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Weak stability of the solutions of a fluid-rigid
body problem
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Abstract - We consider a concept of weak solution for a boundary value
problem modelling the interactive motion of a coupled system consisting in
a rigid body immersed in a viscous fluid. The time variation of the fluid’s
domain (due to the motion of the rigid body) is not known apriori, so we
deal with a free boundary value problem. Our main theorem asserts that the
weak limit of any weakly convergent sequence of solutions still is a solution.
The proof uses only the basic theory of Navier-Stokes equations, simplifying
the approach in [2]
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1. Introduction

We consider a coupled system of nonlinear partial and ordinary differential
equations modelling the motion of a rigid body inside a fluid flow. The
governing equations for the fluid flow are the classical Navier-Stokes system,
whereas the motion of the solid is governed by the balance equations for
linear and angular momentum.

Let A ⊂ R3 be an open bounded set representing the domain occupied by
both the fluid and the rigid body. For the sake of simplicity, we assume the
rigid body to be a moving ball of radius 1 and the fluid to be homogeneous
of density one. If we denote by Ω(t) (resp. B(t)) the domain occupied by the
fluid (resp. by the solid) at the instant t, then the full system of equations
modelling the motion of the fluid and of the rigid body is
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~u′ − ν∆~u+ div(~u⊗ ~u) +∇p = 0, ~x ∈ Ω(t), t ∈ [0, T ], (1.1)

div ~u = 0, ~x ∈ Ω(t), t ∈ [0, T ], (1.2)

~u = 0, ~x ∈ ∂A, t ∈ [0, T ], (1.3)

~u = ~h′(t)− ~ω(t)× ~n, ~x ∈ ∂B(t), t ∈ [0, T ], (1.4)

M~h′′(t) = −
∫
∂B(t)

σ~ndΓ, t ∈ [0, T ], (1.5)

J~ω′(t) =

∫
∂B(t)

~n× σ~ndΓ, t ∈ [0, T ], (1.6)

~u(x, 0) = ~u0(x), x ∈ Ω(0), (1.7)

~h(0) = ~h0 ∈ R3, ~h′(0) = ~h1 ∈ R3, ~ω(0) = ~ω0 ∈ R3. (1.8)

In the above system the unknowns are ~u(~x, t) (the Eulerian velocity field of
the fluid), ~h(t) (the position of the center of the rigid ball) and ~ω(t) (the
angular velocity of the rigid body).

We have denoted by ∂A the boundary of A, by ∂B(t) the boundary of
the rigid ball at instant t and by ~n(~x, t) the unit normal to ∂B(t) at the point
~x ∈ ∂B(t), directed to the interior of the ball. Further, we have denoted by
M (respectively by J) the mass (respectively the moment of inertia) of the
rigid ball and by

σij(x, t) = −p(x, t)δij + ν(
∂ui
∂xj

+
∂uj
∂xi

) (1.9)

the stress tensor in the fluid.

The main difficulties in the analysis of (1.1)–(1.8) are:

1. The Navier-Stokes equations are valid in a non-cylindrical domain, so
that classical Galerkin type methods cannot be applied.

2. The form of this domain (in the (~x, t) space) depends on the solution,
i.e., this is a free boundary problem.

Various concepts of weak solutions of (1.1)–(1.8) were studied in [1], [2] and
[3]. In [2] the authors proved a stability result related to ours, by using the
notion of renormalized solution introduced in [5]. The aim of this work is
to give an elementary proof of the fact that any weak limit of a sequence of
solutions of (1.1)–(1.8) still is a solution. We mention that we don’t use the
notion of renormalized solution.

The plan of this paper is as follows: In Section 2 we introduce some
notation and state the main result. The main stability result is proved in
Section 3.
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2. Notation and main result

We first introduce the function spaces necessary to the definition of weak
solutions. Let A ⊂ R3 be an open bounded set such that

A◦ = {~x ∈ A | d(~x, ∂A) > 1} 6= ∅. (2.1)

The following spaces are usually associated to the analysis of Navier-
Stokes equations (see [6, ch.1]):

V(A) = {~v ∈ D( A;R3) | div~v = 0},
H( A) = the closure of V( A) in [L2( A)]3,

V ( A) = the closure of V( A) in [H1( A)]3.

