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Abstract - The aim of this work is to study a quastistatic contact problem
between an elastic body and a deformable foundation. The behavior of the
material is modeled by a nonlinear elastic law and the contact is modeled
with normal compliance and adhesion. The evolution of the bonding field
is described by a nonlinear differential equation. We state the classical
formulation of the problem, then we derive its variational formulation. Next,
we prove the existence of a uniquene the weak solution to the problem.
The proof is based on arguments on variational inequalities, the Cauchy-
Lipschitz theorem and the Banach fixed point argument.
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1. Introduction

Contact phenomena with adhesion between two deformable bodies or be-
tween a deformable body and a rigid foundation abound in industry and
in everyday life. The contact with adhesion between the different layers
of a composite material and between the pistons and sleeves are current
examples. Because of the importance of the adhesive contact process in me-
chanical systems and structures, considerable efforts have been made in its
mathematical modeling, mathematical analysis and numerical simulations.

To model the process of contact with adhesion, Frémond [1], [2] intro-
duced a new internal variable of surface, the bonding field, denoted in this
paper by β. It describes the fractional density of active bonds on the con-
tact surface Γ3. When β = 1 at a point of contact surface the adhesion is
complete and all the bonds are active; when β = 0 all the bonds are inactive,
severed, and there is no adhesion; when 0 < β < 1 the adhesion is partial
and only a fraction of the bonds is active. The adhesive on the contact
surface introduces tension that opposes the separation of the surfaces in the
normal direction and opposes the relative motion in the tangential direction.
The adhesive tensile traction is assumed to be proportional to β2 and to the
normal displacement uν . Problems of contact with adhesion were studied
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by several authors. Significant results on these problems can be found in
[4], [6], [7] and references therein.

The aim of this work is to continue the study of adhesive problems
presented in [5], [8]. The novelty consists in the fact that here we consider
a quasistatic process of contact and we model the material’s behavior with
a nonlinear elastic law. The main contribution of this study lies in the
proof of the existence and uniqueness of the weak solution of the mechanical
problem.

The rest of the manuscript is organized as follows. In Section 2 we present
some notations and preliminaries. In Section 3 we describe the mechanical
problem, state the assumptions on the data and deduce its variational for-
mulation. Finally, in Section 4 we prove the existence and uniqueness of the
weak solution. The proof is carried out in several steps; it is based on ar-
guments of variational inequalities, ordinary differential equations and fixed
point.

2. Preliminaries

We denote by r+ the positive part of r ∈ R, SN is the space of second order
symmetric tensors on RN ( N = 2, 3), while ”·” and |·| represent the inner
product and the Euclidean norm on RN and SN , respectively. Thus, for
every u, v ∈ RN and σ, τ ∈ SN we have

u · v = uivi, |u| = (u · u)
1
2 , σ · τ = σijτij , |σ| = (σ · σ)

1
2

Here and everywhere in what follows the indices i, j vary between 1, N and
the summation convention over repeated indices is adopted.

Let Ω ⊂ RN be a bounded domain with a Lipschitz boundary Γ and let
ν denote the unit outer normal on Γ. We need the spaces

H = {u = (ui) : ui ∈ L2 (Ω )}, H = {σ = (σij) : σij = σji ∈ L2 (Ω) },

H1 = {u ∈ H : ε (u) ∈ H} , H1 = {σ ∈ H : Div σ ∈ H}

where ε : H1 −→ H , Div : H −→ H are the deformation and the divergence
operators, respectively, defined by

ε (u) = (εij (u)) , εij (u) =
1

2
(∂jui + ∂iuj) , Div σ = (∂jσij) .

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the
canonical inner products given by

〈u, v〉H =

∫
Ω

uividx ∀u, v ∈ H, 〈σ, τ〉H =

∫
Ω

σijτijdx ∀σ, τ ∈ H,
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〈u, v〉H1
= 〈u, v〉H + 〈ε (u) , ε (v)〉H ∀u, v ∈ H1,

〈σ, τ〉H1
= 〈σ, τ〉H + 〈Divσ,Divτ〉H ∀σ, τ ∈ H1.

