known definition of the (non)triviality of the zeros of the Riemann Zeta
function. It is an easy exercise to check that Sy contains jp_; non trivial
zeros and my, trivial zeros of L'(s;x), where ji and my are the non trivial
and respectively trivial zeros of L(s;x) from Si. These numbers agree with
those known for Dirichlet L-functions defined by primitive characters, in
which case m = 0. They are obtained by building a complete binary tree
having as leaves the zeros of L(s; x) from Sy and as internal nodes the zeros
of L'(s;x) from Si. It is known that if such a tree has ji + my leaves, it
will have jx + my — 1 internal nodes. From these ji — 1 correspond to the
non trivial zeros of L'(s; ), as it can be seen by building separately the tree
generated by the non trivial zeros of L(s;x), i.e. by simply ignoring the
existence of trivial zeros of L(s;x). We call progenitor of a leaf an internal
node from which one can descend to that leaf. Figure 1 below illustrates
the strips Sy as well as the components of the pre-images of circles ~, for
different values of r in the case of a Dirichlet L-function defined by a complex
Dirichlet character y modulo 14, which is imprimitive and thus L(s; x) has
some imaginary trivial zeros. The way the zeros of L(s;x) generate the
zeros of L'(s;x) is shown in the adjacent binary tree. We can distinguish
trivial and non trivial zeros of L(s;x) as well as of L'(s; x).

A lot of studies (see [10]-[14]) have been devoted lately to the distribution
of the zeros of the derivatives of ( and most of them make reference to
Speiser’s paper without expanding on the method he used. We take in this
paper a deeper look into the geometry of the pre-image of the real axis in a
more general setting, namely for an arbitrary Dirichlet L-function, in order
to draw conclusions related to the distribution of the zeros of its derivative.

2. The pre-image of the real axis by L(s;x)

The alternative notation L(q, 7, s) is used for a Dirichlet L-function defined
by the j-th Dirichlet character modulo ¢ when it is important to specify both
of these parameters. The location of the zeros of such a function becomes
obvious when coloring differently the pre-images of the negative and of the
positive real half axes, namely the zeros appear at the junction of the two
colors. By the Big Picard Theorem, if zp € R is a non lacunary value
of L(q,7,s), then there is a countable number of points s, € C such that
L(q, 7, sn) = xo. The continuation along R from every s, (see [2]) produces a
countable number of unbounded curves, called components of the pre-image
of R by L(q,7j,s). Sometimes, in the continuation process, branch points of
the respective branched Riemann surface can be met. These are the points
where L'(q, j, s) = 0. It is known (see [1], page 133 ) that in the neighborhood
of such a point sy we have:
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# Trivial Zeros of L{s;X) O Non Trivial Zeros of L{5X)

A Non Trivial Zeros of L'(5X) = Trivial Zeros of L'(5,X)

Figure 1. Trivial and non trivial zeros of L(s;x) and L'(s; ).

L(g,5,8) = L(gq, 5, 50) + (s — s0)%g(s), (2.1)

where ¢(s) is an analytic function and g(sg) # 0. Indeed, it is known (see
[6]) that the zeros of L'(q,j,s) are all simple, hence two components of the
pre-image of R by L(q, j,s) touch each other at sy and are orthogonal.
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It has been shown in [6] that for any Dirichlet L-function there are four
kinds of components of the pre-image of R. Namely, there are countable
many components I'j which are mapped bijectively by the function onto the
interval (1,4o00). They do not intersect each other and form infinite strips
Si. Every strip Sy contains a unique component I'y, o of the pre-image of R
which is mapped bijectively by the function onto the interval (—oo, 1) and a
finite number j, —1 of components I'y, ;, 7 # 0 which are mapped bijectively
by the function onto the whole real axis. The curves I'y ; do not intersect
each other and they do not intersect any curve I'}.. Every curve I'y, ; contains
a unique zero sy ; of the L-function, which is non trivial if the function is
generated by a primitive character and can be a trivial zero on the imaginary
axis if the function is generated by an imprimitive one. Finally, there are
those components containing trivial real zeros, which belong all to the strip
Sp and which are mapped by the function onto the whole real axis. Adjacent
components touch each other orthogonally on the real axis if the character is
real. If the character is not real, then they do not touch each other and every
strip between two adjacent components contains a unique branch point of
the function. We can reach these branch points, as well as those belonging
to the strips Sy by arcs starting at points uy ; for which L(ug ;;x) = 1 or
by unbounded curves on which lim,_< 4+ L(c + it;x) = 1 and such that
the images of these arcs and unbounded curves are the segments connecting
z = 1 with the image by L(s;x) of the respective branch points. The
following is in line with Speiser’s results.

