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Abstract - The purpose of this note is to study the fundamental oper-
ations of Grothendieck on the categories of analytic modules defined over
semi-simplicial analytic spaces (i.e. families of analytic spaces indexed by
simplicial complexes, with compatible connecting morphisms). As main ap-
plications we show how the direct image functors allow one to construct
the dualizing complex as well as natural Dolbeault resolutions on complex
spaces with singularities.
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Čech complex; Dolbeault resolution; dualizing complex.

Mathematics Subject Classification (2010) : 32C15, 32C22, 32C37,
32K15.

1. Introduction

A semi-simplicial analytic space is a contravariant functor from a sim-
plicial complex (seen as a category) to the category of analytic spaces, or,
equivalently, a family of analytic spaces indexed by the simpleces of a sim-
plicial complex, together with a family of compatible connecting morphisms.
Semi-simplicial (s.s.) analytic spaces and the corresponding analytic mod-
ules appeared, for instance, in Forster - Knorr [4] for the proof of Grauert’s
direct image theorem, in Verdier [12] for the introduction of the natural
topology on the global hypercohomology groups of complexes of analytic
sheaves with coherent cohomology, in Ramis, Ruget [9] for the proof of rela-
tive analytic duality, in Flenner [3] and Bănică, Putinar, Schumacher [1] for
computations linked to deformation theory.

The purpose of this note is to extend the fundamental operations of
Grothendieck to analytic modules over s.s.analytic spaces. While extension
of the inverse image or of the tensor product are straightforward (i.e. are
made componentwise), the extensions for the direct image and the direct
image with proper supports are more involved. Thus, in general, the direct
image associates to a module over the source s.s.analytic space a complex of
modules bounded below. Similarly, the direct image with proper supports
associates to a comodule a complex of comodules bounded above.
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There are several interesting applications. Thus, using the direct im-
age, one can ”link together” local Dolbeault resolutions to get a Dolbeault
resolution on a complex space with singularities.

In a similar manner one ”links together” local dualizing complexes (given
by Dolbeault resolutions with currents in local closed embeddings in mani-
folds) to obtain a representative for the dualizing complex on any analytic
space. The first construction of the dualizing complex in analytic geometry
was done by Ramis, Ruget [8] using the Cousin complex and techniques of al-
gebraic geometry; there exists another construction due to Fouché [5] which
also uses the Cousin complex and a construction based on the Godement
resolution due to Golovin [6]. Let us remark that the representatives for
the Dolbeault resolution and the dualizing complex constructed here have
good topological properties and allow, for instance, proofs for the absolute
duality theorems similar to that originally given by Serre [11]. For details
see [2].

Let us mention also that the Čech complex of an analytic sheaf relative
to an open covering of an analytic space appears naturally as a direct image.

2. Semi-simplicial analytic spaces

2.1. Semi-simplicial objects

For the reader’s convenience we start by reminding several well-known facts.

Let (I,S) be a simplicial complex, i.e. I is an arbitrary set and S is a
family of non-empty finite parts of I, such that:

1. {i} ∈ S for all i ∈ I
2. if α′ ⊂ α ∈ S then α′ ∈ S.

If α ∈ S we denote by |α| = Card(α)− 1 the length of the simplex α.
Recall that dim((I,S)) = sup{|α| | α ∈ S}.

A morphism of simplicial complexes f : (I,S) → (J, T ) is simply a
mapping f : I → J such that f(α) ∈ T . whenever α ∈ S.

If K(pt) is the simplicial complex over the set with one element {pt}
then denote by aS : (I,S)→ K(pt) the only morphism possible (induced by
the unique mapping I → {pt}).

Definition 2.1.

