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Abstract - In this paper we survey some of our recent results on the ex-
istence and uniqueness of solutions to nonconvex and nonsmooth problems
which arise in Contact Mechanics. The approach is based on operator sub-
differential inclusions and hemivariational inequalities, and focuses on three
aspects. First, we report on results on the second order history-dependent
subdifferential inclusions and hemivariational inequalities; next, we discuss
a class of stationary history-dependent operator inclusions and hemivaria-
tional inequalities; finally, we use these abstract results in the study of two
viscoelastic contact problems with subdifferential boundary conditions.
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1. Introduction

The present paper represents a shortened version of the talks presented by
the authors on the special sessions Modèles Mathématiques et Numériques
en Mécanique des Solides and Équations aux Dérivées Partielles et Applica-
tions, organized inside the 11e Colloque Franco-Roumain de Mathématiques
Appliquées which took place at the Faculty of Mathematics and Computer
Science of the University of Bucarest in the interval August 24–30, 2012.
The goal of this work is to review some recent results concerning nonlinear
operator subdifferential inclusions and hemivariational inequalities, as well
as to present some applications of these abstract results in the study of two
viscoelastic frictional contact problems.

Phenomena of contact between deformable bodies abound in industry
and everyday life. Contact of braking pads with wheels, tires with roads,
pistons with skirts are just a few simple examples. Common industrial pro-
cesses such as metal forming and metal extrusion involve contact evolutions.
Owing to their inherent complexity, contact phenomena lead to mathemat-
ical models expressed in terms of strongly nonlinear elliptic or evolutionary
boundary value problems as illustrated in [5, 6, 22, 23], for instance.
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194 Stanislaw Migórski, Anna Ochal and Mircea Sofonea

Considerable progress has been achieved recently in modelling, mathe-
matical analysis and numerical simulations of various contact processes and,
as a result, a general Mathematical Theory of Contact Mechanics is currently
emerging. It is concerned with the mathematical structures which underly
general contact problems with different constitutive laws, i.e., materials,
varied geometries and different contact conditions. Its aim is to provide a
sound, clear and rigorous background to the constructions of models for con-
tact, proving existence, uniqueness and regularity results, assigning precise
meaning to solutions, among others. To this end, it operates with various
mathematical tools which include variational and hemivariational inequali-
ties. The use of variational inequalities arise in the study of contact problems
which involve convex energy functions (potentials); in contrast, the use of
hemivariational inequalities arise in the study of contact problems which
involve nonconvex energy functions (superpotentials).

The notion of hemivariational inequality was introduced by P.D.Panagio-
topoulos in the early 1980s as a generalization of the variational inequality.
It is based the notion of the generalized gradient of Clarke, introduced in
[1] for a class of locally Lipschitz functions. By means of hemivariational
inequality, contact problems involving nonmonotone and multivalued consti-
tutive laws and boundary conditions can be treated mathematically. Nowa-
days the theory of hemivariational inequalities provides powerful methods
and mathematical tools which allow to give positive answers to unsolved or
partially unsolved problems which arise in the theory of Partial Differential
Equations, Contact Mechanics and Engineering Sciences, see [9]–[21] and
the references therein.

The present paper is structured as follows. In Section 2 we recall some
basic notation and definitions we need in the rest of the manuscript. In Sec-
tion 3 we state a result on the existence and uniqueness of the solution to a
class of second order evolutionary inclusions involving a history-dependent
operator. Then, in Section 4, we apply this result in the study of a class of
second order hemivariational inequalities. In Section 5 we present similar
results for a class of stationary history-dependent inclusions and hemivaria-
tional inequalities. Finally, in Section 6 we show how these abstract results
can be used in the study of dynamic and quasistatic contact problems with
subdifferential conditions. Everywhere in what follows we skip the details in
proofs; we restrict ourselves to mention only their main steps and the main
arguments used; nevertheless, we indicate the references where the complete
proofs can be found.

