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Abstract - We discuss general shape optimization problems associated to
elliptic equations with Dirichlet, Neumann or mixed boundary conditions.
We develop an analysis of convergence properties of domains of class C (with
the segment property) and the stability of the corresponding Sobolev spaces.
The results on shape optimization problems concern existence theory, dis-
cretization and approximation properties via finite dimensional optimization
problems.
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1. Introduction

The properties of Sobolev spaces defined in a domain Ω in Rd, d ∈ N or of
partial differential equations defined in Ω, depend on the regularity proper-
ties of Ω.

In many classical texts (Sobolev [21], Agmon [2], Protter and Weinberger
[20]), the boundary properties of some domain Ω ⊂ Rn are described in
a straightforward manner: segment property, cone property, interior ball
property, etc. Another point of view is to consider the boundary ∂Ω to be
locally the graph of some function; then the properties of ∂Ω are specified
through the properties of the corresponding local representation: continuity,
Lipschitzianity, differentiability of various orders (Necas [15], Adams [1],
Miranda [14]). Other approaches are also possible and a nice introduction
with very interesting examples may be found in the book of Grisvard [7].

It is the aim of this paper to discuss the weakest property mentioned
above, namely the case of domains of class C, i.e. the case of continuous
boundaries. We use the following definition

Definition 1.1. We say that a bounded open subset Ω ⊂ Rd is of class C
if there exists a family FΩ of continuous functions g : B(0, kΩ)→ R, where
B(0, kΩ) ⊂ Rd−1 is the open ball of radius kΩ > 0 centered at the origin,
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such that

∂Ω =
⋃

g∈FΩ

{Rg(s, 0) + og + g(s)yg, s ∈ B(0, kΩ)},

with yg = Rg(0, 0, . . . , 0, 1) for some rotation Rg of Rd and with some og ∈
Rd.

This definition may be extended to unbounded domains immediately. If
∂Ω is compact (as above), it is possible to require that the (finitely many)
local charts are defined on the same ball in Rd−1 (depending on Ω) and we
shall use this ”normalization” in the sequel, in an esential manner.

Domains of class C are locally on one side of the boundary. They are of
Charathéodory type, i.e. Ω = int Ω. It follows that they have no cuts or
cracks, but their boundary may have cusps (when g is just Hölder continu-
ous) or corners (when g is Lipschitz). It turns out that domains of class C
have the (interior and exterior) segment property (Adams [1], Maz’ya [13]):
there is some aΩ > 0 such that, for any local chart g ∈ FΩ:

Rg(s, 0) + og + (g(s)− t)y)yg ∈ Ω,

Rg(s, 0) + og + (g(s) + t)yg ∈ Rd \ Ω,

∀ t ∈]0, aΩ[, ∀ s ∈ B(0, kΩ).

Conversely, the segment property allows the introduction of a local sys-
tem of coordinates (with ”vertical” direction given by the segment) and the
definition of a mapping describing locally the boundary since every segment
”cuts” the boundary in just one point. This mapping is continuous due to
a simple contradiction argument.

Again, by the compactness of ∂Ω, we can choose the same constant
aΩ > 0 for all the local charts g ∈ FΩ.

Notice that in Definition 1.1, one can always choose a constant 0 < rΩ <
kΩ such that the ”restricted” local charts defined on B(0, rΩ) ⊂ Rd−1 still
”cover” the whole ∂Ω. Not all the domains that intuitively have a continuous
boundary are of class C as the following example shows:

Example 1.1.

g1(x) =


x− 1

3k
, x ∈

[
1

3k
,

2

3k

]
1

3k−1
− x, x ∈

[
2

3k
,

1

3k−1

] ,
k ∈ N , and g2(x) = g1(x)− x

2
. The segment property is not satisfied around

x = 0.
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Moreover, Definition 1.1 forces that all the turning points from one local
chart are of the ”same type” (with ”axis” given by yg):

The following extension of the Meyers-Serrin theorem, Adams [1], is one
of the main classical applications of domains of class C:

Theorem 1.1. If Ω has the segment property, then the set of restrictions
to Ω of functions in C∞0 (Rd) is dense in Wm,p(Ω) for 1 ≤ p <∞, m ∈ N.