1. Let C be a category. A semi-simplicial (s.s.) system of objects in C
relative to the simplicial complex (I,S) consists of:

- a family (Xα)α∈S of objects in C
- a family (ραβ)α⊂β of connecting morphisms, ραβ : Xβ → Xα,

such that ραα = id for α ∈ S, and ραβ ◦ ρβγ = ραγ whenever
α ⊆ β ⊆ γ.
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2. Let f : (I,S)→ (J, T ) be a morphism of simplicial complexes and let
X = ((Xα)α∈S , (ραβ)α⊂β), Y = ((Yγ)γ∈T , (ρ′γδ)γ⊂δ) be s.s.systems
of objects in C relative to (I,S), respectively (J, T ). A morphism F :
X → Y over f consists of a family of morphisms in C, (Fα)α∈S , Fα :
Xα→Yf(α), such that the following diagram commutes for each α ⊆ β:

Xβ
Fβ−−−−→ Yf(β)yραβ yρ′f(α)f(β)

Xα
Fα−−−−→ Yf(α)

If the simplicial complex is clear from the context we shall omit
mentioning it.

If C is the category of analytic spaces (in this paper analytic space
will always mean complex analytic space) then we shall say for short s.s.ana-
lytic space instead of s.s.system of analytic spaces. Let X = ((Xα)α∈S ,
(ραβ)α⊂β) be a s.s.analytic space. Here Xα is short for (Xα,Oα), where
Oα denotes the sheaf of holomorphic sections of Xα, and ραβ is short for
(ραβ, ρ

1
βα) where ραβ : Xβ → Xα is the topological part and ρ1βα : Oα →

ραβ∗(Oβ) is the section level part. If Xα is a complex manifold for all α ∈ S,
then X will be called a s.s.complex manifold.

Example 2.1. An analytic space can be regarded as a s.s.analytic space
relative to K(pt), the simplicial complex constructed over the index set
with one element.

Example 2.2. Let X be an analytic space and U = (Ui)i∈I an open cover-
ing of X. One associates to U the simplicial complex (I,N (U)), where N (U)
denotes the nerve of U , and the s.s.analytic space relative to (I,N (U)),
U = ((Uα)α∈N (U), (iαβ)α⊂β), where Uα denotes, as usual, the intersection⋂
i∈α

Ui, and iαβ : Uβ → Uα is the natural inclusion. Moreover there is a natu-

ral morphism of s.s.analytic spaces i : U→X with components iα : Uα → X.

Example 2.3. Let (I,S) be a simplicial complex and (Xi)i∈I a family of
analytic spaces. For α ∈ S let Xα =

∏
i∈α

Xi. Then X = ((Xα)α∈S , (pαβ)α⊂β)

is a s.s.analytic space, where pαβ : Xβ → Xα is the natural projection

2.2. Embedding atlases

Let i : X ↪→ D be an closed embedding of the analytic space X in the
complex manifold D. We call (X, i,D) an embedding triple. A morphism of
embedding triples (f, f̃) : (X1, i1, D1)→ (X2, i2, D2) is a pair of morphisms
of analytic spaces such that the following diagram commutes:
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X1
f−−−−→ X2yi1 yi2

D1
f̃−−−−→ D2

(2.1)

If f̃ is clear from the context we sometimes write f instead of (f, f̃).
A complex manifold D will be identified with the embedding triple

(D, id,D).

Remark 2.1. A s.s.of embedding triples (Xα, kα, Dα)α∈S can be seen as a
triple (X, k,D) where X = (Xα)α∈S is a s.s.analytic space, D = (Dα)α∈S is
a s.s.complex manifold, and k : X→ D is a morphism of s.s. analytic spaces
such that each kα : Xα→Dα is a closed embedding.

Definition 2.2. Let X be an analytic space. An embedding atlas of X con-
sists of a family of embedding triples A = (Ui, ki, Di)i∈I such that

1. Ui ⊂ X is an open set

2. U = (Ui)i∈I is a covering of X.

An embedding triple (Ui, ki, Di) of A will be called a chart.
The pair (X,A) will be called locally embedded analytic space or, some-

times, a local embedding of X.

In particular, an embedding triple (X, i,D) can be seen as an embedding
atlas of X with one chart.

