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Abstract - In this paper we study a mathematical model which describes
the quasistatic contact between a viscoplastic body and a foundation. The
contact is frictionless and is modelled with a new and nonstandard condition
which involves both normal compliance, unilateral constraint and memory
effects. We present a penalization method in the study of this problem.
We start by introducing the penalized problem, then we prove its unique
solvability as well as the convergence of its solution to the solution of the
original problem, as the penalization parameter converges to zero.
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1. Introduction

The aim of this paper is to study a frictionless contact problem for rate-type
viscoplastic materials within the framework of the Mathematical Theory of
Contact Mechanics. We model the material’s behavior with a constitutive
law of the form

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))), (1.1)

where u denotes the displacement field, σ represents the stress tensor and
ε(u) is the linearized strain tensor. Here E is a linear operator which de-
scribes the elastic properties of the material and G is a nonlinear constitutive
function which describes its viscoplastic behavior. In (1.1) and everywhere
in this paper the dot above a variable represents the derivative with re-
spect to the time variable t. Quasistatic frictionless contact problems for
materials of the form (1.1) have been considered in [2, 7, 10, 12] and the
references therein. In [7, 10] the contact was modelled with both the Sig-
norini and the normal compliance condition which describe a rigid and an
elastic foundation, respectively. In [2, 12] the contact was modelled with
normal compliance and unilateral constraint. This condition, introduced for
the first time in [8], models an elastic-rigid behavior of the foundation.

The present paper represents a continuation of the problems studied
in [3, 6]. There, a model which involves a contact condition with normal
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compliance, unilateral constraint and memory term was considered. This
condition takes into account both the deformability, the rigidity, and the
memory effects of the foundation. An existence and uniqueness result was
proved and the contact process was studied on an unbounded interval of
time which implies the use of the framework of Fréchet spaces of continu-
ous functions, instead of that of the classical Banach spaces of continuous
functions defined on a bounded interval of time. The aim of this work is
to provide a penalization method in the study of the contact model in [6].
Penalization methods in the study of contact problems were used by many
authors, mainly for numerical reasons. The main ingredient of these methods
arises in the fact that they remove the constraints by considering penalized
problems defined on the whole space; these approximative problems have a
unique solution which converges to the solution of the original problem, as
the penalization parameter converges to zero.

The rest of the paper is structured as follows. In Section 2 we present
the notation we shall use as well as some preliminary material. In Section
3 we describe the model of the contact process, list the assumptions on the
data and derive the variational formulation of the problem. Then we state
an existence and uniqueness result, Theorem 3.1, proved in [6]. In Section 4
we present the weak solvability of the penalized problem then we state and
prove our main convergence result.

2. Notations and Preliminaries

Everywhere in this paper we use the notation N∗ for the set of positive
integers and R+ will represent the set of nonnegative real numbers, i.e.
R+ = [0,+∞). For a given r ∈ R we denote by r+ its positive part, i.e.
r = max {r, 0}. Let Ω be a bounded domain Ω ⊂ Rd (d = 1, 2, 3) with a
Lipschitz continuous boundary Γ and let Γ1 be a measurable part of Γ such
that meas (Γ1) > 0. We use the notation x = (xi) for a typical point in Ω∪Γ
and we denote by ν = (νi) the outward unit normal at Γ. Here and below
the indices i, j, k, l run between 1 and d and, unless stated otherwise, the
summation convention over repeated indices is used. An index that follows
a comma represents the partial derivative with respect to the corresponding
component of the spatial variable, e.g. ui,j = ∂ui/∂xj . We denote by Sd the
space of second order symmetric tensors on Rd or, equivalently, the space of
symmetric matrices of order d. The inner product and norm on Rd and Sd
are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ, τ ∈ Sd.

In addition, we use standard notation for the Lebesgue and Sobolev spaces
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associated to Ω and Γ and, moreover, we consider the spaces

V = {v ∈ H1(Ω)d : v = 0 on Γ1 }, Q = { τ = (τij) ∈ L2(Ω)d×d : τij = τji }.