2. Preliminaries

In this section we recall the basic notation and definition we need in the rest
of the paper.
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Let V and Z be separable and reflexive Banach spaces with their topo-
logical duals V ∗ and Z∗, respectively. Let H denote a separable Hilbert
space that we identify with its dual. We assume that V ⊂ H ⊂ V ∗ and
Z ⊂ H ⊂ Z∗ are evolution triples of spaces where all embedings are con-
tinuous, dense and compact (see, e.g., Chapter 23.4 of [24] and Chapter 3.4
of [3]). We also suppose that V is compactly embedded in Z. Let ‖ · ‖, | · |
and ‖ · ‖V ∗ denote the norms in V , H and V ∗, respectively, and let 〈·, ·〉 be
the duality pairing between V ∗ and V . Given a finite interval of time (0, T ),
we also introduce the spaces

V = L2(0, T ;V ), Z = L2(0, T ;Z), Ĥ = L2(0, T ;H),

Z∗ = L2(0, T ;Z∗), V∗ = L2(0, T ;V ∗), W = { v ∈ V | v′ ∈ V∗ }.

Here and below we denote by v′ and v′′ the first and the second time deriva-
tive of v in the sense of vector-valued distributions. The duality pairing
between V∗ and V is denoted by

〈〈z, w〉〉 =

∫ T

0
〈z(t), w(t)〉 dt for z ∈ V∗, w ∈ V.

It is well known that the space W is embedded continuously in the space of
continuous functions on [0, T ] with values inH denoted by C(0, T ;H). More-
over, since V is embedded compactly in H, then so doesW into L2(0, T ;H),
see [3], for instance.

Let X and Y be Banach spaces. A multifunction F : X → 2Y \ {∅}
is lower semicontinuous (upper semicontinuous, respectively) if for C ⊂ Y
closed, the set F+(C) = {x ∈ X | F (x) ⊂ C} (F−(C) = {x ∈ X | F (x) ∩
C 6= ∅}, respectively) is closed in X. F is bounded on bounded sets if
F (B) = ∪x∈BF (x) is a bounded subset of Y for all bounded sets B in X.

Let Y be a reflexive Banach space and 〈·, ·〉 denotes the duality pairing
between Y and its dual. An operator F : Y → Y ∗ is said to be monotone if

〈Fy − Fz, y − z〉 ≥ 0 for all y, z ∈ Y .

It is pseudomonotone if yn → y0 weakly in Y and lim sup 〈Fyn, yn− y0〉 ≤ 0
imply that

〈Fy0, y0 − y〉 ≤ lim inf〈Fyn, yn − y〉 for all y ∈ Y .

It is said to be demicontinuous if yn → y0 in Y implies Fyn → Fy0 weakly
in Y ∗. It is hemicontinuous if the real-valued function t→ 〈F (y+ tv), w〉 is
continuous on [0, 1] for all y, v, w ∈ Y .
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A multivalued mapping F : Y → 2Y
∗

is said to be pseudomonotone, if it
satisfies the following conditions:

(a) for every y ∈ Y , Fy is a nonempty, convex, and weakly compact set in
Y ∗.

(b) F is upper semicontinuous from every finite dimensional subspace of Y
into Y ∗ endowed with the weak topology.

(c) if yn → y weakly in Y , y∗n ∈ Fyn, and lim sup 〈y∗n, yn − y〉 ≤ 0, then
for each z ∈ Y there exists y∗(z) ∈ Fy such that 〈y∗(z), y − z〉 ≤
lim inf 〈y∗n, yn − z〉.

Let L : D(L) ⊂ Y → Y ∗ be a linear densely defined maximal monotone
operator. A mapping F : Y → 2Y

∗
is said to be L-pseudomonotone (pseu-

domonotone with respect to D(L)) if and only if (a), (b) and the following
hold:

(d) if {yn} ⊂ D(L) is such that yn → y weakly in Y , y ∈ D(L), Lyn → Ly
weakly in Y ∗, y∗n ∈ Fyn, y∗n → y∗ weakly in Y ∗ and lim sup 〈y∗n, yn−y〉 ≤
0, then y∗ ∈ Ty and 〈y∗n, yn〉 → 〈y∗, y〉.