Remark 2.2. Let X be an analytic space and A = (Ui, ki, Di)i∈I an em-
bedding atlas of X. One associates to the pair (X,A) the s.s.of embedding
triples (U,k,D) over the simplicial complex (I,N (U)) where U = (Ui)i∈I de-
notes the open covering of X, U = ((Uα)α∈N (U), (iαβ)α⊂β) is the s.s.analytic
space corresponding to U (see Example 2.2), D = ((Dα)α∈N (U), (pαβ)α⊂β)
is the s.s.analytic space associated to the family (Di)i∈I (see Example 2.3)
and k : U→ D is the morphism deduced from the closed embeddings ki :
Ui → Di. It is easy to see that each kα : Uα → Vα is also a closed embedding.

Let A = (Ui, ki, Di)i∈I and B = (Vj , kj , Dj)j∈J be embedding atlases
of the analytic space X, respectively Y . A morphism F : (X,A) → (Y,B)
of locally embedded analytic spaces consists of the following data:

- a morphism of analytic spaces f : X → Y

- a mapping τ : I → J such that f(Ui) ⊂ Vτ(i)
- a family (f̃i)i∈I of morphisms, f̃i : Di → Dτ(i), such that (f |Ui, f̃i) :

(Ui, ki, Di)→ (Vτ(i), kτ(i), Dτ(i)) is a morphism of embedding triples.
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2.3. Modules and comodules over a s.s.analytic space

The notions of X-modules and X-comodules defined below were introduced in
[9] under the name ”modules à liaisons covariantes”, respectively ”modules
à liaisons contravariantes”.

Throughout this paragraph X = ((Xα,Oα)α∈S , (ραβ, ρ
1
βα)α⊂β) will de-

note a s.s.analytic space relative to the simplicial complex (I,S).

Definition 2.3.

1. An X-module consists of

- a family (Fα)α∈S where Fα is an Oα-module on Xα

- a family of connecting morphisms (ϕβα)α⊂β, where ϕβα : Fα →
ραβ∗(Fβ), is a morphism of Oα-modules such that ϕαα = id for
all α ∈ S,and ρβγ∗(ϕγβ) ◦ ϕβα = ϕγα., whenever α ⊆ β ⊆ γ.

2. If F = ((Fα)α∈S , (ϕβα)α⊂β), G = ((Gα)α∈S , (ψβα)α⊂β) are X-modules,
then a morphism of X-modules u : F → G consists of a family
(uα)α∈S , where uα : Fα → Gα is a morphism of Oα-modules, such that
for α ⊆ β ραβ∗(uβ) ◦ ϕβα = ψβα ◦ uα.

We denote by Mod(X) the abelian category of X-modules and by C(X)
the category of complexes with terms in Mod(X).

Example 2.4. ((Oα)α∈S , (ρ
1
βα)α⊂β) is obviously an X-module that we de-

note OX .

Example 2.5. In the context of Example 2.2 let F ∈ Mod(OX). Then
(F|Uα)α∈S with the obvious connecting morphisms is an U-module that we
denote F|U.

Example 2.6. ((kα∗(Oα))α∈N (U) , (kα∗(i
1
βα))α⊂β) is a D-module (see the

notation in Remark 2.2).

Definition 2.4.

1. An X-comodule consists of:

- a family (Mα)α∈S where Mα is an Oα-module

- a family of connecting morphisms (θαβ)α⊂β, where θαβ : ραβ!(Fβ)→
Fα is a morphism of Oα-modules such that θαα = id for all
α ∈ S,and, if α ⊆ β ⊆ γ then θαβ ◦ ρβγ!(θβγ) = θαγ.

2. If M = ((Mα)α∈S , (θαβ)α⊂β), N = ((Nα)α∈S , (θ̃αβ)α⊂β) are X -
comodules, then a morphism of X-comodules v :M→N consists of
a family of morphisms (vα)α∈S , where vα :Mα → Nα is a morphism
of Oα-modules, such that for α ⊆ β θ̃αβ ◦ ραβ!(vβ) = vα ◦ θαβ.
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We denote by coMod(X) the abelian category of X-comodules and by
coC(X) the category of complexes with terms in coMod(X).

Example 2.7. In the context of Example 2.2 let F ∈ Mod(OX). Then
(F|Uα)α∈S together with the connecting morphisms given by the extensions
with 0 θαβ : iαβ!(F|Uβ)→ F|Uα is an U-comodule that we denote F|U.