These are real Hilbert spaces endowed with the inner products

(u,v)V =

∫
Ω
ε(u) · ε(v) dx, (σ, τ )Q =

∫
Ω
σ · τ dx,

and the associated norms ‖ · ‖V and ‖ · ‖Q, respectively. Here ε represents
the deformation operator given by

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i) ∀v ∈ H1(Ω)d.

Completeness of the space (V, ‖·‖V ) follows from the assumption meas(Γ1) >
0, which allows the use of Korn’s inequality.

For an element v ∈ V we still write v for the trace of v on the boundary
and we denote by vν and vτ the normal and tangential components of v
on Γ, given by vν = v · ν, vτ = v − vνν. Let Γ3 be a measurable part of
Γ. Then, by the Sobolev trace theorem, there exists a positive constant c0

which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0 ‖v‖V ∀v ∈ V. (2.1)

Also, for a regular function σ ∈ Q we use the notation σν and στ for the
normal and the tangential traces, i.e. σν = (σν) · ν and στ = σν − σνν.
Moreover, we recall that the divergence operator is defined by the equality
Divσ = (σij,j) and, finally, the following Green’s formula holds:∫

Ω
σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ
σν · v da ∀v ∈ V. (2.2)

Finally, we consider the space of fourth order tensor fields

Q∞ = { E = (Eijkl) : Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d }.

This is a real Banach space with the norm ‖E‖Q∞ = max
1≤i,j,k,l≤d

‖Eijkl‖L∞(Ω).

Moreover, a simple calculation shows that

‖Eτ‖Q ≤ d ‖E‖Q∞‖τ‖Q ∀ E ∈ Q∞, τ ∈ Q. (2.3)

For each Banach space X we use the notation C(R+;X) for the space of
continuous functions defined on R+ with values in X. For a subset K ⊂ X
we still use the symbol C(R+;K) for the set of continuous functions defined
on R+ with values in K. It is well known that C(R+;X) can be organized in
a canonical way as a Fréchet space, i.e. as a complete metric space in which
the corresponding topology is induced by a countable family of seminorms.
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Details can be found in [5] and [9], for instance. Here we restrict ourseleves
to recall that the convergence of a sequence (xk)k to the element x, in the
space C(R+;X), can be described as follows:

xk → x in C(R+;X) as k →∞ if and only if

max
r∈[0,n]

‖xk(r)− x(r)‖X → 0 as k →∞, for all n ∈ N∗.
(2.4)

3. Problem statement

The physical setting is as follows. A viscoplastic body occupies a bounded
domain Ω ⊂ Rd (d = 1, 2, 3) with a Lipschitz continuous boundary Γ, divided
into three measurable parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. The
body is subject to the action of body forces of density f0. We also assume
that it is fixed on Γ1 and surface tractions of density f2 act on Γ2. On Γ3,
the body is in frictionless contact with a deformable obstacle, the so-called
foundation. We assume that the contact process is quasistatic and we study
it in the interval of time R+ = [0,∞). Then, the classical formulation of the
contact problem we consider in this paper is the following.

Problem P. Find a displacement field u : Ω× R+ → Rd and a stress field
σ : Ω× R+ → Sd such that

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))) in Ω, (3.1)

Divσ(t) + f0(t) = 0 in Ω, (3.2)

u(t) = 0 on Γ1, (3.3)

σ(t)ν = f2(t) on Γ2, (3.4)

στ (t) = 0 on Γ3, (3.5)

for all t ∈ R+, there exists ξ : Ω× R+ → R which satisfies

uν(t) ≤ g, σν(t) + p(uν(t)) + ξ(t) ≤ 0,

(uν(t)− g)
(
σν(t) + p(uν(t)) + ξ(t)