Given a Banach space (X, ‖ · ‖X), the symbol w–X is always used to
denote the space X endowed with the weak topology. By L(X,X∗) we
denote the class of linear and bounded operators from X to X∗. If U ⊂ X,
then we write ‖U‖X = sup{ ‖x‖X | x ∈ U }.

Let ϕ : X → R be a locally Lipschitz function. Then, following [1], the
generalized directional derivative of ϕ at x ∈ X in the direction v ∈ X,
denoted by ϕ0(x; v), is defined by

ϕ0(x; v) = lim sup
y→x, t↓0

ϕ(y + tv)− ϕ(y)

t
.

Moreover, the generalized gradient of ϕ at x, denoted by ∂ϕ(x), is a subset
of a dual space X∗ given by

∂ϕ(x) = { ζ ∈ X∗ | ϕ0(x; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X }.

Finally, a locally Lipschitz function ϕ is called regular (in the sense of Clarke)
at x ∈ X if for all v ∈ X the one–sided directional derivative ϕ′(x; v) exists
and satisfies ϕ0(x; v) = ϕ′(x; v) for all v ∈ X.

3. Second order history-dependent inclusions

In this section we consider a class of second order evolutionary inclusions
which can be formulated as follows.
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Problem 3.1. Find u ∈ V such that u′ ∈ W and
u′′(t) +A(t, u′(t)) +B(t, u(t)) + (Su)(t) + F (t, u′(t)) 3 f(t)

a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

We complete Problem 3.1 with the following definition.

Definition 3.1. A function u ∈ V is a solution to Problem 3.1 if u′ ∈ W
and there exists z ∈ Z∗ such that
u′′(t) +A(t, u′(t)) +B(t, u(t)) + (Su)(t) + z(t) = f(t) a.e. t ∈ (0, T ),

z(t) ∈ F (t, u′(t)) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

We assume the following hypotheses on the data of Problem 3.1.

H(A) : A : (0, T )× V → V ∗ is such that

(a) A(·, v) is measurable on (0, T ) for every v ∈ V .
(b) A(t, ·) is hemicontinuous for a.e. t ∈ (0, T ).
(c) A(t, ·) is strongly monotone for a.e. t ∈ (0, T ), i.e. there exists m1 > 0

such that 〈A(t, u)−A(t, v), u− v〉 ≥ m1‖u− v‖2 for a.e. t ∈ (0, T ), all
u, v ∈ V .

(d) ‖A(t, v)‖V ∗ ≤ a0(t) + a1‖v‖ for a.e. t ∈ (0, T ), all v ∈ V with a0 ∈
L2(0, T ), a0 ≥ 0 and a1 > 0.

(e) 〈A(t, v), v〉 ≥ α‖v‖2 for a.e. t ∈ (0, T ), all v ∈ V with α > 0.

H(B) : B : (0, T )× V → V ∗ is such that

(a) B(·, v) is measurable on (0, T ) for all v ∈ V .

(b) B(t, ·) is Lipschitz continuous for a.e. t ∈ (0, T ), i.e. there exists
LB > 0 such that ‖B(t, u) − B(t, v)‖V ∗ ≤ LB‖u − v‖ for all u, v ∈ V ,
a.e. t ∈ (0, T ).

(c) ‖B(t, v)‖V ∗ ≤ b0(t) + b1‖v‖ for all v ∈ V , a.e. t ∈ (0, T ) with b0 ∈
L2(0, T ) and b0, b1 ≥ 0.

H(S) : S : V → V∗ is such that

‖(Su)(t)− (Sv)(t)‖V ∗ ≤ LS
∫ t

0
‖u(s)− v(s)‖ ds

for all u, v ∈ V, a.e. t ∈ (0, T ) with LS > 0.

