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1. Introduction

In [12] and [13], the authors considered the following equations:

∂u

∂t
+ ε∆2u+ div(

∇u
1 + |∇u|2

) = 0 (1.1)

and

∂u

∂t
+ ε∆2u− div(|∇u|2∇u) + ∆u = 0 (1.2)

in order to model epitaxial growth of thin films. Here, ε > 0 is a small
parameter and, in two space dimensions, u is a scaled height of the thin film.
Furthermore, the fourth-order term accounts for diffusion, while the second-
order ones account for the so-called Ehrlich-Schowoebel effect: adatoms (i.e.,
atoms which are absorbed by the surface, but have not yet become part of
the crystal) diffuse on a terrace and likely hit a terrace boundary; then, in
order to stick to the boundary from an upper terrace, they must overcome a
higher energy barrier, the Ehrlich-Schowoebel barrier (see [12] and [13] for
more details and further references).

We can also note that, typically, in an epitaxial growth which starts
with a flat substrate, one observes the occurrence of surface morphological
instabilities as the film thickness reaches a critical value. This can be seen
as some kind of spinodal decomposition. This is then followed by some nu-
cleation process, in which nuclei (which appear on the film surface) evolve
into mounds whose structure coarsens (see [13] and the references therein for
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more details). This bears some resemblance with the spinodal decomposi-
tion and coarsening process in binary alloys described by the Cahn-Hilliard
equation (see, e.g., [2] and [17]).

These two equations are associated with the energy functionals

E1(u) =

∫
Ω

(−1

2
ln(1 + |∇u|2) +

ε

2
|∆u|2) dx (1.3)

and

E2(u) =

∫
Ω

(
1

4
(|∇u|2 − 1)2 +

ε

2
|∆u|2) dx, (1.4)

respectively, where Ω is the spatial domain. In particular, the first term in
E2(u) selects the slope of the film surface, hence the denomination growth
equation with slope selection for (1.2) and, accordingly, growth equation
without slope selection for (1.1).

We can also note that, assuming that |∇u| is small with respect to 1 and
writing, at first approximation,

1

1 + |∇u|2
≈ 1− |∇u|2

in (1.1), we recover (1.2) (see also Remark 2.2 below for further approxima-
tions of (1.1)).

Furthermore, we can rewrite (1.1) and (1.2) in the form

∂u

∂t
+ ε∆2u− div(ϕ(|∇u|2)∇u) = 0, (1.5)

where ϕ(s) = − 1
1+s and ϕ(s) = s− 1, s ≥ 0, respectively.

In [12], the authors proved the existence and uniqueness of weak solutions
to (1.1) and (1.2), for regular initial data and periodic boundary conditions.
In what follows, we will consider Neumann boundary conditions, but all
results can easily be adapted to Dirichlet and periodic boundary conditions.
Equation (1.1) was further studied in [7], [8], [9] and [10]; in particular, in
[10], the authors proved the existence of finite-dimensional attractors and
the convergence of single trajectories to steady states. We also refer the
interested reader to [3], [4] and [20] for the numerical analysis of the two
models.

An equation of the form (1.5) (containing (1.2), but not (1.1)) was con-
sidered in [11]. There, the authors studied the well-posedness and the reg-
ularity of solutions, as well as the structure of ω-limit sets and stationary
solutions.

In this paper, we are interested in the study of the asymptotic behavior
of the more general equation (1.5) which, as already mentioned, contains the
two thin film models. More precisely, we prove the existence of the global
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attractor which is the smallest compact set which is invariant by the flow
and attracts all bounded sets of initial data as time goes to infinity. Then,
under some restrictions on the growth of the nonlinear term (which are
satisfied by the thin film models), we prove the existence of an exponential
attractor which is a compact and positively invariant set which contains
the global attractor, has, by definition, finite fractal dimension and attracts
exponentially fast the bounded sets of initial data.