)
= 0,

0 ≤ ξ(t) ≤
∫ t

0
b(t− s)u+

ν (s) ds,

ξ(t) = 0 if uν(t) < 0,

ξ(t) =

∫ t

0
b(t− s)u+

ν (s) ds if uν(t) > 0


on Γ3, (3.6)

for all t ∈ R+ and, moreover,
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u(0) = u0, σ(0) = σ0 in Ω. (3.7)

Here and below, in order to simplify the notation, we do not indicate
explicitly the dependence of various functions on the spatial variable x ∈
Ω ∪ Γ. Equation (3.1) represents the viscoplastic constitutive law of the
material already introduced in Section 1. Equation (3.2) is the equilibrium
equation in which Div denotes the divergence operator for tensor valued
functions. Conditions (3.3) and (3.4) are the displacement and traction
boundary conditions, respectively. Condition (3.5) shows that the tangential
stress on the contact surface, denoted στ , vanishes. We use it here since we
assume that the contact process is frictionless. Condition (3.6) represents
the contact condition with normal compliance, unilateral constraint and
memory term, in which σν denotes the normal stress, uν is the normal
displacement, g ≥ 0 and p, b are given functions. This condition was first
introduced in [6] and, in the case when b vanishes, was used in [8, 11], for
instance. Finally, (3.7) represents the initial conditions in which u0 and σ0

denote the initial displacement and the initial stress field, respectively.
Next, we list the assumptions on the data, present the variational for-

mulation of the problem P and then we state and prove its unique weak
solvability. To this end, we assume that the elasticity tensor E , the nonlin-
ear constitutive function G and the normal compliance function p satisfy the
following conditions.


(a) E = (Eijkl) : Ω× Sd → Sd.
(b) Eijkl = Eklij = Ejikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ Sd, a.e. in Ω,

(3.8)



(a) G : Ω× Sd × Sd → Sd.
(b) There exists LG > 0 such that
‖G(x,σ1, ε1)− G(x,σ2, ε2)‖
≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖)
∀σ1,σ2, ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ G(x,σ, ε) is measurable on Ω,
for any σ, ε ∈ Sd.

(d) The mapping x 7→ G(x,0,0) belongs to Q

(3.9)


(a) p : R→ R+.
(b) There exists Lp > 0 such that
|p(r1)− p(r2)| ≤ Lp|r1 − r2| ∀ r1, r2 ∈ R.

(c) (p(r1)− p(r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R.
(d) p(r) = 0 for all r < 0.

(3.10)
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Moreover, the densities of body forces, surface tractions and the memory
function are such that

f0 ∈ C(R+;L2(Ω)d), f2 ∈ C(R+;L2(Γ2)d). (3.11)

b ∈ C(R+;L∞(Γ3)), b(t,x) ≥ 0 (3.12)

Finally, the initial data verifies

u0 ∈ V, σ0 ∈ Q. (3.13)

We introduce the set of admissible displacements U given by

U = {v ∈ V : vν ≤ g on Γ3 }. (3.14)

Next, using the Riesz representation theorem we define the operators P :
V → V, B : C(R+, V ) → C(R+, L

2(Γ3)) and the function f : R+ → V by
equalities

(Pu,v)V =

∫
Γ3

p(uν)vν da ∀u, v ∈ V, (3.15)

(Bu(t), ξ)L2(Γ3) =
(∫ t

0
b(t− s)u+

ν (s) ds, ξ
)
L2(Γ3)

(3.16)

∀u ∈ C(R+;V ), ξ ∈ L2(Γ3), t ∈ R+,

(f(t),v)V =

∫
Ω
f0(t) · v dx+

∫
Γ2

f2(t) · v da (3.17)

∀v ∈ V, t ∈ R+,

In order to derive the variational formulation of the Problem P we introduce
the operator S by the following lemma.