For ~h ∈ A◦, we denote

B~h =
{
x ∈ R3| |~x− ~h| < 1

}
.

The introduction of the following spaces is motivated by the presence of the
rigid body

W~h
(A) =

{
(~v, ~̀,~k) ∈ V(A)× R3 × R3 | ~v|B~h

(~y) = ~̀+ ~k × (~y − ~h)
}
,

H~h(A) = the closure of W(A) in L2(A)3 × R3 × R3,

V~h(A) = the closure of W(A) in H1(A)3 × R3 × R3,

On these spaces we consider the inner products defined by〈(
~v1, ~̀1,~k1

)
,
(
~v2, ~̀2,~k2

)〉
H~h

(A)
=

∫
A\B~h

~v1 · ~v2 dy +M~̀
1 · ~̀2 + J~k1 · ~k2,

〈(
~v1, ~̀1,~k1

)
,
(
~v2, ~̀2,~k2

)〉
V~h

(A)
=

∫
A\B~h

~v1 · ~v2 dy +M~̀
1 · ~̀2 + J~k1 · ~k2+

+2ν

∫
A
∇s~v1 : ∇s~v2 dy,

where (
∇s~U

)
ij

=
1

2

(
∂~Ui
∂xj

+
∂~Uj
∂xi

)
.

Remark 2.1. Since ~v1 and ~v2 are rigid movements in B~h, an easy compu-
tation shows that the scalar product in H~h(A) can be written equivalently
as follows: 〈(

~v1, ~̀1,~k1

)
,
(
~v2, ~̀2,~k2

)〉
H(A)

=

∫
A
ρ~h~v1 · ~v2 dy,

where ρ is equal to the liquid’s density in A \B~h, and to the solid’s density
in B~h, so this scalar product is equivalent to the scalar product in H(A).
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Moreover, if ~h(t) is a function from [0, T ] in A◦ then we define the fol-
lowing spaces:

Lp
(

0, T ;H~h(·)
)

=
{
f ∈ Lp (0, T ;H(A)) | f(t) ∈ H~h(t) for a.e. t ∈ [0, T ]

}
,

Lp
(

0, T ;V~h(·)
)

=
{
f ∈ Lp (0, T ;V(A)) | f(t) ∈ V~h(t) for a.e. t ∈ [0, T ]

}
,

Ck
(

[0, T ];W~h(·)

)
=

{
f ∈ Ck ([0, T ],W(A)) | f(t) ∈ W~h(t)

∀t ∈ [0, T ]
}
,

Ck
(

[0, T ];V~h(·)
)

=
{
f ∈ Ck ([0, T ],V(A)) | f(t) ∈ V~h(t) ∀t ∈ [0, T ]

}
,

where 1 ≤ p ≤ ∞ and 0 ≤ k ≤ ∞. Let ρs > 0 be a constant denoting
the density of the rigid. We recall that the fluid is supposed homogen0us of
density eaual to 1. If ~h : [0, T ] → A0 we wefine the function ρ~h(t) : A → R
determining the mass distribution ar instant t by

ρ~h(t)(~x) =

{
1 if ~x ∈ Ω(t)
ρs if ~x ∈ B(t)

Our definition of weak solutions will be motivated by the following propo-
sition, which can be proved by the use of simple integration by parts and of
a transport formula (see for instance [1] for the details):

Proposition 2.1. If (~u,~h, ~ω) is a classical solution of (1.1)–(1.8), then the
identity:

−
∫ T

0

∫
A
ρ~h(t)~u · ~v

′dy + 2ν

∫ T

0

∫
A
∇s~u : ∇s~vdydt

−
∫ T

0

∫
A

[(~u⊗ ~u) : ∇s~v] dydt =

∫
A
~u0 · ~v(0)dy (2.2)

holds true for any (~v, ~̀,~k) ∈ C1([0, T ],V~h(·)) such that ~v(·, T ) = ~̀(T ) =

~k(T ) = 0.

We can now define finite energy solutions of (1.1)-(1.8).