3. The Grothendieck operations on the categories of modules and
comodules

Since in this note we want to avoid using derived categories we will not
treat the exceptional inverse image f !.

Let f : (I,S) → (J, T ) be a morphism of simplicial complexes, let X =
((Xα)α∈S , (ραβ)α⊂β), Y = ((Yγ)γ∈T , (ρ′γδ)γ⊂δ) be s.s.analytic spaces relative
to (I,S), respectively (J, T ), and F : X→ Y a morphism over f .

We start with the functors that can be extended componentwise.

3.1. The tensor product

The tensor product on analytic modules induces a bifunctor ⊗ : Mod(X)×
Mod(X) → Mod(X)̇, namely if one considers F = ((Fα)α∈S , (ϕβα)α⊂β),
G = ((Gα)α∈S , (ψβα)α⊂β) ∈Mod(X) then ((Fα ⊗Gα)α∈S , (ϕβα ⊗ ψβα)α⊂β)
is an X-module.

3.2. The Hom functors

Beside the Hom functors of Mod(X) and coMod(X) one can define a natural
bifunctor

Hom : Mod(X)× coMod(X)→ coMod(X)

as follows: if F = ((Fα)α∈S , (ϕβα)α⊂β) is an X-module and
M = ((Mα)α∈S , (θαβ)α⊂β) is an X-comodule then
Hom(F ,M) = ((Hom(Fα,Mα))α∈S , (θαβ ◦ • ◦ ϕβα)α⊂β) is an X-comodule.

3.3. The inverse image

Let F = ((Fγ)γ∈T ) ∈ Mod(Y). Then F ∗(F) = (F ∗(F)α∈S) with F ∗(F)α =
F ∗α(Ff(α)) and the obvious connecting morphisms is an X-module.

Remark that in the context of Examples 2.2 and 2.5 F|U =(F|Uα)α∈S
coincides with i∗(F).

3.4. Alternate X-modules and X-comodules

In order to define direct images of X-modules and X-comodules we shall
construct alternate versions of them. For this, let (I,S) be a simplicial
complex and fix a total order on I. We use the following notations:
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- if α ∈ S and j ∈ [0, |α|], then v(α; j) = the j-th vertex of α (with
respect to the order on I, the counting starting from 0), and σ(α; j) =
α \ {v(α; j)}

- if α ∈ S, |α| ≥ 1 and j, k ∈ [0, |α|], j 6= k, then σ(α;j, k) = α \
{v(α; j), v(α; k)}. Obviously, if j < k then σ(α; j, k) = σ(σ(α; k); j) =
σ(σ(α; j); k − 1)

Thus if α = {i0, ..., in} and i0 < i1 < ... < in , one checks immedi-
ately that |α| = n, v(α; j) = vj , σ(α; j) = {i0, ..., ı̂j , ..., in}, σ(α; j, k) =
{i0, ..., ı̂j , ..., ı̂k, ..., in}

Let X = ((Xα)α∈S , (ραβ)α⊂β) be a s.s.analytic space. To simplify no-
tation we use the subscript (α, j) to refer to the mappings along the edge
[α, σ(α; j)] of the simplicial complex (I,S). Thus we write ρ(α,j) instead of
ρσ(α;j)α : Xα → Xσ(α;j). Similarly, if F = ((Fα)α∈S , (ϕβα)α⊂β) is an
X-module we write ϕ(α,j) instead of ϕασ(α;j) : Fσ(α;j) → ρ(α;j)∗(Fα); if
M = ((Mα)α∈S , (θαβ)α⊂β) is an X-comodule we write θ(α,j) instead of
θσ(α;j)α : ρ(α;j)!(Mα)→Mσ(α;j).