In the sequel, we shall use the Hausdorff-Pompeiu [9], [18] complemen-
tary metric for open sets Ωi ⊂ D ⊂ Rd, where D is some given ”hold all”
bounded domain:

d(Ω1,Ω2) = max{ max
x∈D\Ω1

min
y∈D\Ω2

|x− y|; max
y∈D\Ω2

min
x∈D\Ω1

|x− y|}.

The family of open subsets of D equipped with the metric d(·, ·) forms
a complete metric space, which is sequentially compact [12].

The plan of the paper is as follows. the next section investigates stability
and compactness properties of domains of class C with respect to various op-
erations. The applications concern general shape optimization problems and
will be discussed in Section 3 (existence theory) and in Section 4 (discretiza-
tion and approximation results). For complete proofs and more details, we
quote author’s works [8], [16], [17], [23], [24], [25].

2. Stability and compactness

We collect in this section some properties related to the convergence of
bounded open sets that play an outstanding role in the applications. The
continuity assumption on the boundary is essential in many of them.

Theorem 2.1. (the Γ-property)

Let Ωn,Ω be open subsets of the bounded domain D ⊂ Rd such that
d(Ωn,Ω) → 0. If K ⊂ Ω is compact, there is n0 ∈ N such that K ⊂ Ωn,
n ≥ n0.

In the monograph of Delfour and Zolesio [6], the name ”compactivorous
property” is used. This property appears already in Necas [15] and it is
valid for general open subsets.

We indicate now the main compactness result and the following uniform
class C assumptions will be of frequent use in the sequel:

Theorem 2.2. Let Ωn,Ω be subdomains of D ⊂ Rd such that d(Ωn,Ω)→ 0
for n→∞. If in addition

kΩn ≥ k > 0, rΩn ≤ r < k, aΩn ≥ a > 0, ∀ n ∈ N
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and if the family F =
⋃

n∈N
FΩn of all the corresponding local charts is

equicontinous and equibounded on B(0, k), then Ω is of class C with kΩ ≥ k,
rΩ ≤ r, aΩ ≥ a.

Moreover, the associated characteristic functions satisfy χΩn → χΩ a.e.
in D, on a subsequence.

Corollary 2.1. Under the above assumptions, we also have Ωn → Ω in the
Hausdorff-Pompeiu metric for compact sets. The converse is also true.

In the absence of the uniform class C assumptions, this property is not
valid as the following simple example shows:

Example 2.1. In R2, let Cn = B(0, 1) ∪ Kn, where Kn is the union of n
closed rays of length 2 starting from the origin and dividing the plane into
sectors of equal angles. Let Ωn = B(0, 2) \ Cn. Then d(Ωn, ∅) → 0 while
Ωn → B(0, 2)−B(0, 1) in the Hausdorff-Pompeiu metric for compact set.

Consider now another sequence of open sets uniformly of class C, An ⊂
D, d(An, A)→ 0. If some compatibility conditions are imposed (see the next
section), then Ωn ∪ An are open subsets of class C, uniformly with respect
to n ∈ N , in the sense of Theorem 2.2. We have

Corollary 2.2. Ωn ∪An → Ω∪A, Ωn ∩An → Ω∩A in the complementary
Hausdorff-Pompeiu metric and the limit sets are of class C.

Again a simple example shows that this property may fail for general
open sets:

Example 2.2. Let X ∈ R2 be the closed rectangle with vertices

(1, 1), (−1, 1), (1,
1

2
), (−1,

1

2
) and Cn be the closed disc of radius 1, centered

at (1+
1

n
, 0). Denote Un = X∪Cn and Vn be obtained from Un by symmetry

with respect to the vertical axis. Clearly Un∩Vn = X = lim(Un∩Vn) in the
Hausdorff-Pompeiu topology for compact subsets. However limUn∩limVn =
X ∪ (0, 0), in the same topology. By taking the complementary subsets with
respect to some fixed sufficiently big disc, we obtain the desired counter
example. This is due to the fact that (intUn) ∪ (intVn) is not uniformly
of class C (the outside segment is not bounded from below by a uniform
constant with respect to n). We continue with a stability result for domains
class C, in the sense of Hedberg-Keldys.