The associated norms are denoted by |.|H , |.|H, |.|H1
and |.|H1

respectively.
Since the boundary Γ is Lipschitz continuous, the unit outward normal vec-
tor ν on the boundary is defined almost everywhere. For every vector field
u ∈ H1 we still use the notation u for the trace of u on Γ. The normal
and tangential components of u on the boundary Γ are given by uν = u · ν,
uτ = u − uνν. We define, similarly, the normal and tangential components
of the Cauchy-stress vector σν on the boundary Γ by equalities σν = (σν) ·ν,
στ = σν − σνν and we recall that the following Green’s formula holds:

〈σ, ε (u)〉H + 〈Div σ, u〉H =

∫
Γ

σν uds ∀u ∈ H1.

Let Γ1 be a measurable part of Γ such that measΓ1 > 0 and let V be
the closed subset of H1 defined by

V = {v ∈ H1 : v = 0 on Γ1}

Since measΓ1 > 0 , then Korn’s inequality holds, and thus there exists a
constant c > 0, depending on Ω and Γ1, such that :

|ε (u)|H ≥ c |u|H1
∀u ∈ V

A proof of Korn’s inequality may be found in [3], p. 79. Over the space V
we consider the inner product

〈u, v〉V = 〈ε (u) , ε (v)〉H ∀u, v ∈ V

It follows from Korn’s inequality that |.|V and |.|H1
are equivalent norms on

V . Therefore, (V, |.|V ) is a real Hilbert space. Moreover, from the Sobolev
trace theorem, there exists a positive constant c > 0, depending on Ω, Γ1

and Γ3 such that

|v|L2(Γ3)N ≤ c |v|V ∀v ∈ V

Finally, we use the standard notation for the spaces of fonctions de-
fined on the time interval [0, T ] (T > 0) with values in a real normed
space X. In particular, we shall use the spaces C(0, T ;X), Lp(0, T ;X)
and W k,p(0, T ;X). Moreover, we define the set Q by

Q =
{
β ∈ C

(
0, T ;L2 (Γ3)

)
: 0 ≤ β (t) ≤ 1 ∀t ∈ [0, T ] a.e. on Γ3

}
We end this preliminary with the following version of the classical theo-

rem of Cauchy-Lipschitz which can be found in [9], p. 60.
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Theorem 2.1. Let (X, |.|X), be a real Banach space and F (t, .) : X −→ X
an operator defined almost everywhere on (0, T ) which satisfies the following
conditions:

1) There exists LF > 0 such that |F (t, u)− F (t, v)|X ≤ LF |u− v|X
∀u, v ∈ X a.e. t ∈ (0, T ).

2) There exists p ≥ 1 such that t 7→ F (t, u) ∈ Lp(0, T ;X) ∀u ∈ X.

Then, for every u0 ∈ X, there exists a unique function u ∈ W 1,p (0, T ;X)
such that

.
u (t) = F (t, u (t)) a.e. t ∈ (0, T ), u (0) = u0.

This theorem will be used to prove the existence and uniqueness of the
weak solution of the contact problem we introduce in the next section.

3. The model

We consider an elastic body which occupies a bounded domain Ω ⊂ RN
(N = 2, 3 for applications) and we assume that its boundary Γ is regular
and partitioned into three disjoint measurable parts Γ1, Γ2 and Γ3 such
that measΓ1 > 0. We are interested in the deformation of the body in
the time interval (0, T ), where T > 0. The body is clamped on Γ1 × (0, T )
and, therefore, the displacement field vanishes there. We also assume that a
volume force of density f0 acts in Ω×(0, T ) and a surface traction of density
f2 acts on Γ2 × (0, T ). On Γ3 × (0, T ) the body is in adhesive frictionless
contact with a deformable foundation. Moreover, the process is quasistatic
and the evolution of the bonding field is described by a nonlinear differential
equation. The classical formulation of the problem is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] −→ RN , a stress field
σ : Ω× [0, T ] −→ SN and a bonding field β : Γ3 × [0, T ] −→ [0, 1] such that

σ (t) = F (ε (u (t))) in Ω× (0, T ), (3.1)

Divσ (t) + f0 (t) = 0 in Ω× (0, T ), (3.2)

u = 0 on Γ1 × (0, T ), (3.3)

σν = f2 on Γ2 × (0, T ), (3.4)

−σν = pν (uν)− γνβ2 (−R (uν))+ on Γ3 × (0, T ), (3.5)

στ = 0 on Γ3 × (0, T ), (3.6)

·
β = −

(
γνβ

[
(−R (uν))+

]2 − εa)
+

on Γ3 × (0, T ), (3.7)