2. Setting of the problem

We consider the following initial and boundary value problem (for simplicity,
we take ε = 1 in (1.5)):

∂u

∂t
+ ∆2u− div(ϕ(|∇u|2)∇u) = 0, (2.1)

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ, (2.2)

u|t=0 = u0, (2.3)

in a bounded and regular domain of Rn, n = 1, 2 or 3, with boundary Γ.
As far as the nonlinear term ϕ is concerned, we make the following

assumptions:

ϕ is of class C1, (2.4)

φ′(x)h.h ≥ −c0|h|2, c0 ≥ 0, x, h ∈ Rn, (2.5)

where

φ(x) = ϕ(|x|2)x, x ∈ Rn,

and φ′(x)h = ϕ(|x|2)h+ 2ϕ′(|x|2)(x · h)x, x, h ∈ Rn,

c1s
p − c2 ≤ ϕ(s)s ≤ c3(sp + 1), c1, c3 > 0, c2 ≥ 0, s ≥ 0, (2.6)

c4s
p − c5s− c6 ≤ ψ(s) ≤ c7(sp + 1), c4, c7 > 0, c5, c6 ≥ 0, s ≥ 0, (2.7)

where

ψ(s) =

∫ s

0
ϕ(τ) dτ, s ≥ 0.

Here, p ≥ 0 is given. Possible restrictions on p will be given when needed.



74 Alain Miranville

Remark 2.1. a) In particular, the functions ϕ1(s) = − 1
1+s (which corre-

sponds to the thin film model without slope selection) and ϕ2(s) = s − 1
(which corresponds to the thin film model with slope selection) satisfy the
above assumptions, for p = 0 and p = 2, respectively. In concrete situations,
the only difficulty is to prove that (2.5) holds. This is however straightfor-
ward for the above examples. Indeed, we have

φ′1(x)h.h = − |h|2

1 + |x|2
+

2(x · h)2

(1 + |x|2)2
≥ −|h|2

and

φ′2(x)h.h = (|x|2 − 1)|h|2 + 2(x · h)2 ≥ −|h|2.

b) Assumption (2.5), which allows to prove the uniqueness of solutions, can
be replaced by the weaker assumption

(φ(x1)− φ(x2)) · (x1 − x2) ≥ −c0|x1 − x2|2, c0 ≥ 0, x1, x2 ∈ Rn. (2.8)

This assumption is again satisfied for both thin film models. We will however
need the stronger assumption (2.5) to obtain further regularity on ∂u

∂t in
Remark 4.1 below.
c) Assumption (2.6) can also be weakened as follows:

c1s
p − c2s− c3 ≤ ϕ(s)s ≤ c4(sp + 1), c1, c4 > 0, c2, c3 ≥ 0, s ≥ 0. (2.9)

However, this does not allow to prove the dissipativity of the associated
dynamical system when p ≤ 1 and c2 > 0.

Remark 2.2. Assuming again that |∇u| � 1 in (1.1) and writing, at first
approximation,

1

1 + |∇u|2
≈ θk(|∇u|2), θk(s) =

2k−1∑
i=0

(−1)isi, k ∈ N,

we can define a whole family of equations approximating (1.1) and gener-
alizing (1.2). For instance, when k = 2, we obatin the following thin film
model (for ε = 1):

∂u

∂t
+ ∆2u− div(|∇u|6∇u) + div(|∇u|4∇u)− div(|∇u|2∇u) + ∆u = 0.

Here, the function ϕk = −θk satisfies (2.4)-(2.7), for p = 2k. Again, the
only difficulty is to prove that (2.5) holds and we have
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φ′k(x)h.h = −|h|2 +
2k−1∑
i=1

(−1)i+1[|x|2i|h|2 + 2|x|2i−2(x · h)2]

≥ −|h|2 + c|x|4k−2|h|2, c > 0,

hence (2.5).

We denote by ((·, ·)) the usual L2-scalar product, with associated norm
‖ · ‖, and we denote by ‖ · ‖X the norm in the Banach space X.

Setting

〈·〉 =
1

Vol(Ω)

∫
Ω
· dx,

we note that

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 ,

v 7→ (‖∆v‖2 + 〈v〉2)
1
2 ,

v 7→ (‖∇∆v‖2 + 〈v〉2)
1
2

and

v 7→ (‖∆2v‖2 + 〈v〉2)
1
2

are norms on H i(Ω), i = 1, 2, 3 and 4, respectively, which are equivalent

to the usual ones. Furthermore, v 7→ (‖∇v‖2p
L2p(Ω)

+ 〈v〉2p)
1
2p is a norm on

W 1,2p(Ω) which is equivalent to the usual one.