Lemma 3.1. Assume that (3.9) and (3.13) hold. Then, for each function
u ∈ C(R+;V ) there exists a unique function Su ∈ C(R+;Q) such that

Su(t) =

∫ t

0
G(Su(s) + Eε(u(s)), ε(u(s))) ds+ σ0 − Eε(u0) ∀ t ∈ R+.

(3.18)
Moreover, the operator S : C(R+;V ) → C(R+;Q) satisfies the following
condition: for every n ∈ N there exists kn > 0 such that, ∀u1, u2 ∈
C(R+;V ), ∀ t ∈ [0, n],

‖Su1(t)− Su2(t)‖Q ≤ kn
∫ t

0
‖u1(s)− u2(s)‖V ds. (3.19)
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The variational formulation of Problem P is the following.

Problem PV . Find a displacement field u : R+ → U and a stress field
σ : R+ → Q such that, for all t ∈ R+,

σ(t) = Eε(u(t)) + Su(t) ∀ t ∈ R+, (3.20)

(Eε(u(t)), ε(v)− ε(u(t)))Q + (Su(t), ε(v)− ε(u(t)))Q (3.21)

+(Bu(t), v+
ν − u+

ν (t))L2(Γ3) + (Pu(t),v − u(t))V

≥ (f(t),v − u(t))V ∀v ∈ U, ∀ t ∈ R+.

The proof of Lemma 3.1 as well as the variational formulation PV were
obtained in [6]. Note that (3.20) is a consequence of (3.1), (3.7) and (3.18),
while (3.21) can be easily obtained by using integrations by parts, (3.2)–
(3.5) and notation (3.14)–(3.18). The unique weak solvability of Problem P
follows from the following result.

Theorem 3.1. Assume that (3.8)–(3.13) hold. Then Problem PV has a
unique solution, which satisfies u ∈ C(R+;U) and σ ∈ C(R+;Q).

The proof of Theorem 3.1 was given in [6], based on an abstract result
provided by [12, 13].

4. A penalization result

In this section we introduce a penalized contact problem Pµ and we prove
that its unique weak solution converges to the weak solution of problem P.

Let q be a function which satisfies
(a) q : [g,+∞[→ R+.
(b) There exists Lq > 0 such that
|q(r1)− q(r2)| ≤ Lq|r1 − r2| ∀ r1, r2 ≥ g.

(c) (q(r1)− q(r2))(r1 − r2) > 0 ∀ r1, r2 ≥ g, r1 6= r2.
(d) q(g) = 0.

(4.1)

Let µ > 0 and consider the function pµ defined by

pµ(r) =

{
p(r) if r ≤ g,

1
µ q(r) + p(g) if r > g. (4.2)

We deduce from (4.1) and (4.2) that the function pµ satisfies condition (3.10),
i.e. 

(a) pµ : R→ R+.
(b) There exists Lpµ > 0 such that

|pµ(r1)− pµ(r2)| ≤ Lpµ |r1 − r2| ∀r1, r2 ∈ R.
(c) (pµ(r1)− pµ(r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ R.
(d) pµ(r) = 0 for all r < 0.

(4.3)
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This allows us to consider the operator Pµ : V → V defined by

(Pµu,v)V =

∫
Γ3

pµ(uν)vν da ∀u, v ∈ V (4.4)

and we note that Pµ is a monotone Lipschitz continuous operator.
With these notation, we consider the following contact problem.

Problem Pµ. Find a displacement field uµ : Ω × R+ → Rd and a stress
field σµ : Ω× R+ → Sd such that

σ̇µ(t) = Eε(u̇µ(t)) + G(σµ(t), ε(uµ(t))) in Ω, (4.5)

Divσµ(t) + f0(t) = 0 in Ω, (4.6)

uµ(t) = 0 on Γ1, (4.7)

σµ(t)ν = f2(t) on Γ2, (4.8)

σµτ (t) = 0 on Γ3, (4.9)

for all t ∈ R+, there exists ξ : Ω× R+ → R which satisfies

σµν(t) + pµ(uµν(t)) + ξ(t) = 0,

0 ≤ ξ(t) ≤
∫ t

0
b(t− s)u+

µν(s) ds,

ξ(t) = 0 if uµν(t) < 0,

ξ(t) =

∫ t

0
b(t− s)u+

µν(s) ds if uµν(t) > 0


on Γ3, (4.10)

for all t ∈ R+ and, moreover,

uµ(0) = u0, σµ(0) = σ0 in Ω. (4.11)