β (0) = β0 on Γ3. (3.8)
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For a detailed description of the equations and boundary conditions in
Problem P we refer to [7]. Here we restrict ourselves to recall that (3.1) is the
nonlinear elastic constitutive law, (3.2) represents the equilibrium equation,
(3.3) and (3.4) are the displacement and the traction boundary conditions,
respectively; condition (3.5) represents the normal compliance contact with
adhesion where pν is a given positive function, γν and εa are given adhesion
coefficients and R is the truncation operator defined by

R (s) =


L if s ≥ L
s if |s| < L
−L if s ≤ −L,

(3.9)

L > 0 being the characteristic length of the bonds; condition (3.6) represents
the frictionless contact and shows that the tangential stress vanish on the
contact surface Γ3, during the process; finally, equation (3.7) describes the
evolution of the bonding field and (3.8) represents the initial condition for
the bonding field.

In the study of Problem P we assume that the elasticity operator F , and
the normal compliance function pν , satisfy the following conditions.

(a) F : Ω× SN −→ SN .
(b) ∃m > 0 such that (F (x, ε1)− F (x, ε2)) · (ε1 − ε2) ≥ m |ε1 − ε2|2

a.e. x ∈ Ω ∀ε1, ε2 ∈ SN .
(c) ∃L > 0 such that |F (x, ε1)− F (x, ε2)| ≤ L |ε1 − ε2|

a.e. x ∈ Ω ∀ε1, ε2 ∈ SN .
(d) The mapping x 7→ F (x, ε) is Lebesgue measurable

a.e. x ∈ Ω, ∀ε ∈ SN .
(e) The mapping x 7→ F (x, 0) belongs to H.

(3.10)

(a) pν : Γ3 × R −→ R+.
(b) ∃Lν > 0 such that |pν (x, r1)− pν (x, r2)| ≤ Lν |r1 − r2|

∀r1, r2 ∈ R, a.e. x ∈ Γ3.
(c) (pν (x, r1)− pν (x, r2)) (r1 − r2) ≥ 0

∀r1, r2 ∈ R, a.e. x ∈ Γ3.
(d) The mapping x 7→ pν (x, r) is Lebesgue measurable

on Γ3,∀r ∈ R.
(e) pν (x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

(3.11)

We also suppose that the adhesion coefficients satisfy

γν ∈ L∞ (Γ3) , εa ∈ L2 (Γ3) , γν , εa ≥ 0 a.e. on Γ3, (3.12)

the densities of the body forces and surface traction have the regularity

f0 ∈W 1,∞ (0, T ;H) , f2 ∈W 1,∞(0, T ;L2(ΓN2 )) (3.13)
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and, finally, the initial data satisfies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.14)

It follows from (3.13) and Riesz-Frechet’s representation theorem that
there exists a unique function f : [0, T ] −→ V such that :

〈f (t) , v〉V = 〈f0 (t) , v〉H + 〈f2 (t) , v〉L2(Γ2)N ∀v ∈ V, t ∈ (0, T ) (3.15)

and, moreover,
f ∈W 1,∞ (0, T ;V ) . (3.16)

Finally, we define the adhesion functional j : L∞ (Γ3) × V × V −→ R
and the normal compliance functional k : V × V −→ R by equalities

j (β, u, v) = −
∫

Γ3

γνβ
2 (−R (uν))+ vνds, (3.17)

k (u, v) =

∫
Γ3

pν (uν) vνds (3.18)

for all u, v ∈ V , β ∈ L∞(Γ3).

Applying Green’s formula and using the equilibrium equation and the
boundary conditions, we can easily deduce the following variational formu-
lation of the mechanical problem.

Problem PV. Find a displacement u : [0, T ] −→ V , and a bonding field
β : [0, T ] −→ L∞ (Γ3) such that :

〈F (ε (u (t))) , ε (v)〉H + j (β (t) , u (t) , v) + k (u (t) , v) (3.19)

= 〈f (t) , v − u (t)〉V ∀v ∈ V, t ∈ (0, T )

.
β (t) = −

(
γνβ (t)

[
(−R (uν (t)))+

]2 − εa)
+

a.e. t ∈ (0, T ) (3.20)

β (0) = β0. (3.21)

The unique solvability of Problem PV will be proved in the next section.

4. Existence and uniqueness

Our main result in the study of Problem PV is the following.