Remark 2.3. Of course, here and in what follows, the W 1,2p-regularity
(and also the L2p-one) only makes sense when p ≥ 1

2 . When p < 1
2 , it is

understood in what follows that we do not take into account such a regularity
(we can also note that it is not difficult to adapt the estimates below in that
case).

Throughout this paper, the same letter c (and, sometimes, c′) denotes
constants which may vary from line to line. Similarly, the same letter Q de-
notes monotone increasing (with respect to each argument) functions which
may vary from line to line.
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3. A priori estimates

We first note that, integrating (formally) (2.1) over Ω, we have, owing to
(2.2),

d

dt

∫
Ω
u dx = 0,

hence

〈u(t)〉 = 〈u0〉, t ≥ 0. (3.1)

We then multiply (2.1) by u and obtain, integrating over Ω and by parts,

1

2

d

dt
‖u‖2 + ‖∆u‖2 +

∫
Ω
ϕ(|∇u|2)|∇u|2 dx = 0,

which yields, owing to (2.6),

d

dt
‖u‖2 + ‖∆u‖2 + c

∫
Ω
|∇u|2p dx ≤ c′

and, finally,

d

dt
‖u‖2 + c(‖u‖2H2(Ω) + ‖u‖2p

W 1,2p(Ω)
) ≤ Q(|〈u0〉|), c > 0. (3.2)

We then multiply (2.1) by ∂u
∂t and find

1

2

d

dt
‖∆u‖2 + ‖∂u

∂t
‖2 +

∫
Ω
ϕ(|∇u|2)∇u · ∇∂u

∂t
dx = 0,

hence

d

dt
(‖∆u‖2 +

∫
Ω
ψ(|∇u|2) dx) + 2‖∂u

∂t
‖2 = 0. (3.3)

In particular, this yields that the energy decreases along the trajectories, as
expected.

We now assume that p ≤ 2 when n = 3. We multiply (2.1) by −∆u and
have

1

2

d

dt
‖∇u‖2 + ‖∇∆u‖2 +

∫
Ω
ϕ(|∇u|2)∇u · ∇∆u dx = 0.

Noting that, owing to (2.6),

|ϕ(s)| ≤ c(|s|p−1 + 1), s ≥ 0, (3.4)

being understood that, when p < 1, ϕ is bounded (this case being easier to
treat), we obtain
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|
∫

Ω
ϕ(|∇u|2)∇u · ∇∆u dx| ≤ c

∫
Ω

(|∇u|2p−1 + 1)|∇∆u| dx

≤ 1

2
‖∇∆u‖2 + c(‖∇u‖4p−2

L4p−2(Ω)
+ 1)

≤ 1

2
‖∇∆u‖2 + c(‖u‖4p−2

H2(Ω)
+ 1),

owing to standard Sobolev embeddings. Therefore,

d

dt
‖∇u‖2 + c‖u‖2H3(Ω) ≤ Q(|〈u0〉|) + c′‖u‖4p−2

H2(Ω)
. (3.5)

We finally assume that p ≤ 2 when n = 2 or 3 and that

|ϕ′(s)| ≤ c(|s|p−2 + 1), s ≥ 0, (3.6)

being again understood that, when p < 2, ϕ′ is bounded (this case is also
easier to treat). We multiply (2.1) by ∆2u and find

1

2

d

dt
‖∆u‖2 + ‖∆2u‖2 −

∫
Ω

div(ϕ(|∇u|2)∇u)∆2u dx = 0.

Noting that

div(ϕ(|∇u|2)∇u) = ϕ(|∇u|2)∆u+ 2ϕ′(|∇u|2)∇∇u · ∇u · ∇u,

we have, owing to (3.4) and (3.6),

|
∫

Ω
div(ϕ(|∇u|2)∇u)∆2u dx| ≤ c

∫
Ω

(|∇u|2p−2 + 1)(|∆u|+ |∇∇u|)|∆2u| dx.