Note that here and below uµν represents the normal component of the
displacement field uµ and σµν , σµτ represent the normal and tangential
components of the stress tensor σµ, respectively. The equations and bound-
ary conditions in problem (4.5)–(4.11) have a similar interpretation as those
in problem (3.1)–(3.7). The difference arises in the fact that here we replace
the contact condition with normal compliance, memory term and unilat-
eral constraint (3.6) with the contact condition with normal compliance and
memory term (4.10). In this condition µ represents a penalization parameter
which may be interpreted as a deformability coefficient of the foundation,
and then 1

µ is the surface stiffness coefficient.
Using notation (3.17), (3.16) and (4.4) by similar arguments as in the

case of Problem P we obtain the following variational formulation of Prob-
lem Pµ.
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Problem PVµ . Find a displacement field uµ : R+ → V and a stress field
σµ : R+ → Q such that, for all t ∈ R+,

σµ(t) = Eε(uµ(t)) + Suµ(t) ∀ t ∈ R+, (4.12)

(Eε(uµ(t)), ε(v)− ε(uµ(t)))Q + (Suµ(t), ε(v)− ε(uµ(t)))Q (4.13)

+(Buµ(t), v+
ν − u+

µν(t))L2(Γ3) + (Pµuµ(t),v − uµ(t))V

≥ (f(t),v − uµ(t))V ∀v ∈ V, ∀ t ∈ R+.

We have the following existence, uniqueness and convergence result.

Theorem 4.1. Assume that (3.8)− (3.13) and (4.1) hold. Then

a) For each µ > 0 there exists a unique solution uµ ∈ V to Problem PVµ .
b) The solution uµ of Problem PVµ converges strongly to the solution u

of Problem PV , that is

‖uµ(t)− u(t)‖V + ‖σµ(t)− σ(t)‖Q → 0 (4.14)

as µ→ 0, for all t ∈ R+.

Note that the convergence (4.14) above is understood in the following
sense: for all t ∈ R+ and for every sequence {µn} ⊂ R+ converging to 0 as
n→∞ we have uµn(t)→ u(t) in V and σµn(t)→ σ(t) in Q as n→∞.

The proof of Theorem 4.1 is carried out in several steps that we present in
what follows. To this end we assume below that (3.8)–(3.13) and (4.1) hold.
Let µ > 0. We consider the auxiliary problem of finding a displacement field
ũµ : R+ → V such that, for all t ∈ R+,

(Eε(ũµ(t)), ε(v)− ε(ũµ(t)))Q + (Su(t), ε(v)− ε(ũµ(t)))Q (4.15)

+(Bu(t), v+
ν − ũ+

µν(t))L2(Γ3) + (Pµũµ(t),v − ũµ(t))V

≥ (f(t),v − ũµ(t))V ∀v ∈ V.

This problem is an intermediate problem between (4.13) and (3.21), since
here Su(t), Bu(t) are knowns, taken from the problem PV .

We have the following existence and uniqueness result.

Lemma 4.1. There exists a unique function ũµ ∈ C(R+;V ) which satisfies
(4.15), for all t ∈ R+.

Proof. We define the operator Aµ : V → V and the function f̃ : R+ → V
by equalities

(Aµu,v)V = (Eε(u), ε(v))Q + (Pµu,v)V (4.16)

(f̃(t),v)V = (f(t),v)V − (Su(t), ε(v))Q − (Bu(t), v+
ν )L2(Γ3), (4.17)
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for all u,v ∈ V, t ∈ R+. We note that (3.12), (3.11), (3.17) and (3.18) yield
f̃ ∈ C(R+;V ).

