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Abstract - This paper continues the study of the problem of propagation
of TH guided waves in pre-stressed anisotropic layered structures. One
derives here the energy estimates for Love type wave, for different classes of
anisotropy. We obtain and analyze the energy density and the energy flux
distribution, the mean energy density and mean energy flux, resp. the total
mean energy density and total mean energy flux.

Key words and phrases : Love wave, pre-stressed anisotropic layered
structure, energy estimates.

Mathematics Subject Classification (2010) : 74J15, 74B15, 74E10.

1. Introduction

Last period the problems analyzing the behavior of electroelastic materials
subject to incremental fields superposed on initial mechanical and electric
fields have attracted considerable attention, due their complexity and to
multiple applications. Last decade we dealt with various problems in the
field, such as progressive waves and attenuated waves propagation in piezo-
electric crystals subject to an electromechanical bias, and the propagation of
waveguides in monoclinic crystals subject to initial fields (see papers [7]-[21],
or the chapter [6] for an overview of our results).

The present paper continues the analysis presented in paper [22], con-
cerning the TH waves propagation in anisotropic layered structures subject
to initial mechanical fields. One derives here the energy estimates for Love
type wave, for different classes of anisotropy. We obtain and analyze the
energy density and the energy flux distribution, the mean energy density
and mean energy flux, resp. the total mean energy density and total mean
energy flux. Our results generalize, for initial mechanical fields, classical re-
sults from seismology concerning Love waves propagation (see works [4] and
[5]). Other results concerning the analysis of electromechanical problems
may be found in papers [1]-[3], resp. in works [23]-[25].
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2. Fundamental equations. Geometric hypotheses

As physical hypotheses, we assume the material to be an elastic dielectric,
which is nonmagnetizable and conducts neither heat, nor electricity. Conse-
quently, we shall use the quasi-electrostatic approximation of the equations
of balance in electrodynamics of continua. Furthermore, we assume that
the elastic dielectric is homogeneous, and that we apply on initial large
homogeneous deformations and an initial large homogeneous electric field.

To describe this situation we use three different configurations : the ref-
erence configuration BR in which at time t = 0 the body is undeformed and

free of all fields; the initial configuration
◦
B in which the body is deformed

statically and carries the large initial fields; the present (current)configuration

Bt obtained from
◦
B by applying time dependent incremental deformations

and fields. In what follows, all the fields related to the initial configuration
◦
B will be denoted by a superposed ”◦”.

In this case the homogeneous field equations take the following form:

◦
ρ ü = div Σ, div ∆ = 0

rot e = 0 ⇔ e = −grad ϕ

(2.1)

where
◦
ρ is the mass density, u is the incremental displacement from

◦
B to

Bt, Σ is the incremental electromechanical nominal stress tensor, ∆ is the
incremental electric displacement vector, e is the incremental electric field
vector and ϕ is the incremental electric potential. All incremental fields
involved into the above equations depend on the spatial variable x and on
time t.

We suppose the following incremental constitutive equations:

Σkl =
◦
Ωklmn um,n+

◦
Λmkl ϕ, m

∆k =
◦
Λkmn un,m+

◦
εkl el =

◦
Λkmn un,m−

◦
εkl ϕ, l.

(2.2)

In these equations
◦
Ωklmn are the components of the instantaneous elas-

ticity tensor,
◦
Λkmn are the components of the instantaneous coupling tensor

and
◦
εkl are the components of the instantaneous dielectric tensor. The in-

stantaneous coefficients can be expressed in terms of the classical moduli of
the material and on the initial applied fields as follows:
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◦
Ωklmn=

◦
Ωnmlk= cklmn+

◦
Skn δlm − ekmn

◦
El −enkl

◦
Em −ηkn

◦
El
◦
Em,

◦
Λmkl= emkl + ηmk

◦
El,

◦
εkl=

◦
εlk= δkl + ηkl,

(2.3)

where cklmn are the components of the constant elasticity tensor, ekmn are
the components of the constant piezoelectric tensor, εkl are the components

of the constant dielectric tensor,
◦
Ei are the components of the initial applied

electric field and
◦
Skn are the components of the initial applied symmetric

(Cauchy) stress tensor.