H(F ) : F : (0, T )× V → 2Z
∗

has nonempty, closed, convex values and

(a) F (·, v) is measurable on (0, T ) for all v ∈ V .
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(b) F (t, ·) is upper semicontinuous from V into w–Z∗ for a.e. t ∈ (0, T ),
where V is endowed with Z–topology.

(c) ‖F (t, v)‖Z∗ ≤ d0(t) + d1‖v‖ for all v ∈ V , a.e. t ∈ (0, T ) with d0 ∈
L2(0, T ) and d0, d1 ≥ 0.

(d) 〈F (t, u) − F (t, v), u − v〉Z∗×Z ≥ −m2‖u − u‖2 for all u, v ∈ V , a.e.
t ∈ (0, T ) with m2 ≥ 0.

(H0) : f ∈ V∗, u0 ∈ V , v0 ∈ H.

(H1) : m1 > m2 and α > 2
√

3 ce d1, where ce > 0 is the embedding

constant of V into Z, i.e. ‖z‖Z ≤ ce‖z‖ for all z ∈ V .

We note that the hypothesis H(S) is satisfied for the operator S : V → V∗
given by

(Sv)(t) = R
(
t,

∫ t

0
v(s) ds+ u0

)
for all v ∈ V, a.e. t ∈ (0, T ), (3.1)

where R : (0, T ) × V → V ∗ is such that R(·, v) is measurable on (0, T ) for
all v ∈ V , R(t, ·) is a Lipschitz continuous operator for a.e. t ∈ (0, T ) and
u0 ∈ V . It is also satisfied for the Volterra operator S : V → V∗ given by

(Sv)(t) =

∫ t

0
C(t− s) v(s) ds for all v ∈ V, a.e. t ∈ (0, T ), (3.2)

where C ∈ L∞(0, T ;L(V, V ∗)). In the case of the operators (3.1) and (3.2)
the current value (Sv)(t) at the moment t depends on the history of the
values of v at the moments 0 ≤ s ≤ t and, therefore, we refer the operators
of the form (3.1) or (3.2) as history-dependent operators. We extend this
definition to all operators S : V → V∗ which satisfy H(S) and, for this
reason, we say that Problem 3.1 represents a second-order history-dependent
subdifferential inclusion.

It follows from Lemma 5.3 of [19] that under the hypothesis H(F ), the
multifunction G : W 1,2(0, T ;V )→ 2Z

∗
defined by

G(u) = { z ∈ Z∗ | z(t) ∈ F (t, u′(t)) a.e. on (0, T ) },

for u ∈ W 1,2(0, T ;V ), has nonempty, weakly compact and convex values.
Hence, the multifunction t 7→ F (t, u′(t)) has a measurable Z∗ selection and,
therefore, Definition 3.1 makes sense.

The following is our main result in the study of Problem 3.1.

Theorem 3.1. Under hypotheses H(A), H(B), H(S), H(F ), (H0) and
(H1), Problem 3.1 has a unique solution.
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Proof. The proof is carried out in several steps. In the first one we consider
the intermediate evolutionary inclusion{

u′′(t) +A(t, u′(t)) + F (t, u′(t)) 3 f(t) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0

(3.3)

and, denoting w = u′, we obtain{
w′(t) +A(t, w(t)) + F (t, w(t)) 3 f(t) a.e. t ∈ (0, T ),

w(0) = v0.
(3.4)

We define the operator K : V → V by equality

(Kv)(t) =

∫ t

0
v(s) ds+ u0.

Then, it is easy to see that w solves (3.4) if and only if u = Kw is a solution
to (3.3). Next, we rewrite (3.4) as an operator inclusion (L + F)w 3 f ,
where Lw = w′ denotes the generalized time derivative, F = A1 + F1 with
(A1w)(t) = A(t, w(t) + v0) and

F1w = { z∗ ∈ Z∗ | z∗(t) ∈ F (t, w(t) + v0) a.e. t ∈ (0, T ) }.