Theorem 4.1. Assume that (3.10)–(3.14) hold. Then, there exists a unique
solution (u, β) to Problem PV which satisfies

u ∈W 1,∞ (0, T ;V ) , β ∈W 1,∞ (0, T ;L∞ (Γ3)) ∩Q. (4.1)
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Proof. The proof of Theorem 4.1 will be carried out in four steps that we
sketch in what follows.

(i) Assume that β ∈ Q is given. In the first step we consider auxiliary
problem of finding a displacement uβ : [0, T ] −→ V such that

〈F (ε (uβ (t))) , ε (v)〉H + j (β (t) , uβ (t) , v) (4.2)

+k (uβ (t) , v) = 〈f (t) , v〉V ∀v ∈ V, t ∈ (0, T ).

We prove that this problem has a unique solution which satisfies uβ ∈
C (0, T ;V ). To this end we fix t ∈ [0, T ] and we consider the operator
At : V −→ V defined by

〈Atu, v〉V = 〈F (ε (u)) , ε (v)〉H + j (β (t) , u (t) , v) + k (u, v)

for all u, v ∈ V . It is easy to see that At is a Lipschitz continuous operator
and, therefore, it follows from standard results that there exists a unique
element uβ(t) such that At(uβ(t)) = f(t). We conclude from here that uβ(t)
satisfies (4.2). A standard computation shows that uβ ∈ C (0, T ;V ).

(ii) In the second step we use the displacement field uβ obtained in the
previous step and we consider the auxiliary problem of finding a bonding
field θβ : [0, T ] −→ L∞ (Γ3) such that

.
θβ (t) = −

(
γνθβ (t)

[
(−R (uβν (t)))+

]2
− εa

)
+

a.e. t ∈ (0, T ), (4.3)

θβ (0) = β0. (4.4)

We show that there exists a unique solution to the Cauchy problem
(4.3)–(4.4) which satisfies θβ ∈ W 1,∞ (0, T ;L∞ (Γ3)) ∩ Q. Indeed, consider
the mapping Fβ : [0, T ]× L∞ (Γ3) −→ L∞ (Γ3) defined as

Fβ (t, θβ) = −
(
γνθβ (t)

[
(−R (uβν (t)))+

]2
− εa

)
+

.

It follows from the properties of the truncation operator R, that Fβ is
Lipschitz continuous with respect to the second argument, uniformly in
time. Moreover, for any θβ ∈ L∞ (Γ3), the mapping : t 7→ Fβ (t, θβ)
belongs to L∞ (0, T ;L∞ (Γ3)). Then, from Theorem 2.1 we deduce the
existence of a unique function θβ ∈ W 1,∞ (0, T ;L∞ (Γ3)) which satisfies
(4.3)–(4.4). The regularity θβ ∈ Q, follows from (4.3)–(4.4) and assump-
tion 0 ≤ β0 ≤ 1 a.e. on Γ3. Indeed; equation (4.3) implies that for a.e.
x ∈ Γ3, the function t 7→ θβ (x, t) is decreasing and its derivative vanishes

when γνθβ (t)
[
(−R (uβν (t)))+

]2
≤ εa. Combining these properties with the

inequality 0 ≤ β0 ≤ 1 we deduce that 0 ≤ θβ (t) ≤ 1, for all t ∈ [0, t], a.e. on
Γ3, which shows that θβ ∈ Q.
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(iii) In the third step we denote by uβ and θβ the solution of the auxiliary
problems defined in the previous steps, for every β ∈ Q. Moreover, we define
the operator Λ : Q −→ Q by equality

Λβ = θβ. (4.5)

We prove that the operator Λ has a unique fixed point β∗. To this end we
suppose in what follows that βi are two functions of Q and we denote by
ui, θi the functions obtained in steps (i) and (ii), respectively, for β = βi,
(i = 1, 2). Let t ∈ [0, T ]. We use (4.2) and the properties of F , j and k to
deduce that

|u1 (t)− u2 (t)|V ≤ c |β1 (t)− β2 (t)|L2(Γ3) (4.6)

which implies that∫ t

0
|u1 (s)− u2 (s)|V ds ≤ c

∫ t

0
|β1 (s)− β2 (s)|L2(Γ3) ds. (4.7)

Here and below c denotes a positive constant which does not depend on t
and whose value may change from place to place.