Theorem 2.1. All the non trivial zeros of L' (s ; x) have the real part greater
than 1/2.The trivial zeros of L'(s;x) with imaginary progenitors have the
real part greather than 0.

Proof. Let v ; be such a zero of L' (s ; x) and suppose that it is a progenitor
of the non trivial zero sj ;. Due to the color alternating rule (see [5], [6]),
vg,; is situated outside the parabola-like curve I'y ;. It is obviously enough
to study the case when j > 0, i.e. when I'y ; is above I'y . Then L(vy, ;;X)
belongs to the upper half plane in Figure 2, hence 0 < a < 7, where o =
arg L(vk,j; x)- In this paper arg z € [0, 27) is the angle made by the ray from
the origin through z with the positive real half axis. The pre-image of the ray
determined by L(vy ;; x) contains two curves which are orthogonal at vy, ;.
Indeed, it is known (see [6]) that the zeros of L'(s; x) are simple, hence vy, j is
a ramification point of order two. The angles at vy, ; are doubled by L(s; x),
hence the four arcs meeting at vy j make the angles a/2,7/2+ /2, m+ /2
and 37/2 4 a/2 with a horizontal line. The angle of 7/2 4+ /2 made by the
second arc (which ends at sy ;) is less than the angle 5 made by the tangent
to it at any other point and the horizontal line. If Rewy; < Resy ;, then
there must be a point on this arc for which g = 7/2, therefore 7/2 +a/2 <
/2, i.e. @ < 0, which is absurd and this contradiction proves the first part of
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Figure 2. Rewvy; > Resy ;.

the theorem. The second part is obtained taking Re s; ; = 0. Figure 2 below
illustrates such a situation for ((s) in the strip S7 and the non trivial zero
s71 = 1/2+69.54i of  as well as the corresponding zero v7; = 1.83+68.61:
of ¢'. O

3. The second derivative of L(s;x)

Let us take now the pre-image by L'(s;x) of the real axis. Some of the
components are this time curves Y which bound strips ¥ and are mapped
bijectively by L'(s;x) onto the interval (—oo,0). Every strip X contains a
unique component Yy o of the pre-image of the real axis, which is mapped
bijectively by L'(s; x) onto the interval (0, +00) and a number of components
which are mapped bijectively by L'(s;x) onto R. Let us take also the pre-
image by L'(s;x) of a circle 7, centered at the origin and of radius r. Since
limy_< 100 L'(0 +it;x) = 0, for every € > 0, there is oy such that ¢ > oy
implies that |L'(c + it;x)| < €. Therefore, for r < € some components of
the pre-image of ~, must intersect the unbounded sets {s = o + it |0 > oy}
for every t € R. In fact, we can show that there is just one such component.
Indeed, by Big Picard Theorem, the pre-image of the point z = —r is a
countable set of points accumulating to co. Each one of these points belongs
to a unique component of the pre-image of the negative real half axis. In
other words every curve T} contains one of these points and so does every
curve Yy ;. Starting from such a point on Y) and performing continuation
along -y, counterclockwise we reach the point on Y/, 41 and if the continuation
is clockwise, we reach the point on Y)_,. It is obvious that in this way we
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visit all the points belonging to the pre-image of z = —r which are situated
on curves Y} and the unbounded curve we obtain in this way is the unique
(due to the monodromy theorem) unbounded component of the pre-image
of ~,.. For an arbitrary bounded region of the plane, we can take r small
enough such that the bounded components of the pre-image by L'(s;x) of
v, included in that region are disjoint closed curves containing each one a
zero of L'(s;x). Indeed, when r— > 0 the respective components contract
each one to a point, which is a zero of L'(s; x).