Definition 2.1. A triplet (~u,~h, ~ω) is called a weak solution of (1.1)-(1.8) if:

~h ∈W 1,∞(0, T ;R3) ∩ C0([0, T ];A◦), (2.3)

(~u,~h′, ~ω) ∈ L2
(

0, T ;V~h(·)
)
∩ L∞

(
0, T ;H~h(·)

)
and (2.4)

(~u,~h′, ~ω) satisfies (2.2) for any (~v, ~̀,~k) ∈ C1([0, T ];V~h(·)) (2.5)

such that ~v(·, T ) = ~̀(T ) = ~k(T ) = 0

Remark 2.2. By Proposition 2.1 we know that any classical solution is a
weak solution. On the other hand, one can also easily check that any smooth
weak solution is a classical one.
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The existence of weak solutions in the sense defined above was proved in
[1]. The proof given in the reference above cannot be adapted for the case
of several rigid bodies. The main result of this paper, stated below, can be
easily adapted for the case of several rigid bodies.

Theorem 2.1. Suppose that (~un,~hn, ~ωn) is a sequence of weak solutions of
(1.1)-(1.8) such that

~un → ~u in L2(0, T ;V (A)) weak and in L∞(0, T,H(A)) weak star. (2.6)

Then
~hn → ~h in W 1,∞(0, T ;R3) weak star, (2.7)

~ωn → ~ω in L∞(0, T ;R3) weak star. (2.8)

and (~u,~h, ~ω) is a weak solution of (1.1)-(1.8).

3. Proof of the main result

Lemma 3.1. Suppose that (~un,~hn, ~ωn) satisfy the assumptions of Theorem
2.1. Then (~hn) ∈ C0([0, T ];A◦) and relations (2.7), (2.8) hold true. More-
over ~hn → ~h in C0([0, T ];R3) strongly and ρ~hn(·) → ρ~h(·) in Lp(]0, T [×A)

strongly, for all p ∈ [1,∞).

Proof. Relations (2.7), (2.8) follow by direct integration from (2.6) and
the relation

~un(~x, t) = ~h′n(t) + ωn(t)× (~x− ~hn(t)), ~x ∈ B~hn(t).

Moreover assumption (2.7) and the Arzela-Ascoli theorem imply that ~hn →
~h in C0([0, T ];R3) strongly. In order to show that ρ~hn(·) → ρ~h(·) in Lp(]0, T [×Ã)

strongly it suffices to remark that there exist a constant C > 0 such that∫ T

0

∫
Ã
|ρ~hn(t) − ρ~h(t)|

pdydt ≤ C
∫ T

0
|~hn(t)− ~h(t)|dt.

Here above µ(·) is the usual Lebesgue measure in R3. 2

If ε ≥ 0 we denote

Qε~h =
{

(x, t) ∈ A× (0, T )| |x− ~h(t)| > 1 + ε
}
, Q~h = Q0

~h
.

Moreover suppose that D ⊂ A and α, β > 0 are such that D × (α, β) ⊂ Q~h.
Consider the function spaces

M(D) =
{
~v ∈ L2(D,R3) | div ~v = 0 in D

}
,

Z(D) = H(D) ∩M(D), F (D) = H2(D)3 ∩H1
0 (D)3 ∩M(D).

We denote by P (D) the orthogonal projector from M(D) in Z(D). We will
need the following compactness result
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Lemma 3.2. Suppose that D,α, β satisfy the assumtions above and denote
by (~wn) (respectively by (~w) the sequence of restrictions of ~un to D× (α, β)
(respectively the restriction of ~u to D × (α, β)). Then (up to the extraction
of a subsequence) P (D)~wn → P (D)~w strongly in L2(D × (α, β)).

Proof. Since [α, β] × D ⊆ Q, if we choose the test function ~v in (2.2) to
be equal to a(t)ϕ, with ϕ ∈ F (D) and a ∈ D(α, β) we obtain that

d

dt

∫
D
P (D)~wn · ~ϕ = 〈fn, ~ϕ〉[F (D)]′,F (D), (3.1)

in D′(α, β) where

〈fn, ~ϕ〉[F (D)]′,F (D) = −2ν

∫
D
∇s ~wn : ∇s~ϕdy+

+

∫
D
~wn · [(~wn · ∇)~ϕ]dy −

∫
D
~wn · [(~h′n · ∇)~ϕ]dy = 0, ∀~ϕ ∈ F (D). (3.2)