From the previous field and constitutive equations we obtain the follow-
ing fundamental system of equations:

◦
ρ ül =

◦
Ωklmn um,nk+

◦
Λmkl ϕ,mk,

◦
Λkmn un,mk−

◦
εkn ϕ,nk = 0, l = 1, 3. (2.4)

In what follows we shall describe the geometric hypotheses for our prob-
lem. The material is assumed to be semi-infinite, occupying the region
x2 > 0, and the waves are supposed to propagate along x1 axis. The plane
x1x2 containing the surface normal and the propagation direction is called
sagittal plane. Furthermore, we suppose that the guide of waves has the
properties invariant with time t and with x1 variable. In these conditions,
if the material behaves linearly and without attenuation, the normal modes
are supposed to have the form:

uj(x, t) = u0j (x2, x3)exp[i(ωt− kx1)], j = 1, 4. (2.5)

Here u1, u2, u3 are the mechanical displacements, while u4 stands for the
electric potential ϕ. In the previous relations k represents the wave number,
ω defines the frequency of the wave and i2 = −1 is the complex unit. Using
these hypotheses, the equations (2.4) become:

◦
Ωklmn um,nk+

◦
Λmkl ϕ,mk = −

◦
ρ ω2ul,

◦
Λkmn un,mk =

◦
εkn ϕ,nk, l = 1, 3.

(2.6)

We define the non-dimensional variable X2 = kx2 and we neglect the
effects of diffraction in x3 direction, so that ∂/∂x3 = 0. From the other
hypotheses it yields the derivation rules ∂/∂x1 = −ik and ∂/∂x2 = k∂/∂X2.
Finally, we introduce the phase velocity of the guided wave as V = ω/k.



232 Olivian Simionescu-Panait

3. Coupling conditions for waveguide propagation in anisotropic
solids

To analyze the coupling of plane waveguide, using the previous hypotheses,
we introduce the differential operators with complex coefficients, as follows:

◦
Γil=

◦
Ω1il1 −

◦
Ω2il2

∂2

∂X2
2

+ i(
◦
Ω1il2 +

◦
Ω1li2)

∂

∂X2
,

◦
γl=

◦
Λ11l −

◦
Λ22l

∂2

∂X2
2

+ i(
◦
Λ12l +

◦
Λ21l)

∂

∂X2
,

◦
ε=
◦
ε11 −

◦
ε22

∂2

∂X2
2

+ 2i
◦
ε12

∂

∂X2
.

(3.1)

In these conditions, after a lengthy, but elementary calculus, we obtain
that the differential system (2.6) has the following form:

◦
Γ11 −

◦
ρ V 2

◦
Γ12

◦
Γ13

◦
γ1

◦
Γ12

◦
Γ22 −

◦
ρ V 2

◦
Γ23

◦
γ2

◦
Γ13

◦
Γ23

◦
Γ33 −

◦
ρ V 2

◦
γ3

◦
γ1

◦
γ2

◦
γ3 − ◦ε




u1
u2
u3
u4

 = 0. (3.2)

Here the coefficients are defined by relations (3.1). The system (3.2) is a
homogeneous differential system of four equations with four unknowns, i.e.
the components of the mechanical displacement and the electric potential,
having as coefficients complex differential operators in non-dimensional vari-
able X2. It generalizes the similar system from the case without initial fields,
derived in [5].

In what follows we shall analyze the coupling conditions of the guided
plane wave propagation in two particular cases.

3.1. Sagittal plane normal to a direct axis of order two

In this case, we suppose that the sagittal plane x1x2 is normal to a dyad
axis (x3 in our case). Thus, the material belongs to the class 2 of the
monoclinic system (A2 || x3). So, we derive the following result concerning
the decomposition of the fundamental system (3.2).

If the axis x3 is a direct dyad axis and if
◦
E1=

◦
E2= 0, the system (3.2)

reduces to two independent subsystems, as follows:
a) The first subsystem:( ◦

Γ11 −
◦
ρ V 2

◦
Γ12

◦
Γ12

◦
Γ22 −

◦
ρ V 2

)(
u1
u2

)
= 0 (3.3)
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defines a non-piezoelectric guided wave, polarized in the sagittal plane x1x2,

which depends on the initial stress field, only. We shall denote it by
◦
P 2.

b) The second subsystem:( ◦
Γ33 −

◦
ρ V 2

◦
γ3

◦
γ3 − ◦ε

)(
u3
u4

)
= 0 (3.4)

has as solution a transverse-horizontal wave, with polarization after the
axis x3, which is piezoelectric and electrostrictive active, and depends on the

initial mechanical and electrical fields. It is denoted by
◦
TH and generalizes

the famous Bleustein-Gulyaev wave (see [5], to compare).