Theorem 3.1. The number of zeros of L"(s;x) and of L'(s;x) from a
given strip Xy, is the same.

Proof. Suppose that Xj contains m zeros of L'(s;x). Considering them
as the leaves of a binary tree whose internal nodes are obtained as the
touching points of the bounded components of the pre-image of ,., we obtain
a complete binary tree. It is known that the number of internal nods of this
tree must be m — 1. These are not all the zeros of L”(s;x). One more
zero is obtained as the touching point of one of these components with the
unbounded component of the pre-image of +,.. Every zero of L"(s;x) in X
can be obtained in this way and therefore the number of zeros of L”(s;x)
in ¥ is exactly m. O

Some of the zeros of L'(s;x) from X can be trivial zeros, as defined in
Section 1. We apply that definition recursively for the zeros of any deriva-
tive of L(s;x). Therefore, the non trivial zeros of L”(s;y) are obtained as
internal nodes of the complete binary tree built on the non trivial zeros of
L'(s;x) as leaves. The other zeros of L"(s;x) from X are trivial, even if
they are progenitors of some non trivial zeros of L'(s;x).

Theorem 3.2. To every zero vy ; of L'(s;x) from Xy corresponds a zero
wy,; of L"(s;x) such that Rewy,; > Rewy; and Imwy, ; ~ Im vy, ;.

Proof. For a zero wy; of L"(s;x), the pre-image by L'(s;x) of the
ray determined by L'(wy ;) has two components orthogonal in wy ;. If
arg L' (wy, j; x) = «, then as in Theorem 2.1 we can deal just with the case
0 < a < 7. The four arcs starting at wy ; form with a horizontal line re-
spectively the angles a/2,7/2 + /2,7 + /2 and 37/2 + «/2. The second
arc ends in vy ; and the tangent to it makes with a horizontal line an angle
p > m/2 4 /2. For Rewy ; < Rewy j, there would be a point on this arc
for which 8 = 7/2, hence 7/2 > 7/2 + a/2, i.e. a < 0, which is a con-
tradiction, proving the first part of the theorem. For the second, we need
to explain first the meaning of the sign ~ used there. We have seen that
limy_~ 100 L'(0 + it;x) = 0 implies the existence of an unbounded compo-
nent of the pre-image by L'(s;x) of every circle ~, centered at the origin
and of radius r. We can take r small enough such that this component and
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the bounded components from a given Si are all disjoint. Letting r increase,
the bounded components expand, remaining in Si. Indeed, due to the color
alternating rule, they cannot cut I'j or I ;. The unbounded component
moves indefinitely to the left with the increasing r, since for o + it € Y,
we have that lim,_~ _ L'(c +it;x) = —oo. There must be a value of r for
which the bounded component containing v ; meets the unbounded com-
ponent of the pre-image of 7, at a point wy, ;. Since the last does not differ
too much in ¥ of a vertical line, this explains the fact that the imaginary
parts of vy ; and wy ; do not differ too much. If we continue to increase r
the respective curves will fuse into a unique unbounded curve leaving both
vg,; and wy, ; at the right. O