Remark 3.1. The family of commuting morphisms (ραβ)α⊂β can be ”re-
constructed” (by finite compositions) from the subfamily (ρ(α;j))(α;j). If
α ∈ S, |α| ≥ 1, j, k ∈ [0, |α|], with, for instance, j < k, then the following
rectangular diagram commutes:

Xα

ρ(α;j)−−−−→ Xσ(α;j)yρ(α;k) yρ(σ(α;j),k−1)

Xσ(α;k)

ρ(σ(α;k),j)−−−−−−→ Xσ(α;j,k)

(D(α; j, k))

Conversely, any family of morphisms (ρ(α;j))(α;j) such that the diagrams
D(α; j, k) commute, generates a family of commuting morphisms for the
family of analytic spaces (Xα)α∈S . Similarly, the connecting morphisms of
the X-module F are uniquely determined by the subfamily (ϕ(α;j))(α;j) and
the obvious rectangular diagrams commute:

ρ(α;j,k)∗Fα
ρ(σ(α;j),k−1)∗(ϕ(α;j))←−−−−−−−−−−−−− ρ(σ(α;j),k−1)∗(Fσ(α;j))xρ(σ(α;k),j)∗(ϕ(α;k))

xϕ(σ(α;j),k−1)

ρ(σ(α;k),j)∗(Fσ(α;k))
ϕ(σ(α;k),j)←−−−−−− Fσ(α;j,k)

(D(F ;α; j, k))

Ditto for the X-comodule M — its connecting morphisms are uniquely
determined by the subfamily (θ(α;j))(α;j) and the corresponding rectangular
diagrams D(M;α; j, k) commute.
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Definition 3.1.

1. An alternate X-module consists of a family (Fα)α∈S , where each Fα
is an Oα-module, together with the family of connecting morphisms
(ϕ(α;j))(α;j), ϕ(α;j) : F(α;j) → ρ(α;j)∗(Fα) such that the diagrams
D(F ;α; j, k) anti-commute.

2. Let F = ((Fα)α∈S , (ϕ(α;j))(α;j)), G = ((Gα)α∈S , (ψ(α;j))(α;j)) be al-
ternate X-modules. A morphism of alternate X-modules u : F → G
consists of a family (uα)α∈S , uα : Fα → Gα morphism of Oα-modules,
such that for each pair (α; j) the diagram commutes:

F(α;j)

u(α;j)−−−−→ G(α;j)yϕ(α;j)

yψ(α;j)

ρ(α;j)∗Fα
uα−−−−→ ρ(α;j)∗Gα

(D(F ,G;α; j))

One denotes by aMod(X) the category of alternate X-modules.

3. With the notations at point 2, an anti-morphism of alternate X-modules
is a family of morphisms u = (uα)α∈S such that the diagrams
D(F ,G;α; j) anti-commute. A complex of alternate X-modules with
anti-morphism differentials will be called an alternate complex of al-
ternate X-modules. One denotes by aC(X) the category of alternate
complexes of alternate X-modules.

4. In exactly the same way as above one defines the notions of alternate
X-comodule, morphism and anti-morphism of alternate X-comodules
and alternate complex of alternate X-comodules. One denotes by
acoMod(X) the category of alternate X-comodules and by acoC(X)
the category of alternate complexes of alternate X-comodules.

To the edge (α, j) of the simplicial complex (I,S) we associate the alter-
nating coeficient ε(α, j) = (−1)j . Note that if F = ((Fα)α∈S , (ϕ(α;j))(α;j))
is an X-module then alt(F) = ((Fα)α∈S , (ε(α, j)ϕ(α;j))(α;j)) is an alternate
X-module. One checks easily that alt : Mod(X)→ aMod(X) is an isomor-
phism of categories with an obvious inverse that we denote by alt−1. The
functor alt extends to an isomorphism of categories C(X) → aC(X). In-
deed, if F•∈C(X ), F• = ((F•α)α∈S , (ϕ

•
(α;j))(α;j)) then the terms of alt(F•)

are obtained from the terms of F• via the functor alt, while the differentials
of each complex F•α are multiplied by (−1)|α|.

Similarly there is an isomorphism of categories alt : coMod(X) →
acoMod(X) which associates to the X-comoduleM = ((Mα)α∈S , (θ(α;j))(α;j))
the alternate X-comodule alt(M) = ((Mα)α∈S , (ε(α, j)θ(α;j))(α;j)); as
above, this isomorphism extends to an isomorphisms alt : coC(X)→ acoC(X).
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Remark 3.2. The notions of alternate X-module, alternate X-comodule
and alternate complex of X-modules or X-comodules do not depend on the
total order on I. The alt functors do. However for two total orders on I there
is a (non-unique) functorial isomorphism between the two corresponding alt
functors.