Theorem 2.3. Let Ω ⊂ Rd be an open set of class C. If z ∈ H1(Rd) and
z = 0 a.e. in Rd − Ω, then z |Ω∈ H1

0 (Ω).
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This result may be immediately extended to higher order Sobolev spaces.
It is to be noted that for domains of class C, trace theorems cannot be
applied and the above theorem may be viewed as an alternative argument to
trace theorems. Related results may be found in Heinonen, Kilpeläinen and
Martio [10], via capacity theory methods and under different assumptions.

We close this section with a lower semicotinuity result for integral func-
tionals defined in variable domains:

Theorem 2.4. Let l : Rd×R×Rd → R be nonnegative and measurable, let
l(x, ·, ·) be continuous on R×Rd and l(x, s, ·) be convex. If d(Ωn,Ω)→ 0 and
if yn ∈ H1(Ωn), y ∈ H1(Ω) satisfy {|yn|H1(Ωn)} bounded and yn|K → y|K
weakly in H1(K), for any domain K ⊂ K ⊂ Ω, then∫

Ω

l(x, y(x),∇y(x)dx) ≤ lim inf
n→∞

∫
Ωn

l(x, yn(x),∇yn(x)dx).

3. Existence in shape optimization

A general shape optimization problem is defined by a family of subdomains
O inD ⊂ Rd, called admissible domains. In each Ω ∈ O, a partial differential
equation (usually of elliptic type) is given. For simplicity of writing we shall
work with the simple equation (f ∈ L2(D) given):

−∆yΩ + yΩ = f in Ω. (3.1)

Various boundary conditions may be added to (3.1). A cost functional
to be minimized, usually of integral type is associated

Min
Ω

∫
Λ

l(x, yΩ(x),∇yΩ(x)dx) (3.2)

where yΩ is the solution (in the weak sense) of (3.1), l satisfies the assump-
tions of Theorem 2.4 and Λ is either Ω or some given domain ω ⊂ Rd, such
that ω ⊂ Ω for any Ω ∈ O.

The family O of admissible subdomains is obtained by fixing some posi-
tive constants, k, r, a in Theorem 2.2 and the boundedness and the continuity
properties of the corresponding local charts. Constraints of the type

ω ⊂ Ω ⊂ D, ∀ Ω ∈ O (3.3)

may be also imposed. State constraints (i.e. on yΩ) are not considered
here. If they are given, they may be penalized in the cost functional as it is
standard in optimal control theory.

It is clear that for the study of the problem (3.1) - (3.3), the properties
of the mapping Ω→ yΩ are crucial. In particular, the continuity (in a sense
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to be defined) is essential for the existence theory. Even the convergence of
a sequence of solutions {yΩn} is not straightforward to define since the yΩn

are given in different domains Ωn ∈ O.

There are several ways to treat the problem and we shall discuss basi-
cally the extension and the local techniques, with brief remarks on other
approaches.

3.1. Dirichlet boundary conditions

If null boundary conditions are added to (3.1), the extension method is
particularly simple: yΩ ∈ H1

0 (Ω) may be extended by 0 to ỹΩ ∈ H1
0 (D).

Taking yΩ ∈ H1
0 (Ω) as test function in the definition of the weak solution

of (3.1), we get {|yΩ|H1
0 (Ω)} bounded. Consequently {ỹΩ} is bounded for any

Ω ∈ O, by a constant depending just on f ∈ L2(D).

Let {Ωn} ⊂ O be a minimizing sequence of domains for the optimal
design problem (3.1) - (3.3). On a subsequence, we may assume that

ỹΩn → ỹ weakly in H1
0 (D), (3.4)

d(Ωn,Ω)→ 0

and Ω ∈ O by Theorem 2.2.

The difficulty is to show that y = ỹ|Ω is in H1
0 (Ω) and satisfies (3.1)

in Ω. Here, Theorem 2.1 and Theorem 2.3 play the important role: any
test function ϕ ∈ C∞0 (Ω) has the support supp ϕ ⊂ Ωn, for n ≥ nϕ and
may be used as test function in Ωn as well. This gives the definition of the
weak solution in Ω by a simple passage to the limit. Again a distributions
argument shows that ỹ|D−Ω = 0 a.e. and Theorem 2.3 concludes that ỹ|Ω ∈
H1

0 (Ω).