We consider the most difficult case p = 2 and n = 2 or 3 (in one space
dimension, we can use the continuous embedding H1(Ω) ⊂ L∞(Ω)). We
obtain, owing to Agmon’s inequality,

|
∫

Ω
div(ϕ(|∇u|2)∇u)∆2u dx| ≤ 1

2
‖∆2u‖2 + c(‖∇u‖4L∞(Ω) + 1)‖u‖2H2(Ω)

≤ 1

2
‖∆2u‖2 + c(‖u‖2H2(Ω)‖u‖

2
H3(Ω) + 1)‖u‖2H2(Ω),

hence

d

dt
‖∆u‖2 + c‖u‖2H4(Ω) ≤ Q(|〈u0〉|) + c′‖u‖4H2(Ω)(‖u‖

2
H3(Ω) + 1), c > 0. (3.7)
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4. Existence and uniqueness of solutions

We have the

Theorem 4.1. (i) We assume that (2.4)-(2.7) hold and that u0 ∈ L2(Ω).
Then, (2.1)-(2.3) possesses a unique solution u such that there holds u ∈
L∞(R+;L2(Ω))∩L2(0, T ;H2(Ω))∩L2p(0, T ;W 1,2p(Ω))∩L∞(τ,+∞;H2(Ω)∩
W 1,2p(Ω)) and ∂u

∂t ∈ L
2(τ, T ;L2(Ω)), ∀0 < τ < T .

(ii) If we further assume that p ≤ 2 when n = 3, then we have the additional
regularity u ∈ L2(τ, T ;H3(Ω)), ∀0 < τ < T .

(iii) If we further assume that p ≤ 2 when n = 2 or 3, then we have the
additional regularity u ∈ L2(τ, T ;H4(Ω)), ∀0 < τ < T .

Proof.

(i) a) Uniqueness:

Let u1 and u2 be two solutions to (2.1)-(2.2) with initial data u1,0 and
u2,0, respectively. We set u = u1 − u2 and u0 = u1,0 − u2,0 and have

∂u

∂t
+ ∆2u− div(ϕ(|∇u1|2)∇u1 − ϕ(|∇u2|2)∇u2) = 0, (4.1)

∂u

∂ν
=
∂∆u

∂ν
= 0 on Γ, (4.2)

u|t=0 = u0. (4.3)

We multiply (4.1) by u and obtain

1

2

d

dt
‖u‖2 + ‖∆u‖2 +

∫
Ω

(φ(∇u1)− φ(∇u2)) · ∇u dx = 0. (4.4)

Noting that

∫
Ω

(φ(∇u1)−φ(∇u2))·∇u dx =

∫
Ω
dx

∫ 1

0
τφ′(τ∇u1+(1−τ)∇u2)∇u·∇u dτ,

it follows from (2.5) and (4.4) that

1

2

d

dt
‖u‖2 + ‖∆u‖2 ≤ c0‖∇u‖2.

Employing finally the interpolation inequality

‖u‖H1(Ω) ≤ c‖u‖
1
2 ‖u‖

1
2

H2(Ω)
, (4.5)

we find, noting that |〈u〉|2 ≤ c‖u‖2,
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d

dt
‖u‖2 + c‖u‖2H2(Ω) ≤ c

′‖u‖2, c > 0. (4.6)

We thus deduce from (4.6) and Gronwall’s lemma that

‖u1(t)− u2(t)‖ ≤ ect‖u1,0 − u2,0‖, (4.7)

hence the uniqueness, as well as the continuous dependence with respect to
the initial data in the L2-norm.

b) Existence:

The proof of existence is based on (3.2) and a standard Galerkin scheme
(see also [12]).

The only difficulty here is to pass to the limit in the nonlinear term.
To do so, we note that, for an approximated solution um constructed by a
Galerkin scheme,

|ϕ(|∇um|2)∇um| ≤ c(|∇um|2p−1 + 1)

(here, we treat the case p ≥ 1; the case p < 1, which yields that ϕ is
bounded, is easier to treat), so that ϕ(|∇um|2)∇um is bounded in the space

L
2p

2p−1 (0, T ;L
2p

2p−1 (Ω)n), T > 0, independently of m. Thus, up to a subse-
quence which we do not relabel,

ϕ(|∇um|2)∇um → ϕ in L
2p

2p−1 (0, T ;L
2p

2p−1 (Ω)n) weak.