We then prove that F is bounded, coercive and pseudomonotone with re-
spect to the graph norm topology of the domain of L. By exploting the
fact that L is closed, densely defined and maximal monotone operator, from
Theorem 1.3.73 of [3], we obtain that L+F is surjective which implies that
(3.3) is solvable. Subsequently we show that the solution to (3.3) is unique.

In the second step, we consider the operator Λ: V∗ → V∗ defined by

(Λη)(t) = B(t, uη(t)) + (Suη)(t) for all η ∈ V∗, a.e. t ∈ (0, T ),

where uη is the unique solution to the following inclusion{
u′′(t) +A(t, u′(t)) + F (t, u′(t)) 3 f(t)− η(t) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.
(3.5)

Applying the Banach Contraction Principle, we show that Λ has a unique
fixed point η∗. The solution of (3.5) corresponding to η∗ is the unique
solution to Problem 3.1, which concludes the proof. 2

For a detailed proof of Theorem 3.1 we refer to [8] and [11]. Also, for
the study of a general case when the multifunction depends on the unknown
function u, i.e. F = F (t, u, u′), we refer the reader to Chapter 5 of [19].
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4. Second order history-dependent hemivariational inequalities

In this section we apply Theorem 3.1 in the study of a class of second order
hemivariational inequalities which involve history-dependent operators.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and let ΓC
be a measurable part of Γ, ΓC ⊆ Γ. Let V be a closed subspace of H1(Ω;Rd),
H = L2(Ω;Rd) and Z = Hδ(Ω;Rd) with a fixed δ ∈ (1/2, 1). Denoting by
i : V → Z the embedding, by γ : Z → L2(Γ;Rd) and γ0 : H1(Ω;Rd) →
H1/2(Γ;Rd) ⊂ L2(Γ;Rd) the trace operators, we get γ0v = γ(iv) for all v ∈
V . For simplicity, in what follows, we omit the notation of the embedding
i and we write γ0v = γv for all v ∈ V . It is well known from the theory of
Sobolev spaces (see, for instance, [2, 3, 24]) that (V,H, V ∗) and (Z,H,Z∗)
form evolution triples of spaces and the embedding V ⊂ Z is compact. We
denote by ce the embedding constant of V into Z, by ‖γ‖ the norm of the
trace in L(Z,L2(Γ;Rd)) and by γ∗ : L2(Γ;Rd) → Z∗ the adjoint operator
to γ. We are interested in the following problem.

Problem 4.1. Find u ∈ V such that u′ ∈ W and
〈u′′(t) +A(t, u′(t)) +B(t, u(t)) + (Su)(t), v〉+

+

∫
ΓC

j0(x, t, γu′(t); γv) dΓ ≥ 〈f(t), v〉 for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

Here S is an operator which satisfies condition H(S). Therefore, we
refer to Problem 4.1 as a second order history-dependent hemivariational
inequality. In the study of this problem we consider the following hypothesis.

H(j) : j : ΓC × (0, T )× R d → R is such that

(a) j(·, ·, ξ) is measurable for all ξ ∈ R and j(·, ·, 0) ∈ L1(ΓC × (0, T )).

(b) j(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΓC × (0, T ).

(c) ‖∂j(x, t, ξ)‖Rd ≤ c̃0(t) + c̃1 ‖ξ‖Rd for all ξ ∈ Rd, a.e. (x, t) ∈ ΓC × (0, T )
with c̃0, c̃1 ≥ 0, c̃0 ∈ L2(0, T ).

(d) (η1 − η2, ξ1 − ξ2)Rd ≥ −m̃2‖ξ1 − ξ2‖2Rd for all ηi ∈ ∂j(x, t, ξi), ξi ∈ Rd,
i = 1, 2, a.e. (x, t) ∈ ΓC × (0, T ) with m̃2 ≥ 0.

(e) j0(x, t, ξ;−ξ) ≤ d̃0 (1 + ‖ξ‖Rd) for a.e. (x, t) ∈ ΓC × (0, T ), all ξ ∈ Rd
with d̃0 ≥ 0.