3.2. Sagittal plane parallel to a mirror plane

We suppose now that the sagittal plane x1x2 is normal to an inverse dyad
axis (x3 in our case) or, equivalently, that the sagittal plane is parallel to a
mirror plane M . It follows that the material belongs to the class m of the
monoclinic system (M ⊥ x3).

Thus, if the axis x3 is an inverse dyad axis and if
◦
E3= 0, the fundamental

system (3.2) splits into two parts, as follows.
a) The first subsystem has the form:

◦
Γ11 −

◦
ρ V 2

◦
Γ12

◦
γ1

◦
Γ12

◦
Γ22 −

◦
ρ V 2

◦
γ2

◦
γ1

◦
γ2 − ◦ε


 u1

u2
u4

 = 0. (3.5)

It has as solution a guided wave with sagittal plane polarization, associated
with the electric field (via the electric potential u4 = ϕ), providing piezo-
electric and electrostrictive effects, and depending on the initial stress and

electric fields. It is denoted by
◦
P 2. The electric field, associated with this

wave, is contained in the sagittal plane, since E3 = ∂ϕ/∂x3 = 0. This fact

is consistent with the hypothesis
◦
E3= 0.

b) The second subsystem reduces to a single equation, as follows:

(
◦
Γ33 −

◦
ρ V 2)u3 = 0. (3.6)

Its root corresponds to a transverse-horizontal wave, non-piezoelectric, and

influenced by the initial stress field, only. It is called
◦
TH wave.

In this equation:

◦
Γ33= c55+

◦
S11 +2i(c45+

◦
S12)

∂

∂X2
− (c44+

◦
S22)

∂2

∂X2
2

. (3.7)
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The corresponding mechanical boundary condition has the form

Σ23 = k[(−i)(c45+
◦
S12) + (c44+

◦
S22)

∂

∂X2
]u3, (3.8)

on the plane x2 = 0.

4. Love wave propagation

Now, we focus on the study of
◦
TH wave propagation. Substituting X2 = kx2

and V = ω/k the previous differential equation has the form, denoting by
u03 = u(x2):

(c44+
◦
S22)

d2u

dx22
− 2ki(c45+

◦
S12)

du

dx2
+ [
◦
ρ ω2 − k2(c55+

◦
S11)]u = 0. (4.1)

In order to simplify the resolution of equation (4.1), we suppose that
the medium is isotropic in relation with TH wave. This is the case when
x3 is along a tetrad or hexad symmetry axis, or when the whole medium is
isotropic. So that, in this particular case c45 = 0 and c55 = c44.

Consequently, the equation (4.1) becomes:

(1 +

◦
S22

c44
)u′′ − 2ki

◦
S12

c44
u′ + [

ω2

v2T
− k2(1 +

◦
S11

c44
)]u = 0, (4.2)

where vT =

√
c44
◦
ρ

is the TH wave velocity in the case without initial fields.

This equation is related to the boundary condition:

(−ki)
◦
S12 u+ (c44+

◦
S22)u

′ = Σ23, on x2 = 0. (4.3)

The equation (4.2), with the boundary condition (4.3), is to be solved
for the following particular problem.

4.1. Layer on a substrate. Love type wave

We suppose an elastic layer (−h < x2 < 0) bonded to an elastic substrate
(x2 > 0), which are both isotropic in relation with TH wave. Moreover, we

suppose that
◦
S12= 0.

In the substrate the displacement must vanish for x2 → ∞, so the
solution of the equation (4.2) has the form:

u(x2) = u0exp(−kχx2), Re[kχ] > 0, x2 > 0. (4.4)



Energy estimates for Love wave in a pre-stressed layered structure 235

The corresponding characteristic equation is:

k2χ2(1 +

◦
S22

c44
) +

ω2

v2T
− k2(1 +

◦
S11

c44
) = 0, (4.5)

which implies

V =
ω

k
< vT

√
1 +

◦
S11

c44
(4.6)

under the hypotheses |
◦
S11 |/c44 < 1 and |

◦
S22 |/c44 < 1.

Moreover, we obtain:

χ =

√√√√√√√√√
1 +

◦
S11

c44
− V 2

v2T

1 +

◦
S22

c44

(4.7)

For the layer, we distinguish the variables using a hat. We seek the
solution of the equation (4.2) in a sinusoidal form:

u(x2) = û0coskχ̂(x2 + h), −h < x2 < 0. (4.8)

For this solution the mechanical stress Σ32 = (ĉ44+
◦
S22)u

′(x2) = 0, at the
free surface x2 = −h, where the displacement is maximal.