We then note that um is bounded in L2(0, T ;H2(Ω)∩W 1,2p(Ω)) and ∂um
∂t is

bounded in L
2p

2p−1 (0, T ;H−2(Ω)+W
−1, 2p

2p−1 (Ω)) and it follows from classical
Aubin-Lions compactness results that (again up to a subsequence which we
do not relabel)

um → u in L2(0, T ;H1(Ω)), ∇um → ∇u a.e.

and, thus,

ϕ(|∇um|2)∇um → ϕ(|∇u|2)∇u a.e.,

hence ϕ = ϕ(|∇u|2)∇u.

In order to obtain the desired regularity, we note that it follows from
(3.2) that ∫ t+r

t
(‖u‖2H2(Ω) + ‖u‖2p

W 1,2p(Ω)
) dτ ≤ Q(r, ‖u0‖), t ≥ 0, (4.8)

r > 0 fixed arbitrarily. It thus follow from (2.7), (3.3) and the uniform
Gronwall lemma (see, e.g., [19]) that
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‖u(t)‖2H2(Ω) + ‖u(t)‖2p
W 1,2p(Ω)

≤ Q(r, ‖u0‖), t ≥ r. (4.9)

Indeed, we note that it follows from (2.7) and (4.5) that

‖∆u‖2 +

∫
Ω
ψ(|∇u|2) dx ≥ ‖∆u‖2 + c4‖∇u‖2pL2p(Ω)

− c‖u‖‖u‖H2(Ω) − c′,

hence

‖∆u‖2+ < u >2 +

∫
Ω
ψ(|∇u|2) dx ≥ c‖u‖2H2(Ω) (4.10)

+c4‖∇u‖2pL2p(Ω)
− c′(‖u‖2 + 1), c > 0.

The regularity on ∂u
∂t then again follows from (3.3).

(ii) This follows from (3.5) and (4.9).

(iii) This follows from (3.7), (4.9) and (ii).

2

Remark 4.1. a) Under the assumptions of (i), if u0 ∈ H2(Ω) ∩W 1,2p(Ω),
with ∂u0

∂ν = 0 on Γ, then we have u ∈ L∞(R+;H2(Ω) ∩ W 1,2p(Ω)) and
∂u
∂t ∈ L

2(0, T ;L2(Ω)), ∀T > 0. Indeed, in that case, we deduce from (3.3)
that u ∈ L∞(0, T ;H2(Ω) ∩ W 1,2p(Ω)), which we combine with the above
regularity. Furthermore, if p ≤ 2 when n = 2 or 3, then u ∈ L2(0, T ;H4(Ω)),
∀T > 0.

b) We can also prove that, if ∂u
∂t (0) ∈ L2(Ω) (note that ∂u

∂t (0) can be read

from (2.1)), then ∂u
∂t ∈ L

∞(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), ∀T > 0. Indeed,
differentiating (2.1) with respect to time, we have

∂

∂t

∂u

∂t
+ ∆2∂u

∂t
− div(φ′(∇u)∇∂u

∂t
) = 0.

Multiplying the above equation by ∂u
∂t , we find, in view of (2.5),

1

2

d

dt
‖∂u
∂t
‖2 + ‖∆∂u

∂t
‖2 ≤ c0‖∇

∂u

∂t
‖2,

hence, employing (4.5) and noting that 〈∂u∂t 〉 = 0,

d

dt
‖∂u
∂t
‖2 + ‖∆∂u

∂t
‖2 ≤ c‖∂u

∂t
‖2.
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5. Existence of finite-dimensional attractors

It follows from Theorem 4.1 that we can define the family of solving operators

S(t) : L2(Ω)→ L2(Ω), u0 7→ u(t), t ≥ 0,

where u is the unique solution to (2.1)-(2.3). Furthermore, these solving
operators form a continuous semigroup, i.e., S(0) = Id, Id denoting the
identity operator, and S(t) ◦ S(s) = S(t+ s), t, s ≥ 0.

Actually, in view of the conservation property (3.1), we study the exis-
tence of compact attractors on the subset

ΦM = {v ∈ L2(Ω), |〈v〉| ≤M}

of L2(Ω).