Since (~wn) is uniformly bounded in L2(0, T ;H1(D)) relation (3.2) combined
with classical estimates (see for instance [4, p. 72–74]) imply that

||fn||L2(0,T ;[F (D)]′) ≤M2, ∀n ≥ 1, (3.3)

where M2 > 0 is a constant. From (3.1) and (3.3) we obtain

|| ∂
∂t
P (D)~wn||L2(0,T ;[F (D)]′) ≤M2, ∀n ≥ 1. (3.4)

Using the fact that (~wn) is uniformly bounded in L2(0, T ;H1(D)), the com-
pact inclusions Z(D) ∩ H1(D)3 ⊆ Z(D) ⊆ [F (D)]′, relation (3.4) and a
version of Aubin’s lemma (see for instance [3]) we obtain that the sequence
(P (D)~wn) is relatively compact in L2((α, β)×D). 2

Proof of Theorem 2.1. We will follow an idea from [3]. Let ε > 0 and
ψ be a smooth function with ∇sψ = 0 for (~x, t) 6∈ Qε~h. Due to Lemma 3.1

we have that ψ ∈ Ck
(

[0, T ];V ~hn(·)

)
for n large enough. Since all the linear

terms in (2.2) obviously pass to the limit it suffices to show that∫ T

0

∫
A
ρ~hn(t)~u ·

~ψ′dy →
∫ T

0

∫
A
ρ~h(t)~u · ~ψ

′dy, (3.5)

∫ T

0

∫
A

(~un ⊗ ~un) : ∇sψdxdt→
∫ T

0

∫
A

(~u⊗ ~u) : ∇sψdxdt. (3.6)

Relation (3.5) folows directly from Lemma 3.1 so we concentrate on (3.6).
Denote by ~γ a function such that∇s~γ ≡ 0 and ~γ(x, t) = ~ψ(x, t) if (~x, t) 6∈ Qε~h.
Then ∫ T

0

∫
A

(~un ⊗ ~un) : ∇s ~ψdxdt =

∫ T

0

∫
A

(~un ⊗ ~un) : ∇s~ηdxdt
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where ~η = ~ψ−~γ, ~η(x, t) = ~γ(x, t) for x ∈ ∂A and ~η(~x, t) = 0, for (~x, t) 6∈ Qε~h.

Moreover, by Lemma 7.1 in [4, ch.1, p.103], for any δ > 0 there exists a
function g ∈ L2(0, T ;H1(Ω)), div ~g = 0, such that ~g(x, t) = 0 for (~x, t) 6∈ Qε~h,

~g(x, t) = γ(x, t) for x ∈ ∂A and∣∣∣∣∫ T

0

∫
A

(~un ⊗ ~un) : ∇s~gdxdt
∣∣∣∣ ≤ δ‖~un‖2L2(0,T ;H1(A)).

Since (~un) is uniformly bounded in L2(0, T ;H1
0 (A)), the inequality above

shows that it is enough to pass to the limit for test functions ~η which are
equal to zero outside Qε~h

.

Consider an arbitrary cylinder E = D × [α, β], α, β ∈ (0, T ), included
in Qε~h

. We suppose that D has a smooth boundary. and we take the test

function ~v equal to zero outside E. Let P (D) be the orthogonal projector
from M(D) in Z(D). According to a result in [6, p.16], any function ~w ∈
M(D) can be written

~w = P (D)~w +∇ζD,

where ζD is harmonic in D. Due to Lemma 3.2 we have only to prove that∫
[0,T ]×A

(∇ζDn ⊗∇ζDn ) : ∇s~ηdxdt =

∫
[0,T ]×A

(∇ζD ⊗∇ζD) : ∇s~ηdxdt (3.7)

But, since ~η(x) = 0 for x ∈ ∂D,∫
D

(∇ζD ⊗∇ζD) : ∇s~ηdx = −
∫
D

div(∇ζD ⊗∇ζD) · ~ηdx =

= −
∫
D

(∆ζD∇ζD +
1

2
∇|∇ζD|2) · ~ηdx =

∫
D

1

2
|∇ζD|2)div ~ηdx = 0.

we conclude that∫
E

(∇ζDn ⊗∇ζDn ) : ∇s(η)dxdt =

∫
E

(∇ζD ⊗∇ζD) : ∇s(η)dxdt = 0, ∀n ≥ 1,

so (3.7) holds true. Since E is arbitrary we obtain the conclusion of the
Theorem. 2
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