On the other hand, it follows from (4.3) and (4.4) that

θi (t) = β0 −
∫ t

0

(
γνθi (s)

[
(−R (uiν (s)))+

]2 − εa)
+
ds i = 1, 2

and then

|θ1 (t)− θ2 (t)|L2(Γ3) ≤

c

∫ t

0

∣∣∣θ1 (s)
[
(−R (u1ν (s)))+

]2 − θ2 (s)
[
(−R (u2ν (s)))+

]2∣∣∣
L2(Γ3)

ds.

Using the definition (3.9) and writing θ1 = θ1 − θ2 + θ2, we get

|θ1 (t)− θ2 (t)|L2(Γ3) ≤ c

∫ t

0
|θ1 (s)− θ2 (s)|L2(Γ3) ds+

+c

∫ t

0
|u1ν (s)− u2ν (s)|L2(Γ3) ds

By Gronwall’s inequality and the Sobolev trace theorem, it follows that

|θ1 (t)− θ2 (t)|L2(Γ3) ≤ c
∫ t

0
|u1 (s)− u2 (s)|V ds (4.8)

and, substituting the definition (4.5) into (4.8), we get

|Λβ1 (t)− Λβ2 (t)|L2(Γ3) ≤ c
∫ t

0
|u1 (s)− u2 (s)|V ds. (4.9)
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We now combine (4.7) and (4.9) to obtain

|Λβ1 (t)− Λβ2 (t)|L2(Γ3) ≤ c
∫ t

0
|β1 (s)− β2 (s)|L2(Γ3) ds.

Reiterating this inequality p times yields

|Λpβ1 − Λpβ2|C(0,T ;L2(Γ3)) ≤
cpT p

p!
|β1 − β2|C(0,T ;L2(Γ3)) ∀p ∈ N. (4.10)

The previous inequality shows that for p sufficiently large the operator
Λp is contractive. Since Q is closed subset in the Banach subspace in
C
(
0, T ;L2 (Γ3)

)
, it follows that Λp has a unique fixed point β∗ ∈ Q. There-

fore, the operator Λ has a unique fixed point β∗ ∈ Q, which concludes the
proof.

(iv) In the fourth step we prove the existence part in Theorem 4.1. Let
β∗ ∈ Q be the fixed point of Λ and u∗ be the solution of equation (4.2) for
β = β∗, i.e. u∗ = uβ∗ . Then, (4.6) implies that

|u∗ (t1)− u∗ (t2)|V ≤ c |β
∗ (t1)− β∗ (t2)|L2(Γ3) ∀t1, t2 ∈ [0, T ] . (4.11)

Since β∗ = θβ∗ it follows from step (ii) that β∗ ∈ W 1,∞ (0, T ;L∞ (Γ3)) and
therefore (4.11) implies that u∗ ∈W 1,∞ (0, T ;V ). From (4.2), (4.3) and (4.4)
we conclude that (u∗, β∗) is a solution of the Problem PV whit regularity
(4.1).

(v) In the fifth step we prove the uniqueness of the solution. It is a
consequence of the uniqueness of the fixed point of the operator Λ and
the uniqueness of the auxiliary problems studied in the steps (i) and (ii).
Indeed, let (u, β) be a solution of Problem PV which satisfies (4.1). Since
β ∈ Q, it follows from (3.19) that u is a solution to (4.2); on the other hand,
step (i) implies that this problem has a unique solution, denoted uβ. Thus,

u = uβ (4.12)

Letting u = uβ in (3.20) and using the initial condition (3.21), we can see
that β is a solution to problem (4.3)–(4.4). Therefore, since step (ii) implies
that this last problem has a unique solution, denoted θβ, we deduce that

β = θβ. (4.13)

We now use (4.5) and (4.13) to see that Λβ = β, i.e. β is a fixed point of
the operator Λ. It follows from step (iii) that

β = β∗ (4.14)

The uniqueness of the solution is now a consequence of (4.12) and (4.14). 2
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A triple (u, σ, β) which satisfies (3.1) and (3.19)–(3.21) is called a weak
solution of the mechanical problem P. It follows from Theorem 4.1 we that
the mechanical problem P has a unique weak solution. Note that the regu-
larity of the weak solution is σ ∈ W 1,∞ (0, T ;H1). Indeed, taking v = ϕ ∈
D∞ (Ω) in (3.19) and using (3.1), (3.15) we find that Div σ (t) + f0 (t) = 0,
for all t ∈ [0, T ]. This equality and (3.13) imply that Divσ ∈W 1,∞ (0, T ;H),
which in its turn implies σ ∈W 1,∞ (0, T ;H1).
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