3.5. Direct image

Consider the following setting.

- f : (I,S)→ (J, T ) a morphism of simplicial complexes

- total orders on I and J such that f : I → J is increasing

- X = ((Xα)α∈S , (ραβ)α⊂β), Y = ((Yγ)γ∈T , (ρ′γδ)γ⊂δ) s.s.analytic spaces
relative to (I,S), respectively (J, T )

- F : X→Y a morphism of s.s.analytic spaces overf , that is one has
F = (Fα, F

∗
α)α∈S with Fα : Xα → Yf(α) morphism of analytic spaces

such that for α ⊆ β the following diagram commutes

Xβ
Fβ−−−−→ Yf(β)yραβ yρ′f(α)f(β)

Xα
Fα−−−−→ Yf(α)

Remark that S is the disjoint union of the sets (Sγ)γ∈T , with
Sγ = {α ∈ S|f(α) = γ}. Let F ∈ aMod(X), F = ((Fα)α∈S , (ϕ(α;j))(α;j)).
For γ ∈ T ((Fα∗(Fα))α, (Fσ(α;j)∗(ϕ(α,j)))(α;j))f(α)=f(σ(α;j))=γ is a multicom-
plex of Yγ-modules (recall that multicomplex means anti-commuting rect-
angles) and consider the simple complex associated to this multicomplex:

...→
∏

f(α)=γ
|α|=i

Fα∗(Fα)→
∏

f(α)=γ
|α|=i+1

Fα∗(Fα)→ ... (C•(γ))

Here the product with i = |γ| is considered in degree 0. The connecting mor-
phisms of F induce anti-morphisms C•(σ(γ; j)) → ρ(γ;j)∗(C

•(γ)) and one
checks that (C•(γ))γ∈T is an alternated complex of alternated Y−modules.

If we start with F an alternated complex of alternated X-modules instead
of an alternated X-module then C•(γ) is a double complex.

Definition 3.2.

1. If F ∈ aMod(X) then F∗(F) is the alternated complex of alternated
Y-modules with F∗(F)γ = C•(γ) and connecting morphisms induced
by those of F .
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2. If F ∈ aC(X) then F∗(F) is the alternated complex of alternated Y-
modules with F∗(F)γ =the simple complex associated to the double
complex C•(γ) (with the product for i = |γ| considered in degree 0)
and connecting morphisms induced by those of F .

3. If F ∈Mod(X) (respectively F ∈ C(X)) then

F∗(F) = alt−1(F∗(alt(F))).

One checks easily that the definition of the direct image is compatible
with the natural inclusion functors aMod(X) → aC(X) and Mod(X) →
C(X).

Example 3.1. The components (F ∗α)α∈S of the morphism F : X→Y deter-
mine a morphism of Y-modules F ∗ : OY → F∗(OX ).

Example 3.2. If f : (I,S) → (J, T ) is bijective (in particular if f is the
identity of (I,S)) then F∗(F)γ = Fα∗(Fα) where α = f−1(γ). In particular
if F : X → Y is a morphism of analytic spaces and F ∈ Mod(X) then the
usual direct image F∗(F) coincides with the direct image of F as module
over X seen as s.s. analytic space relative to K(pt) (see Example 2.1).

Since computing the direct images comes down to taking cartesian pro-
ducts over subsets of type Sγ in a multiple complex, by associativity of the
cartesian product and of the usual direct image one has:

Lemma 3.1. Let f : (I1,S1) → (I2,S2), g : (I2,S2) → (I3,S3) be mor-
phisms of simplicial complexes and assume that we have fixed total orders on
I1, I2, I3. Let F : X→Y, G : Y→Z be morphisms of s.s.analytic spaces overf ,
respectively g, where X, respectively Y, repectively Z is a s.s.analytic space
relative to (I1,S1), respectively to (I2,S2), respectively relative to (I3,S3)
Then if F ∈ aMod(X) or F ∈ aC(X) or F ∈Mod(X) or F ∈ C(X) one has
(G ◦ F )∗(F) = G∗F∗(F).