Theorem 3.1. The shape optimization problem (3.1) - (3.3) has at least
one optimal pair [Ω∗, y∗] ∈ O ×H1

0 (Ω∗).

The argument is as above, completed with the application of (3.4) via
Theorem 2.4. The uniqueness of the optimal pair is not valid in general since
the dependence of yΩ on Ω has a strongly nonlinear character and the shape
optimization problems are nonconvex, in general. Some rare exceptions
when uniqueness is valid are, however, known [11], [16].

Remark 3.1. One should note here as well the existence results of Sverak
[22], in dimension two, for general open sets Ω ⊂ D, with D \ Ω having a
bounded number of connected components.
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3.2. Neumann boundary conditions

The extension technique works in this case under supplementary regularity
conditions (uniform Lipschitz property) on the boundary of any admissible
Ω ∈ O. This is due to Chenais [3] and it is based on the observation that
the norm of the extension operators TΩ : H1(Ω) → H1(D) is bounded by
some constant depending just on the Lipschitz constant of ∂Ω. Then, as in
the previous subsection, the extensions {ỹΩ} are bounded in H1(D) and the
argument may proceed somehow similarly.

However, by using the local technique, it is possible to prove existence
results for shape optimization problems, for general admissible domains Ω ∈
O of class C.

The assumptions on O are as in the previous subsection and as in The-
orem 2.2. We have immediately that {|yΩ|H1(Ω)} is bounded, yΩ being the
weak solution of (3.1) with Neumann boundary conditions:∫

Ω

∇yΩ · ∇v +

∫
Ω

yΩv =

∫
Ω

fv, ∀ v ∈ H1(Ω). (3.5)

Let {yΩn} be a minimizing sequence for the optimal design problem (3.2),
(3.3), (3.5) and let d(Ωn,Ω)→ 0, Ω ∈ O due to Theorem 2.2.

For any K ⊂ K ⊂ Ω, we have K ⊂ Ωn, n ≥ nK and {yΩn |K} bounded
in H1(K). On a subsequence we may assume yΩn → ỹ weakly in H1(K).
By taking further subsequences and letting K → Ω, we can construct ỹ in
the whole domain Ω. Some distributions argument shows that ỹ ∈ H1(Ω).

We rewrite (3.5), in Ωn, in the form∫
K

∇yΩn · ∇v +

∫
K

yΩnv −
∫
Ωn

fv =

∫
Ωn\K

[∇yΩn · ∇v + yΩnv], ∀v ∈ C1(D).(3.6)

The right-hand side in (3.6) may be estimated by∣∣∣∣∣∣∣
∫

Ωn\K

[∇yΩn · ∇v + yΩnv]

∣∣∣∣∣∣∣ ≤M |v|C1(D)µ(Ωn \K)
1
2 (3.7)

where M bounds |yΩn |H1(Ωn) and µ is the Lebesgue measure in Rd.
Due to the pointwise convergence of the characteristic functions χΩn →

χΩ a.e. in D, we can pass to the limit n→∞ in (3.6), (3.7) to obtain∣∣∣∣∣∣
∫
K

[∇ỹ · ∇v + ỹv]−
∫
Ω

fv

∣∣∣∣∣∣ ≤M |v|C1(D)µ(Ω \K)
1
2 .

By taking K → Ω and by using Theorem 1.2, we see that ỹ ∈ H1(Ω) is
indeed the solution of the Neumann problem in Ω, ỹ = yΩ.

Again by Theorem 2.4, we get
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Theorem 3.2. The shape optimization problem (3.2), (3.3), (3.5) has at
least one optimal pair [Ω∗, y∗] ∈ O ×H1(Ω∗).

Remark 3.2. The local technique may be applied in the case of Dirichlet
boundary conditions as well. In [16], the case of general nonlinear ellip-
tic operators of Leray-Lions type (the generalized divergence operator) is
discussed by this method.

Remark 3.3. Due to the very weak assumptions on O, the extension to
general nonhomogeneous Neumann conditions is unclear since (3.5) would
involve an integral on ∂Ω.

3.3. Mixed boundary conditions

In this case, it is necessary to add to the general hypotheses on O some com-
patibility conditions in the boundary points where the Dirichlet condition
changes into the Neumann condition and conversely.