Let t ∈ R+. Based on (4.16)–(4.17), it is easy to see that (4.15) is equiv-
alent with the nonlinear variational inequality of the first kind

(Aµũµ(t),v − ũµ(t))V ≥ (f̃(t),v − ũµ(t))V ∀v ∈ V. (4.18)

Next, by (3.8) and the properties of operator Pµ it follows that Aµ is a
strongly monotone and Lipschitz continuous operator. Therefore, using
standard arguments on variational inequalities we deduce that there exists
a unique solution ũµ ∈ C(R+;V ) for (4.18), which concludes the proof. 2

We proceed with the following weak convergence result.

Lemma 4.2. As µ→ 0,

ũµ(t) −⇀ u(t) in V,

for all t ∈ R+.

Proof. Let t ∈ R+. We take v = 0 in (4.15) to obtain

(Eε(ũµ(t)), ε(ũµ(t)))Q ≤ (f(t), ũµ(t))V − (Su(t), ε(ũµ(t)))Q

−(Bu(t), ũ+
µν(t))L2(Γ3) − (Pµũµ(t), ũµ(t))V (4.19)

On the other hand, the properties (4.3) yield (Pµũµ(t), ũµ(t))V ≥ 0, and
from (4.19) we deduce that

(Eε(ũµ(t)), ε(ũµ(t)))Q ≤ (f(t), ũµ(t))V

−(Su(t), ε(ũµ(t)))Q − (Bu(t), ũ+
µν(t))L2(Γ3). (4.20)

From (3.8) we obtain that

‖ũµ(t)‖V ≤ c (‖f(t)‖V + ‖Su(t)‖V + ‖Bu(t)‖L2(Γ3)). (4.21)

Note that here and below c is a constant which does not depend on µ and
t and whose value can change from line to line. This inequality shows that
the sequence {ũµ(t)}µ ⊂ V is bounded. Hence, there exists a subsequence
of the sequence {ũµ(t)}µ, still denoted {ũµ(t)}µ, and an element ũ(t) ∈ V
such that

ũµ(t) −⇀ ũ(t) in V as µ→ 0. (4.22)

Next we study the properties of the element ũ(t). It follows from (4.19)
that

(Pµũµ(t), ũµ(t))V ≤ (f(t), ũµ(t))V − (Eε(ũµ(t)), ε(ũµ(t)))Q

−(Su(t), ε(ũµ(t)))Q − (Bu(t), ũ+
µν(t))L2(Γ3)
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and, since {ũµ(t)}µ is a bounded sequence in V , we deduce that

(Pµũµ(t), ũµ(t))V ≤ c.

This implies that

∫
Γ3

pµ(ũµν(t))ũµν(t) da ≤ c and, since

∫
Γ3

pµ(ũµν(t))g da ≥

0, it follows that ∫
Γ3

pµ(ũµν(t))(ũµν(t)− g) da ≤ c. (4.23)

We consider now the measurable subsets of Γ3 defined by

Γ31 = {x ∈ Γ3 : ũµν(t)(x) ≤ g }, Γ32 = {x ∈ Γ3 : ũµν(t)(x) > g }.
(4.24)

Clearly, both Γ31 and Γ32 depend on t and µ but, for simplicity, we do not
indicate explicitly this dependence. We use (4.23) to write∫

Γ31

pµ(ũµν(t))(ũµν(t)− g) da+

∫
Γ32

pµ(ũµν(t))(ũµν(t)− g) da ≤ c

and, since

∫
Γ31

pµ(ũµν(t))ũµν(t) da ≥ 0, we obtain

∫
Γ32

pµ(ũµν(t))(ũµν(t)− g) da ≤
∫

Γ31

pµ(ũµν(t))g da+ c.

Thus, taking into account that pµ(r) = p(r) for r ≤ g, by the monotonicity
of the function p we can write∫

Γ32

pµ(ũµν(t))(ũµν(t)− g) da ≤
∫

Γ31

p(ũµν(t))g da+ c ≤
∫

Γ3

p(g)g da+ c.