We have the

Theorem 5.1. The semigroup S(t) acting on ΦM possesses the global at-
tractor AM in L2(Ω), i.e.,

(i) AM is compact in L2(Ω) and bounded in H2(Ω) ∩W 1,2p(Ω),

(ii) AM is invariant, S(t)AM = AM , ∀t ≥ 0,

(iii) AM attracts the bounded sets of initial data in the following sense:
∀B ⊂ ΦM bounded,

lim
t→+∞

dist(S(t)B,AM ) = 0,

where dist denotes the Hausdorff semi-distance between sets defined by

dist(A,B) = sup
a∈A

inf
b∈B
‖a− b‖.

This is equivalent to the following: ∀B ⊂ ΦM bounded, ∀ε > 0, ∃t0 =
t0(B, ε) ≥ 0 such that t ≥ t0 =⇒ S(t)B ⊂ Uε, where Uε is the ε-
neighborhood of AM .

Remark 5.1. It follows from the definition that the global attractor, if it
exists, is indeed unique. Furthermore, it is the smallest (for the inclusion)
closed set which enjoys the attraction property and thus appears as a suitable
object in view of the study of the asymptotic behavior of the system.

Proof.

It follows from (3.2) that

d

dt
‖u‖2 + c(‖u‖2H2(Ω) + ‖u‖2p

W 1,2p(Ω)
) ≤ cM , c > 0, (5.1)

which yields
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d

dt
‖u‖2 + c‖u‖2 ≤ cM , c > 0. (5.2)

We thus deduce from (5.2) and Gronwall’s lemma the existence of a bounded
absorbing set B0 for S(t) on ΦM , i.e., ∀B ⊂ ΦM bounded, ∃t0 = t0(B) ≥ 0
such that t ≥ t0 =⇒ S(t)B ⊂ B0 (the existence of such a bounded
absorbing set is often used as a mathematical definition of dissipation).

Let then B be a bounded subset of ΦM and t0 be such that t ≥ t0 =⇒
S(t)B ⊂ B0. Then, it follows from (5.1) that, if t ≥ t0,∫ t+r

t
(‖u‖2H2(Ω) + ‖u‖2p

W 1,2p(Ω)
) dτ ≤ cM,B0,r, t ≥ t0, (5.3)

r > 0 fixed arbitrarily. It thus follows from (3.3), (4.10), (5.3) and the
uniform Gronwall lemma that

‖u(t)‖2H2(Ω) + ‖u(t)‖2p
W 1,2p(Ω)

≤ cM,B0,r, t ≥ t0 + r. (5.4)

In particular, (5.4) yields the existence of a bounded absorbing set B2 for
S(t) on ΦM which is bounded in H2(Ω) ∩W 1,2p(Ω) and thus compact in
L2(Ω). The existence of the global attractor then follows from standard
results (see, e.g., [1], [16] and [19]).

2

Remark 5.2. Replacing, if necessary, the bounded absorbing set B2 by
∪t≥t0S(t)B2, where t0 is such that t ≥ t0 implies S(t)B2 ⊂ B2, we can
assume, without loss of generality, that B2 is bounded in H2(Ω)∩W 1,2p(Ω)
and positively invariant by S(t), i.e., S(t)B2 ⊂ B2, ∀t ≥ 0.

We now assume that (3.6) holds, i.e.,

|ϕ′(s)| ≤ c(|s|p−2 + 1), c ≥ 0, s ≥ 0,

when p ≥ 2. When p < 2, it is once more understood that ϕ′ is bounded.
We also assume that p ≤ 2 when n = 2 or 3.

We have the

Theorem 5.2. Under the above assumptions, there holds

t‖S(t)u1,0 − S(t)u2,0‖H1(Ω) ≤ cec
′t‖u1,0 − u2,0‖, t > 0, (5.5)

∀u1,0, u2,0 ∈ B2 and where the positive constants c and c′ only depend on M
and B2.
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Proof.
We multiply (4.1) by −t∆u and obtain

1

2

d

dt
(t‖∇u‖2) + t‖∇∆u‖2 (5.6)

+t

∫
Ω

(ϕ(|∇u1|2)∇u1 − ϕ(|∇u2|2)∇u2) · ∇∆u dx

=
1

2
‖∇u‖2.