For each Ω ∈ O, we associate an open set DΩ ⊂ D, DΩ 6⊂ Ω, not nec-

essarily connected, DΩ =
iΩ⋃
i=1

Di
Ω (Di

Ω are the connected components and

iΩ ∈ N is their number depending on Ω). We assume that Ω ∪DΩ is con-
nected and DΩ ∩ ∂Ω represents the parts of ∂Ω where the null Dirichlet
condition is valid. This setting allows a considerable freedom in the formu-
lation of the mixed boundary value problem. On the open sets Di

Ω similar
class C hypotheses, with positive constants kiΩ, r

i
Ω, a

i
Ω and family of contin-

uous local charts F i
Ω are imposed, as for Ω ∈ O.

Since trace theorems are not valid in this setting, it is necessary to in-
troduce a special subspace V (Ω) =M (the closure in H1(Ω)),

M = {w|Ω; w ∈ C∞0 (Rd) with w|Qw\Kw
= 0}

for some open subset Qw ⊃ DΩ and some compact subset Kw ⊂ Ω.
It is easy to see thatM has indeed a linear structure since one may take

Qw1+w2 = Qw1 ∩Qw2 , Kw1+w2 = Kw1 ∪Kw2 .
On V (Ω) the same inner product and norm as in H1(D) will be consid-

ered. We can now write the weak formulation of the mixed boundary value
problem asoociated to (3.1) in Ω:∫

Ω

[∇yΩ · ∇v + yΩv] =

∫
Ω

fv, ∀ v ∈ V (Ω). (3.8)

If ∂Ω is Lipschitzian, then (3.8) is the usual mixed boundary value prob-
lem with homogeneous Dirichlet and Neumann conditions on ∂Ω ∩DΩ, re-
spectively ∂Ω \DΩ.

The corresponding shape optimization problem is given by (3.8), (3.2),
(3.3). We indicate now the compatibility hypotheses, necessary due to the
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complex geometric structure of this problem:

∀ x ∈ ∂Ω ∩ ∂Di
Ω, i = 1, iΩ, ∃ Vx (3.9)

neighbourhood of x such that both ∂(Ω∪ (D \D i
Ω))∩Vx and ∂(Ω∪Di

Ω)∩Vx
can be represented in the same local system of axes by continuous functions
that extend the representation of ∂Di

Ω around x from ∂Di
Ω \ Ω. That is

∂(Ω ∪Di
Ω) ∩ Vx = {(s, g̃x(s)); s ∈ B(0, kiΩ)}

∂(Ω ∪ (D \D i
Ω)) ∩ Vx = {(s, ĝs(s)); s ∈ B(0, kiΩ)}

and ĝx(s) ≤ g̃x(s), ∀ s ∈ B(0, kiΩ).
On the subset of B(0, kiΩ) corresponding to

∂Di
Ω ∩ [∂(Ω ∪Di

Ω) ∩ Vx] = ∂Di
Ω ∩ [∂(Ω ∪ (D \D i

Ω)) ∩ Vx]

these two mappings coincide.

z ∈ ∂Ω \
⋃

x∈∂Ω∩∂DΩ

[{(s, g̃x(s)); s ∈ B(0, riΩ)} ∪

∪{(s, ĝx(s)); s ∈ B(0, riΩ)}]⇒ d(z, ∂Di
Ω) ≥ c > 0, 1 ≤ i ≤ iΩ.

(3.10)

Roughly speaking, condition (3.10) says that any Ω ∈ O is not ”develop-
ping fingers” far from ∂Ω∩∂DΩ that enter in small neighbourhoods of ∂DΩ.
The constant c > 0 is uniform for all Ω ∈ O. While conditions (3.9), (3.10)
may look complicated, we have to recall that DΩ is at our choice, just in
order to represent the parts ∂Ω∩DΩ where the Dirichlet condition is valid.
This allows a big flexibility in the choice of DΩ such that (3.9), (3.10) are
fulfilled as well.