From the characteristic equation we obtain:

(kχ̂)2 =

ω2

v̂2T
− k2(1 +

◦
S11

ĉ44
)

1 +

◦
S22

ĉ44

> 0. (4.9)

This implies that

V = ω/k > v̂T

√
1 +

◦
S11

ĉ44
, (4.10)

where v̂T =

√
ĉ44
◦̂
ρ

.

The inequalities (4.6), (4.10) show us that the Love wave velocity V
satisfies the following fundamental inequalities:

v̂T

√
1 +

◦
S11

ĉ44
< V < vT

√
1 +

◦
S11

c44
. (4.11)
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Consequently, the velocity of the TH wave in the substrate is greater than
the velocity of the TH wave in the layer vT > v̂T . Moreover, we obtain:

χ̂ =

√√√√√√√√√
V 2

v̂2T
− (1 +

◦
S11

ĉ44
)

1 +

◦
S22

ĉ44

. (4.12)

At the interface x2 = 0 between layer and substrate we suppose the
continuity of displacement, so we obtain

û0 =
u0

cos(kχ̂h)
,

and the continuity of stress components, which yields the relation

−(c44+
◦
S22)u0χ = −(ĉ44+

◦
S22)û0χ̂sin(kχ̂h).

Hence, we obtain the dispersion relation in the form:

tan(kχ̂h) =
(c44+

◦
S22)χ

(ĉ44+
◦
S22)χ̂

, (4.13)

which is influenced by the initial mechanical fields, via the previous forms of
χ and χ̂. This dispersion equation has an infinite number of solutions given
by:

(kh)n =
1

χ̂
tan−1[

(c44+
◦
S22)χ

(ĉ44+
◦
S22)χ̂

] + n
π

χ̂
, n = 0, 1, 2, ... (4.14)

5. Energy estimates for Love wave

In this paragraph we obtain and analyze the energy estimates for a Love
wave propagating in a pre-stressed layered structure. We derive here the
energy density and energy flux vector, the mean energy density and mean
energy flux vector, resp. the total mean energy density and total mean
energy flux vector.

5.1. Energy density and energy flux vector

Now, we compute the energy density and the energy flux vector for the Love
wave analyzed in the previous paragraph. Here the energy density is defined
by

e =
1

2
(
◦
ρ u̇lu̇l+

◦
Ωklmn ul,kum,n), (5.1)
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resp. the energy flux vector has the components

Φk = −Σklu̇l. (5.2)

In the substrate x2 > 0 we have the displacement of the wave in the form
(4.4), while in the layer −h < x2 < 0 the wave motion is given by (4.8).

Consequently, we obtain for the substrate the energy density in the
form

e = 1
2k

2u20exp(−2χkx2)[(
◦
ρ V 2 + c44+

◦
S11)sin

2k(x1 − V t)+

(c44+
◦
S22)χ

2cos2k(x1 − V t)],
(5.3)

resp. the energy flux vector components are

Φ1 = (c44+
◦
S11)V k

2u20exp(−2χkx2)sin
2k(x1 − V t),

Φ2 = (c44+
◦
S22)V χk

2u20exp(−2χkx2)

·sink(x1 − V t)cosk(x1 − V t), Φ3 = 0.

(5.4)

After an elementary computation, we find that the energy density and
the energy flux vector satisfy in the substrate the balance equation

de

dt
+
∂Φk

∂xk
= 0. (5.5)

As regards the energy density distribution into the layer, we obtain

ê = 1
2k

2û20[(
◦̂
ρV 2 + ĉ44+

◦
S11)cos2kχ̂(x2 + h)sin2k(x1 − V t)+

(ĉ44+
◦
S22)χ̂

2sin2kχ̂(x2 + h)cos2k(x1 − V t)].

(5.6)

Moreover, we derive the energy flux vector components, into the layer, hav-
ing the form

Φ̂1 = (ĉ44+
◦
S11)V k

2û20cos2kχ̂(x2 + h)sin2k(x1 − V t),

Φ̂2 = (ĉ44+
◦
S22)V χ̂k

2û20sinkχ̂(x2 + h)coskχ̂(x2 + h)

·sink(x1 − V t)cosk(x1 − V t), Φ̂3 = 0.