Therefore, we deduce that∫
Γ32

pµ(ũµν(t))(ũµν(t)− g) da ≤ c. (4.25)

We use now the definitions (4.2) and (4.24) to see that, a.e on Γ32, we have

pµ(ũµν(t)) =
1

µ
q(ũµν(t)) + p(g), p(g)(ũµν(t)− g) > 0.

Consequently, the inequality (4.25) yields∫
Γ32

q(ũµν(t))(ũµν(t)− g) da ≤ cµ. (4.26)
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Next, we consider the function defined by

p̃ : R→ R+ p̃(r) =

{
0 if r ≤ g,
q(r) if r > g

and we note that by (4.1) it follows that p̃ is a continuous increasing function
and, moreover,

p̃(r) = 0 iff r ≤ g. (4.27)

We use (4.26), equality q(ũµν(t)) = p̃(ũµν(t)) a.e on Γ32 and (4.24) to deduce
that ∫

Γ3

p̃(ũµν(t))(ũµν(t)− g)+ ≤ cµ,

where (ũµν(t)−g)+ denotes the positive part of ũµν(t)−g. Therefore, passing
to the limit as µ → 0, by using (4.22) as well as compactness of the trace
operator we find that ∫

Γ3

p̃(ũν(t))(ũν(t)− g)+ da ≤ 0.

Since the integrand p̃(ũν(t))(ũν(t) − g)+ is positive a.e on Γ3, the last in-
equality yields p̃(ũν(t))(ũν(t) − g)+ = 0 a.e on Γ3 and, using (4.27) and
definition (3.14) we conclude that

ũ(t) ∈ U. (4.28)

Since v ∈ U we have pµ(vν) = p(vν) a.e. on Γ3. Taking into account this
equality and the monotonicity of the function pµ we have

p(vν)(vν − ũµν(t)) ≥ pµ(ũµν(t))(vν − ũµν(t)) a.e. on Γ3

and, therefore, by using (4.4) we obtain

(Pv,v − ũµ(t))V ≥ (Pµũµ(t),v − ũµ(t))V . (4.29)

Then, using (4.29) and (4.15) we find that

(Eε(ũµ(t)), ε(v)− ε(ũµ(t)))Q + (Su(t), ε(v)− ε(ũµ(t)))Q (4.30)

+(Bu(t), v+
ν − ũ+

µν(t))L2(Γ3) + (Pv,v − ũµ(t))V ≥ (f(t),v − ũµ(t))V

for all v ∈ U . We pass to the lower limit in (4.30) and use (4.22) to obtain

(Eε(ũ(t)), ε(v)− ε(ũ(t)))Q + (Su(t), ε(v)− ε(ũ(t)))Q (4.31)

+(Bu(t), v+
ν − ũ+

ν (t))L2(Γ3) + (Pv,v − ũ(t))V ≥ (f(t),v − ũ(t))V

for all v ∈ U . Next, we take v = ũ(t) in (3.21) and v = u(t) in (4.31).
Then, adding the resulting inequalities we find that

(Eε(ũ(t))− Eε(u(t)), ε(ũ(t))− ε(u(t)))Q ≤ 0.
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Using (3.8), the above inequality implies that ũ(t) = u(t). It follows from
here that the whole sequence {ũµ(t)}µ is weakly convergent to the element
u(t) ∈ V , which concludes the proof. 2

We proceed with the following strong convergence result.

Lemma 4.3. As µ→ 0,

‖ũµ(t)− u(t)‖V → 0,

for all t ∈ R+.

Proof. Let t ∈ R+ and µ > 0. Using (3.8) we write

mE‖ũµ(t)− u(t)‖2V ≤ (Eε(ũµ(t))− Eε(u(t)), ε(ũµ(t))− ε(u(t)))Q

= (Eε(u(t)), ε(u(t))− ε(ũµ(t)))Q − (Eε(ũµ(t)), ε(u(t))− ε(ũµ(t)))Q.