If for any Ω ∈ O, aΩ ≥ a > 0, aiΩ ≥ a > 0, kΩ ≥ k > 0, kiΩ ≥ k > 0,
rΩ ≤ r < k, riΩ ≤ r, 1 ≤ i ≤ iΩ and the family of all the local charts

⋃
Ω∈O

[FΩ∪

(
iΩ⋃
i=1
F i

Ω)] is equibounded and equicontinuous on B(0, k) and assuming (3.9),

(3.10) a compactness theorem similar to Thm 2.2 may be proved in this
case as well, [16]. Namely, if d(Ωn,Ω)→ 0 and d(DΩn , DΩ)→ 0 then Ω, DΩ

satisfy all the above assumptions, including (3.9), (3.10).
Moreover, χΩn → χΩ a.e. in D, on a subsequence.
We also need an extension of the Hedberg-Keldys stability result, The-

orem 2.3, to this situation and providing a characterization of the space
V (Ω), [16].

Theorem 3.3. Let Ω ∈ O be given and let ṽ denote the extension of v ∈
V (Ω) to Ω ∪ DΩ, by zero. Then ṽ ∈ H1(Ω ∪ DΩ). Conversely, if w ∈
H1(Ω ∪DΩ) and w = 0 a.e. in DΩ \ Ω, then w|Ω ∈ V (Ω).
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In this setting, it is possible to prove local continuity results with respect
to Ω, of the solution of (3.8), similar to the previous subsection. However,
the argument is much more technical and will be omitted.

By using Theorem 2.4, one can establish existence results for the shape
optimization problem (3.8), (3.2), (3.3) as well.

Remark 3.4. It is possible to prove results of the same type when varia-
tional inequalities appear as the state equation.

4. Approximation

In this section, we perform an analysis of the discretization via finite ele-
ments of general shape optimization problems as discussed in §3. The case
of Dirichlet boundary conditions was considered by Zuazua and Chenais [4].

Applications to problems governed by stationary Navier-Stokes equa-
tions, under Lipschitz conditions on ∂Ω, are discussed in [8], [25].

Let {Th}h≥0 be a family of uniformly regular finite element meshes in
D, the bounded open set containing the family of all admissible domains
of class C, Ω ∈ O. We define two types of discrete approximations of Ω
(exterior and interior):

Ω̂h = int{∪Th, Th ∈ Th, Th ∩ Ω 6= ∅}, (4.1)

Ω̃h = int{∪Th, Th ∈ Th, Th ⊂ Ω}. (4.2)

We denote by Ôh, respectively Õh, the family of admissible discretized
domains obtained by applying to O rule (4.1), respectively (4.2).

If no confusion may arise, we write shortly Ωh,Oh. Notice that Oh is
always finite since any Ωh ∈ Oh is a combination of elements Th ∈ Th. A dis-
cretized admissible domain Ωh ∈ Oh may correspond to ”many” admissible
Ω ∈ O.

Some properties of (4.1), (4.2) under the uniform class C assumptions
(see §3) for O:

Theorem 4.1. (a) d(Ωh,Ω) ≤ h,

(b) meas(Ω̂h \ Ω) ≤ cΩ(h+ o(h)),

(c) meas(Ω \ Ω̃h) ≤ cΩ(h+ o(h)),

where o(h) is the uniform continuity modulus of the family F of local charts,
Ω ∈ O and cΩ > 0 is a constant independent of h > 0, but depending on Ω.

Theorem 4.2. Let Uh ∈ Oh satisfy d(Uh,Ω)→ 0 as h→ 0. Then

(a) Ω ∈ O,

(b) meas[(Uh \ Ω) ∪ (Ω \ Uh)]→ 0.
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Remark 4.1. Neither Uh ⊂ Ω, nor Ω ⊂ Uh is assumed in Theorem 4.2.
Uh ∈ Oh is of type (4.1) or (4.2) but not necessarily constructed from Ω ∈ O.

We consider now the case of the Neumann boundary conditions (3.5),
(3.2), (3.3). The discretization of (3.5) is∫

Ω̂h

(∇ỹh · ∇vh + ỹhvh)dx =

∫
Ω̂h

fvhdx, ∀ vh ∈ Vh. (4.3)

In (4.3) we use the variant (4.1) of the discretization of Ω and Vh is
a finite element space in Ω̂h obtained as the restriction of a finite element
space V ′h on the mesh Th in D.

Notice that on V ′h we impose that for any v smooth in D, its projection
vh ∈ V ′h satisfies vh → v in W 1,∞(D). Such finite element spaces of higher
order are described in Ciarlet and Raviart [5], Oden and Reddy [19].