Noting that

(ϕ(|∇u1|2)∇u1 − ϕ(|∇u2|2)∇u2) · ∇∆u = (φ(∇u1)− φ(∇u2)) · ∇∆u

=

∫ 1

0
τφ′(τ∇u1 + (1− τ)∇u2)∇u · ∇∆u dτ

=

∫ 1

0
τ [ϕ(|τ∇u1 + (1− τ)∇u2|2)∇u · ∇∆u

+2ϕ′(|τ∇u1 + (1− τ)∇u2|2)

×((τ∇u1 + (1− τ)∇u2) · ∇u)((τ∇u1 + (1− τ)∇u2) · ∇∆u)] dτ,

we deduce from (3.4) and (3.6) that

|
∫

Ω
(ϕ(|∇u1|2)∇u1 − ϕ(|∇u2|2)∇u2) · ∇∆u dx|

≤ c
∫

Ω
(|∇u1|2p−2 + |∇u2|2p−2 + 1)|∇u||∇∆u| dx

≤ 1

2
‖∇∆u‖2 + c(‖∇u1‖4p−4

L∞(Ω) + ‖∇u2‖4p−4
L∞(Ω) + 1)‖∇u‖.

Taking the most difficult case p = 2 (n = 2 or 3) and employing Agmon’s
inequality, we find

|
∫

Ω
(ϕ(|∇u1|2)∇u1 − ϕ(|∇u2|2)∇u2) · ∇∆u dx| (5.7)

≤ 1

2
‖∇∆u‖2 + c(‖u1‖2H2(Ω)‖u1‖2H3(Ω) + ‖u2‖2H2(Ω)‖u2‖2H3(Ω) + 1)‖∇u‖2
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≤ 1

2
‖∇∆u‖2 + c(‖u1‖2H3(Ω) + ‖u2‖2H3(Ω) + 1)‖∇u‖2.

It thus follows from (5.6)-(5.7) that

d

dt
(t‖∇u‖2) + t‖∇∆u‖2 (5.8)

≤ ‖∇u‖2 + ct(‖u1‖2H3(Ω) + ‖u2‖2H3(Ω) + 1)‖∇u‖2.

Noting finally that it follows from (3.5) that∫ t

0
‖ui‖2H3(Ω) dτ ≤ cM,B2(t+ 1), i = 1, 2,

and from (4.6)-(4.7) that∫ t

0
‖u(t)‖2H1(Ω) dτ ≤ ce

c′t,

where c and c′ only depend on M and B2, (5.5) follows from (5.8) and
Gronwall’s lemma.

2

We also have the

Proposition 5.1. There holds

‖u(t1)− u(t2)‖ ≤ cM,B2,T |t1 − t2|
1
2 , (5.9)

for every solution u to (2.1)-(2.3) with initial datum u0 ∈ B2, for every t1,
t2 ∈ [0, T ], for every T > 0.

Proof.
Indeed,

‖u(t1)−u(t2)‖ = ‖
∫ t2

t1

∂u

∂t
dτ‖ ≤ |

∫ t2

t1

‖∂u
∂t
‖ dτ | ≤ |t1−t2|

1
2 |
∫ t2

t1

‖∂u
∂t
‖2 dτ |

1
2

and the result follows from (3.3).
2

We deduce from (5.5), (5.9) and standard results (see, e.g., [5], [6] and
[16]) the

Theorem 5.3. The semigroup S(t) acting on ΦM possesses an exponential
attractor MM in L2(Ω), i.e.,
(i) MM is compact in L2(Ω) and bounded in H2(Ω) ∩W 1,2p(Ω),
(ii) MM is positively invariant, S(t)MM ⊂MM , ∀t ≥ 0,
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(iii) MM has finite fractal dimension (for the topology of L2(Ω)),

(iv) MM attracts the bounded subsets of ΦM exponentially fast in the fol-
lowing sense: ∀B ⊂ ΦM bounded,

dist(S(t)B,MM ) ≤ Q(‖B‖)e−ct, c > 0, t ≥ 0,

where the constant c is independent of B.