Let F ∈Mod(X) and G ∈Mod(Y). One checks that there is an adjunc-
tion isomorphism:

Hom(F ∗(G),F)−̃→Hom(G, F∗(F)). (3.1)

3.6. Direct image with proper supports

Consider the same setting as in paragraph 3.5.

In the case of comodules one defines an analogue of the direct image with
proper supports. Let M ∈ acoMod(X), M = ((Mα)α∈S , (θ(α;j))(α;j)). For
γ ∈ T ((Fα!(Mα))α, (Fσ(α;j)!(θ(α,j)))(α;j))f(α)=f(σ(α;j))=γ is a multicomplex
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of Yγ-modules and consider the following simple complex associated to this
multicomplex:

...→
⊕

f(α)=γ
|α|=i

Fα!(G•α)→ ...→
⊕

f(α)=γ
|α|=|γ|

Fα!(G•α)→ 0 (C•! (γ))

where the sum for i = |γ| is considered in degree 0. The connecting mor-
phisms of M induce anti-morphisms ρ(γ;j)!(C

•
! (γ)) → C•! (σ(γ; j)) and one

checks that (C•! (γ))γ∈T is an alternated complex of alternated Y-comodules.
If we start with M an alternated complex of alternated X-comodules

instead of an alternated X-comodule then C•! (γ) is a double complex.

Definition 3.3.

1. IfM∈ acoMod(X) then F!(M) is the alternated complex of alternated
Y-comodules with F!(M)γ = C•! (γ) and connecting morphisms induced
by those of M.

2. IfM∈ acoC(X) then F!(M) is the alternated complex of alternated Y-
comodules with F!(M)γ =the simple complex associated to the double
complex C•! (γ) (with the sum for i = |γ| considered in degree 0) and
connecting morphisms induced by those of M.

3. If M∈ coMod(X) (respectively M∈ coC(X)) then

F!(M) = alt−1(F!(alt(M))).

One checks easily that the definition of the direct image is compatible
with the natural inclusion functors acoMod(X)→ acoC(X) and coMod(X)→
coC(X).

Example 3.3. If f : (I,S) → (J, T ) is bijective (in particular if f is the
identity of (I,S)) then F!(M)γ = Fα!(Mα) where α = f−1(γ).

As for the direct images for X-modules, computing direct images with
proper supports comes down to taking direct sums over subsets of type Sγ
in a multiple complex. By associativity of the direct sum and of the usual
direct image with proper supports one has:

Lemma 3.2. Let f : (I1,S1) → (I2,S2), g : (I2,S2) → (I3,S3) be mor-
phisms of simplicial complexes and assume that we have fixed total orders on
I1, I2, I3. Let F : X→Y, G : Y→Z be morphisms of s.s.analytic spaces overf ,
respectively g, where X, respectively Y, repectively Z is a s.s.analytic space
relative to (I1,S1), respectively to (I2,S2), respectively relative to (I3,S3).
Then if F ∈ acoMod(X) or F ∈ acoC(X) or F ∈ coMod(X) or F ∈ coC(X)
one has (G ◦ F )!(F) = G!F!(F).
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4. Applications and examples

4.1 The Čech complex

Let X be an analytic space, U = (Ui)i∈I an open covering of X and F ∈
Mod(OX). Consider U = ((Uα)α∈N (U)) the s.s.analytic space corresponding
to the covering U (see Example 2.2) and i : U→X the morphism given
by the inclusions. Then one checks easily that i∗(i

∗(F)) = i∗(F|U) is the
Čech complex of F with respect to the covering U , C•(U ,F). Moreover,
the natural morphism F → C•(U ,F) is exactly the adjunction morphism
F →i∗(i∗(F)). Remark that according to [10], chap 1, §4, Lemme 1, this
morphism is a quasi-isomorphism and, consequently, an isomorphism in the
derived category.

If instead of the morphism i : U→X above one considers the morphism
a : U→{pt}, where {pt} is the reduced analytic space with one element,
then a∗(i

∗(F)) = a∗(F|U) is the Čech complex of F with respect to the
covering U , C•(U ,F).