Theorem 4.3. (a) Assume that d(Ûh,Ω)→ 0 and let yh denote the solution
of (4.3) in Ûh ∈ Ôh. Then, on a subsequence, we have

yh|ω → yΩ|ω weakly in H1(ω). (4.4)

(b) If f ∈ L∞(D) and Ûh ⊃ Ω ∀ h > 0, then

yh|Ω → yh strongly in H1(D).

Remark 4.2. Since Ûh are of type (4.1), we get automatically that ω ⊂ Ûh

by (3.3) and (4.4) makes sense.

We consider the cost functional

J(Ω) =

∫
ω

j(x, yΩ(x))dx (4.5)

that defines the shape optimization problem together with (3.3), (3.5) and
we assume that j(x, yh(x)) → j(x, y(x)) weakly in L1(ω) if yh → y weakly
in H1(ω). The discrete variant of (4.5) is obtained simply by replacing yΩ

with ỹh, the solution of (4.3). We denote by Jh the discrete cost functional.
Notice that the discrete variant of (3.3) is automatically satisfied by the
construction of Ω̂h in (4.1).

Theorem 4.4. J and Jh reach their minimum point (not necessarily unique)
on O, respectively Ôh.

(a) Any accumulation point of any sequence {Ω̂∗h} of discrete minimizers

on Ôh is a continuous minimizer Ω∗ ∈ O.
(b) Jh(Ω̂∗h)→ J(Ω∗) for h→ 0, on the initial sequence.
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The existence property for J is discussed in the previous section, while
for Jh it is obvious since Ôh is always a finite family. Property (a) is a
consequence of Theorem 4.3 and property (b) is given by the uniqueness of
the optimal value.

We continue with the case of mixed boundary conditions. The hypothe-
ses are the same as in the previous section, §3.3. The discretization of

domains Ω ∈ O, respectively DΩ =
iΩ⋃
i=1

Di
Ω is of type Ω̃h, (D̂i

Ω)h (interior -

exterior). Clearly, Ω̃h ⊂ Ω, (D̂i
Ω)h ⊃ Di

Ω for any h > 0. The finite element

space defined in Ω̃h is denoted by
◦
Vh and consist of all the elements vh ∈ V ′′h

(a finite element space defined in D ⊃ Ω) such that vh|(D̂Ω)h\Ω̃h
= 0 and

by taking their restriction to Ω̃h. This is the discrete form of the condition
in the definition of M in §3.3. For the finite element space V ′′h in D, it is
assumed that the projection wh of any element w ∈ M ⊂ V (Ω) satisfies
wh → w in W 1,∞(D).

The discretization of (3.8) is∫
Ω̃h

[∇yh · ∇vh + yhvh]dx =

∫
Ω̃h

fvhdx, ∀ vh ∈
◦
Vh . (4.6)

Theorem 4.5. Let Ûh, Ãh be such that d(Ûh, DΩ) → 0, d(Ãh,Ω) → 0 and

Ûh, Ãh are constructed via (4.1), (4.2) starting from the open sets DΩ, Ω ∈
O, respectively.

Let yh ∈
◦
Vh be the solution of (4.6) corresponding to Ãh. Then, for any

subdomain K → Ω, we have

yh|K → yΩ|K weakly in H1(K), (4.7)

where yΩ is the solution of (3.8).

The cost functional J has the form (4.5) (with the same hypothesis) and
the discrete cost functional Jh is again obtained by replacing yΩ with yh in
(4.5).

We strengthen slightly the constraint (3.3):

ω → ω1 ⊂ Ω ⊂ D, ∀ Ω ∈ O. (4.8)

By (4.8) yh (defined in Ω̃h ⊂ Ω) is defined in ω for h sufficiently small
and Jh makes sense.

Theorem 4.6. J and Jh reach their minimum (not necessarily unique) on
O, respectively Oh, h > 0.
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(a) Any accumulation point of any sequence {Ω̃∗h} of discrete minimizers

on Oh (together with the corresponding (D̂Ω)∗h and their accumulation point)
is a continuous minimizer Ω∗ (together with D∗Ω) in O.

(b) Jh(Ω̃∗h)→ J(Ω∗) on the initial sequence.
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