Remark 5.3. a) Due to the relaxation from invariance to positive invari-
ance, an exponential attractor, if it exists, is not unique.

b) We can note that the rate of exponential attraction is uniform and can
be computed explicitly (in terms of the physical parameters of the problem
in concrete situations). Therefore, exponential attractors are expected to
be more robust under perturbations. Indeed, the rate of attraction of tra-
jectories to the global attractor may be slow and it is very difficult, if not
impossible, to estimate this rate of attraction in general. We refer the reader
to [5] and [16] for discussions on this subject.

c) Having finite fractal dimension means, very roughly speaking that, even
though the initial phase space is infinite-dimensional, the reduced dynamics
can be described by a finite number of parameters. We again refer the
interested reader to [5] and [16] for more details.

Since an exponential attractor always contains the global attractor, we
deduce from Theorem 5.3 the

Corollary 5.1. The global attractor AM has finite fractal dimension for the
topology of L2(Ω).

Remark 5.4. Actually, in two space dimensions, we can prove the exis-
tence of an exponential attractor without any restriction on p (allowing, in
particular, to prove the existence of the finite-dimensional global attractor
for the models described in Remark 2.2), by using the so-called l-trajectories
method (see, e.g., [14], [15] and [18]). Indeed, it first follows from (4.6) that,
if u1 and u2 are, as above, two solutions to (2.1)-(2.2) with initial data in
B2 and u = u1 − u2,

‖u‖L2(l,2l;H2(Ω)) ≤ c‖u‖L2(0,l;L2(Ω)), (5.10)

for a proper constant l > 0 depending only on the constant c in (4.6) (see
[14] and [15] for details). We then note that

∂u

∂t
= −∆2u+ div(φ(∇u1)− φ(∇u2)),

which yields
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‖∂u
∂t
‖L2(l,2l;H−2(Ω)) ≤ c‖u‖L2(l,2l;H2(Ω))

+ sup
ξ∈H2(Ω), ‖ξ‖H2(Ω)=1

∫ 2l

l
dt

∫
Ω
|φ(∇u1)− φ(∇u2)||∇ξ| dx.

Writing

∫
Ω
|φ(∇u1)− φ(∇u2)||∇ξ| dx ≤ c

∫
Ω

(|∇u1|2p−2 + |∇u2|2p−2 + 1)|∇u||∇ξ| dx

≤ c(‖∇u1‖2p−2
L3p−3(Ω)

+ ‖∇u2‖2p−2
L3p−3(Ω)

+ 1)‖u‖H2(Ω)‖ξ‖H2(Ω)

≤ c(‖u1‖2p−2
H2(Ω)

+ ‖u2‖2p−2
H2(Ω)

+ 1)‖u‖H2(Ω)

≤ c‖u‖H2(Ω),

we deduce that

‖∂u
∂t
‖L2(l,2l;H−2(Ω)) ≤ c‖u‖L2(l,2l;H2(Ω)),

hence, owing to (5.10),

‖∂u
∂t
‖L2(l,2l;H−2(Ω)) ≤ c‖u‖L2(0,l;L2(Ω)). (5.11)

The two estimates (5.10) and (5.11) finally allow to prove the existence of an
exponential attractor (see [15] and [18] for more details). We can note that,
in three space dimensions, this only yields a slight improvement, namely,
p ≤ 3 (in order to use the continuous embedding H1(Ω) ⊂ L6(Ω)).

Remark 5.5. It is also important to study the limit problem (correspond-
ing to ε = 0 in (1.5)), i.e., the initial and boundary value problem

∂u

∂t
− div(ϕ(|∇u|2)∇u) = 0, (5.12)

∂u

∂ν
= 0 on Γ, (5.13)

u|t=0 = u0. (5.14)

Multiplying (5.12) by u, we have, owing to (2.6),

d

dt
‖u‖2 + c‖∇u‖2p ≤ c′, c > 0, (5.15)
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and, multiplying (2.1) by ∂u
∂t , we obtain

d

dt

∫
Ω
ψ(|∇u|2) dx+ 2‖∂u

∂t
‖2 = 0. (5.16)

Unfortunately, this is not sufficient to pass to the limit in the nonlinear
term. Indeed, we do not have enough regularity to employ Aubin-Lions
compactness results and the operator φ is not monotone. Another problem
is the uniqueness. However, if p > 1 (this contains the thin film model with
slope selection), we have (formally) the dissipativity in L2(Ω) and W 1,2p(Ω).
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