In the context of Example 2.7 let G∈Mod(OX). Then G|U=(G|Uα)α∈N (U)
can be seen as an U-comodule one checks easily that i!(G|U) is the semi-
simplicial resolution of G with respect to the covering U :

...→
⊕
|α|=1

GUα →
⊕
|α|=0

GUα → 0.

Thus the natural morphisms i!(G|U)→ G is a quasi-isomorphism and hence
is an isomorphism in the derived category.

4.2 The Dolbeault resolution on an analytic space

Let X be an n-dimensional complex manifold and consider the Dolbeault-
Grothendieck resolution of OX

0 −→ E0,0X
∂−→ ...

∂−→ E0,nX −→ 0.

For F ∈Mod(OX) we denote by Dolb(X;F) the complex:

0 −→ E0,0X ⊗OX F −→ ... −→ E0,nX ⊗OX F −→ 0.

Since the stalks of the sheaves Ep,qX are OX -flat (see [7]), Dolb(X;F) is a
resolution of F .

Consider now (X, i,D) an embedding triple (see paragraph 2.2). Then
one defines

Dolb(i;OX) = i−1Dolb(X; i∗(OX)).

Finally let (X,A) be an analytic space with an embedding atlas, where
A = (Ui, ki, Di)i∈I (see paragraph 2.2), let U = (Ui)i∈I be the open covering
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of X given by the atlas A, U = ((Uα)α∈N (U)) the s.s.analytic space corre-
sponding to U and i : U→ X the morphism given by the inclusion mappings
(see Example 2.2). Functoriality of the pull-back of differential forms im-
plies that (Dolb(kα;OX |Uα))α∈N (U) = (k−1α Dolb(Dα; kα∗i

−1
α (OX)))α∈N (U) is

a complex of U-modules that we denote by Dolb(k; i∗(OX)). By definition

Dolb(A;OX) = i∗(Dolb(k; i∗(OX)))

is the Dolbeault resolution of OX on (X,A). One checks that it is indeed
a resolution. Moreover, if X is countable at infinity and the covering U is
locally finite, then the terms of Dolb(A;OX) are soft sheaves endowed with
a canonical Frechet-Schwartz topology.

4.3 The dualizing complex on an analytic space

Let X be an n-dimensional complex manifold and consider the Dolbeault-
Grothendieck resolution for Ωn

X :

0 −→ Kn,0X
∂−→ ...

∂−→ Kn,nX −→ 0.

For F ∈Mod(OX) we denote by KDolb(X;F) the complex:

0 −→ HomOX (F ,Kn,0X ) −→ ... −→ HomOX (F ,Kn,nX ) −→ 0

where the term containing Kn,nX is considered in degree 0. Since the stalks
of the sheaves Kp,qX are OX -injective (see [7]), and if F is a coherent sheaf
then KDolb(X;F) is a representative for RHom(F ,Ωn

X)[n].

Consider now (X, i,D) an embedding triple (see paragraph 2.2). Then
one defines

KDolb(i;OX) = i−1KDolb(X; i∗(OX)).

Let as above (X,A) be an analytic space with an embedding atlas, where
A = (Ui, ki, Di)i∈I (see paragraph 2.2), let U = (Ui)i∈I be the open cov-
ering of X given by the atlas A, U = ((Uα)α∈N (U) the s.s.analytic space
corresponding to U and i : U → X the morphism given by the inclu-
sion mappings (see Example 2.2). Functoriality of the pull-back of dif-
ferential forms and the duality differential forms - currents implies that
(KDolb(kα;OX |Uα))α∈N (U) = (k−1α KDolb(Dα; kα∗i

−1
α (OX)))α∈N (U) is a com-

plex of U-comodules that we denote by KDolb(k; i∗(OX)). By definition

KDolb(A;OX) = i!(KDolb(k; i∗(OX))).

Moreover, if X is countable at infinity and the covering U is locally finite,
then the terms of KDolb(A;OX) are soft sheaves with OX -injective stalks.
KDolb(A;OX) is a representative for the dualizing complex on X.
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