Let us notice that there is a hint of the correspondence between sy, ;, vy ;
and wy, ; for the Riemann Zeta function in [14], Figure 1, and Table II, ex-
cept that the idea of a mysterious bouncing effect (see [14], p. 680) is hiding
its true nature. Moreover, the existence of the non trivial zero —0.36 + 3.59¢
of ¢”, as Spira notices, contradicts either the generality of this correspon-
dence, or Speiser’s results. Indeed, either this zero does not correspond to
a non trivial zero of ¢/, contradicting the generality of the respective corre-
spondence, or there is a non trivial zero of (' at the left of the critical line
and therefore Speiser’s result is not true, admitting the Riemann Hypothe-
sis. However, this correspondence concerns the non trivial zeros of ¢, ¢’ and
¢” and for a meaningful discussion on this topic, we should first clarify the
nature of the zero —0.36 + 3.59i. We anticipate by saying that it is a trivial
zero of ¢” and the whole problem can be now looked upon from a different
perspective. It is also worth to compare at this moment the effectiveness
of the number-theoretical method used by Spira and that of the geometric
function theory consistently used by us in [3]-[9]. The data regarding the
non trivial zeros of ¢ and ¢’ from [14], Figure 1 are obtained in [4] and [§]
by taking the pre-image by ( of the real axis, as well as of some circles 7,
centered at the origin. The first pre-image partitions the complex plane into
strips S; in which the second pre-image operates locating the zeros of ¢’. In
every strip S; the number of these zeros is one unit less than those of (. The
reason is the way they appear as the internal nodes of a complete binary tree
whose leaves are the zeros of ¢ contained by the respective strip. This dif-
ference explains the gaps noticed by Spira and labelled bouncing. Moreover,
starting now with the zeros of ¢’ from a given strip S, the color matching
rule established in [7] allows us to substitute X with Sj and obtain in the
same way the zeros of " situated in S}, except that this time there is an un-
bounded component of the pre-image of ~y;, creating a zero of ¢”, such that
the number of zeros of ¢’ in S}, is the same as that of ¢/. Moreover, it appears
that these zeros are at the intersection of the unbounded component of the
pre-image of v, with the bounded ones, which explains the fact noticed by
Spira that Imwy, ; is approximately the same with Imwvy ;. Having this in
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Figure 3. The correspondence of the zeros of ¢, ¢’ and ¢”.

mind, we can complete, as shown in Figure 3a below, Spira’s Figure 1 ([14],
p. 681), by indicating the strips Sk, the corresponding complete binary trees
of the zeros of ( and ¢/, as well as the correspondence vy ;— > wy, ;.

The Figure 3 above shows the non trivial zeros of ¢, ¢’ and ¢” as calcu-
lated by Spira, but also as deduced by our geometric method. We state as
a theorem the surprising result regarding the zero —0.36 + 3.59i.

Theorem 3.3. The function (" has two non real trivial zeros symmetric
with respect to the real axis.

Proof. Indeed, a trivial zero of " is obtained when two components of a
pre-image by ¢’(s) of a ray cross each other and at least one of them ends in
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Figure 4. Non real trivial zeros of ¢”.

a trivial zero of ¢’. This is exactly the situation with the zero —0.36 + 3.59i
of ¢”. Indeed, the pre-image of the ray passing through ¢’(—0.36 + 3.59%)
contains two curves passing through the pole s = 1 and crossing each other
once more at —0.36 + 3.59¢ (see Figure 4b). One of the components I" of
this pre-image passes through the first trivial zero of (’. Let us notice that
limy—> 400 ¢'(0+it) = 0 when o+ it € T'. The other component I stretches
for o from -0o to +o00 and limy_> 400 ¢'(04it) = 0 and limy_~ oo (0 +it) =
oo when o + it € TV. We notice also that the same zero —0.36 + 3.59i is
obtained as a touching point of two components of the pre-image by ¢'(s)
of the circle v, of radius r = |¢/(—0.36 + 3.597)| and centered at the origin,
one bounded and the other one unbounded (see Figure 4a). We varied
slightly the value of r to show the way these components approach each
other, touch each other and then fuse to a unique unbounded component.
Figure 4c reveals the existence of the trivial zero —0.36 — 3.59i of ¢”. It also
illustrates the fact that s = 1 is a double pole for ¢’ (blue and yellow) and
a triple pole for ¢” (red and black). O

In our knowledge, the question whether the zeros of L(™ (s;y) have the
real part as big as we want for n big enough, was not answered yet. Spira’s
affirmation that it seems probable that the zeros of C(k)(s) will have real
parts tending to oo with k has no solid support in his paper and we did not
find a similar affirmation elsewhere.

All we can say based on Theorem 3.2 is that if o, + i, is a zero of
L(")(s ; X), then there is a zero oy, 41 +it, 41 of L(”+1)(s ; X) such that 0,41 >
On-
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