Next, we take v = u(t) in (4.30) to obtain

−(Eε(ũµ(t)), ε(u(t))− ε(ũµ(t)))Q ≤ (Su(t), ε(u(t))− ε(ũµ(t)))Q

+(Bu(t), u+
ν (t)− ũ+

µν(t))L2(Γ3)+(Pu(t),u(t)− ũµ(t))V −(f(t),u(t)− ũµ(t))V

and, therefore, combining the above inequalities we find that

mE‖ũµ(t)− u(t)‖2V ≤ (Eε(u(t)), ε(u(t))− ε(ũµ(t)))Q

+(Su(t), ε(u(t))− ε(ũµ(t)))Q + (Pu(t),u(t)− ũµ(t))V

+(Bu(t), u+
ν (t)− ũ+

µν(t))L2(Γ3) − (f(t),u(t)− ũµ(t))V .

We pass to the upper limit in this inequality and use Lemma 4.2 to conclude
the proof. 2

We are now in position to provide the proof of Theorem 4.1.

Proof. Let t ∈ R+ and let n ∈ N be such that t ∈ [0, n]. Let also
µ > 0. Next, we take v = uµ(t) in (4.15) and ũµ(t) in (4.13). Then adding
the resulting inequalities and using the monotonicity of the operator Pµ we
deduce that

(Eε(uµ(t))− Eε(ũµ(t)), ε(uµ(t))− ε(ũµ(t)))Q

≤ (Su(t)− Suµ(t), ε(uµ(t))− ε(ũµ(t)))Q

+(Bu(t)− Buµ(t), u+
µν(t)− ũ+

µν(t))L2(Γ3)

and, therefore,

‖uµ(t)− ũµ(t)‖V ≤
c

mE
(‖Su(t)− Suµ(t)‖Q + ‖Bu(t)− Buµ(t)‖L2(Γ3)).

(4.32)
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We use (4.32) to find that

‖uµ(t)− ũµ(t)‖V ≤
rn
mE

∫ t

0
‖u(s)− uµ(s)‖V ds

where rn = kn + c2
0 max
r∈[0,n]

‖b(r)‖L2(Γ3). It follows from here that

‖uµ(t)− u(t)‖V ≤ ‖ũµ(t)− u(t)‖V +
rn
mE

∫ t

0
‖uµ(s)− u(s)‖V ds

and, using a Gronwall argument, we obtain

‖uµ(t)− u(t)‖V ≤ ‖ũµ(t)− u(t)‖V +
rn
mE

∫ t

0
e
rn
mE

(t−s) ‖ũµ(s)− u(s)‖V ds.

Note that e
rn
mE

(t−s) ≤ e
rn
mE

t ≤ e
nrn
mE for all s ∈ [0, t] and we deduce that

‖uµ(t)−u(t)‖V ≤ ‖ũµ(t)−u(t)‖V +
rn
mE

e
nrn
mE

∫ t

0
‖ũµ(s)−u(s)‖V ds. (4.33)

On the other hand, by estimate (4.21), Lemma 4.3 and Lebesgue’s con-
vergence Theorem it follows that∫ t

0
‖ũµ(s)− u(s)‖V ds→ 0 as µ→ 0. (4.34)

We use now (4.33), (4.34) and Lemma 4.3 to see that

‖uµ(t)− u(t)‖V → 0 as µ→ 0. (4.35)

Next, by (3.20), (4.12), (3.8), (3.19) and (3.12) it follows that

‖σµ(t)− σ(t)‖Q ≤ c ‖uµ(t)− u(t))‖V + kn

∫ t

0
‖uµ(s)− u(s)‖V ds.

We use again the convergence (4.35) and Lebesque’s Theorem to find that

‖σµ(t)− σ(t)‖Q → 0 as µ→ 0. (4.36)

Theorem 4.1 is now a consequence of the convergences (4.35) and (4.36).
2
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