(5.7)

It is easy to see that the energy density and the energy flux vector satisfy,
in the layer, the balance equation

dê

dt
+
∂Φ̂k

∂xk
= 0. (5.8)
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5.2. Mean energy density and mean energy flux vector

Mean energy density and mean energy flux vector are defined to be the
averages over a period of time, for a fixed position

< e > (x) = (ω/2π)

∫ 2π/ω

0
e(x, t)dt,

< Φk > (x) = (ω/2π)

∫ 2π/ω

0
Φk(x, t)dt.

(5.9)

Using (5.3) and (5.4), we obtain the mean energy density and the mean
energy flux into the substrate as

< e >=
1

2
(c44+

◦
S11)k

2u20exp(−2χkx2), (5.10)

resp.

< Φ1 >= 1
2(c44+

◦
S11)k

2u20V exp(−2χkx2),

< Φ2 >=< Φ3 >= 0.

(5.11)

From (5.6) and (5.7) we derive the mean energy density and the mean
energy flux vector into the layer in the form

< ê >=
1

4
k2û20[

◦̂
ρV 2 + (ĉ44+

◦
S11)cos2kχ̂(x2 + h)] (5.12)

and

< Φ̂1 >= 1
2(ĉ44+

◦
S11)k

2û20V cos2kχ̂(x2 + h),

< Φ̂2 >=< Φ̂3 >= 0.

(5.13)

We can observe that the mean energy flux vectors in the layer and in
the substrate are parallel to the interface x2 = 0, which coincides with the
propagation direction Ox1.

We find that at the interface x2 = 0 we have a jump condition for the
mean energy flux from the substrate vs. the mean energy flux from the layer

< Φ̂1 >0

< Φ1 >0
=
ĉ44+

◦
S11

c44+
◦
S11

, (5.14)

respectively, for the mean energy densities

< ê >0

< e >0
=

◦̂
ρV 2 + (ĉ44+

◦
S11)cos2kχ̂h

(c44+
◦
S11)(1 + cos2kχ̂h)

. (5.15)
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On the other hand, if we define the energy flux velocity as the ratio
between the mean energy flux vector and the mean energy density, we obtain
its components, for the layer, in the form

ĝ1 =
V (ĉ44+

◦
S11)[1 + cos2kχ̂(x2 + h)]

◦̂
ρV 2 + (ĉ44+

◦
S11)cos2kχ̂(x2 + h)

, ĝ2 = ĝ3 = 0, (5.16)

resp. in the substrate
g1 = V, g2 = g3 = 0. (5.17)

We easily observe that the energy flux velocity depends on the depth x2 in
the layer, while the energy flux velocity is constant in the substrate, and
equals the Love wave velocity.

5.3. Total mean energy density and total mean energy flux vector

We define the total mean energy density, resp. the total mean energy flux
vector as

< ê >T=

∫ 0

−h
< ê > (x)dx2, < Φ̂k >T=

∫ 0

−h
< Φ̂k > (x)dx2, (5.18)

in the layer, resp.

< e >T=

∫ ∞
0

< e > (x)dx2, < Φk >T=

∫ ∞
0

< Φk > (x)dx2, (5.19)

in the substrate.
For a Love wave motion, into the layer we obtain

< ê >T=
1

4
k2û20[

◦̂
ρV 2h+ (ĉ44+

◦
S11)

sin2kχ̂h

2kχ̂
] (5.20)

and

< Φ̂1 >T=
1

4
k2û20V (ĉ44+

◦
S11)[h+

sin2kχ̂h

2kχ̂
],

< Φ̂2 >T=< Φ̂3 >T= 0.

(5.21)

In the substrate, we find

< e >T=
1

4χ
ku20(c44+

◦
S11),

< Φ1 >T=
1

4χ
ku20V (c44+

◦
S11),

< Φ2 >T=< Φ3 >T= 0.

(5.22)

The previous expressions give the dependency of the total mean energy
density and total mean energy flux vector on the initial fields and on the
dimensionless parameter kh, which is defined by the ratio between the layer
depth and the wavelength.
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6. Conclusions

In this paper we obtained the energy estimates for a Love type wave prop-
agating in pre-stressed anisotropic layered structures. We derived and an-
alyzed here the energy density and the energy flux distribution, the mean
energy density and mean energy flux, resp. the total mean energy density
and total mean energy flux for this problem.
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