Here and below, j0 and ∂j denote the directional derivative and the Clarke
generalized gradient of j(x, t, ·), respectively.

We consider the functional J : (0, T )× L2(ΓC ;R d)→ R defined by

J(t, v) =

∫
ΓC

j(x, t, v(x)) dΓ for all v ∈ L2(ΓC ;Rd), a.e. t ∈ (0, T ). (4.1)
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We recall the following result which corresponds to Lemma 3.1 of [16].

Lemma 4.1. Assume that H(j) holds. Then the functional J given by (4.1)
satisfies the following properties:

(a) J(·, v) is measurable for all v ∈ L2(ΓC ;R d) and J(·, 0) ∈ L1(0, T ).

(b) J(t, ·) is locally Lipschitz for a.e. t ∈ (0, T ).

(c) ‖∂J(t, v)‖L2(ΓC ;R d) ≤ c0(t) + c1 ‖v‖L2(ΓC ;R d) for all v ∈ L2(ΓC ;R d),

a.e. t ∈ (0, T ) with c0 ∈ L2(0, T ), c0, c1 ≥ 0.

(d) (z1 − z2, w1 − w2)L2(ΓC ;R d) ≥ −m̃2‖w1 − w2‖2L2(ΓC ;R d)
for all zi ∈

∂J(t, wi), wi ∈ L2(ΓC ;R d), i = 1, 2, a.e. t ∈ (0, T ) with m̃2 ≥ 0.
(e) for all u, v ∈ L2(ΓC ;R d), we have

J0(t, u; v) ≤
∫

ΓC

j0(x, t, u(x); v(x)) dΓ, (4.2)

where J0(t, u; v) denotes the directional derivative of J(t, ·) at a point
u ∈ L2(ΓC ;R d) in the direction v ∈ L2(ΓC ;R d).

We now use Theorem 3.1 and Lemma 4.1 to obtain the following exis-
tence and uniqueness result.

Theorem 4.1. Assume that H(A), H(B), H(S), H(j), (H0) hold and

α > 2
√

3 c0 c
2
e‖γ‖2, m1 > m̃2 c

2
e ‖γ‖2.

Then Problem 4.1 has at least one solution. If, in addition to the above
hypotheses, either j(x, t, ·) or −j(x, t, ·) is regular on R d for a.e. (x, t) ∈
ΓC × (0, T ), then Problem 4.1 has a unique solution.

Proof. We define the multifunction F : (0, T )× V → 2Z
∗

by

F (t, v) = γ∗∂J(t, γv) for all v ∈ V, a.e. t ∈ (0, T )

where J is given by (4.1). Using the linearity and continuity of the trace
operator, the properties of the Clarke subdifferential (cf. Propositions 5.6.9
and 5.6.10 of [2]) and Lemma 4.1, we obtain that F satisfies H(F ), see
[7, 11] for details. Hence, by Theorem 3.1, we know that there exists a
unique solution u ∈ V such that u′ ∈ W of the evolution inclusion{
u′′(t) +A(t, u′(t)) +B(t, u(t)) + (Su)(t) + F (t, u′(t)) 3 f(t) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

From Definition 3.1, we have

u′′(t) +A(t, u′(t)) +B(t, u(t)) + (Su)(t) + ζ(t) = f(t), (4.3)
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for a.e. t ∈ (0, T ) with ζ(t) = γ∗z(t) and z(t) ∈ ∂J(t, γu′(t)) for a.e.
t ∈ (0, T ). The latter is equivalent to

(z(t), w)L2(ΓC ;Rd) ≤ J0(t, γu′(t);w)

for all w ∈ L2(ΓC ;Rd) and a.e. t ∈ (0, T ). Hence, using (4.3) and (4.2), we
deduce

〈f(t)− u′′(t)−A(t, u′(t))−B(t, u(t))− (Su)(t), v〉 = 〈ζ(t), v〉Z∗×Z =

= (z(t), γv)L2(ΓC ;Rd) ≤ J0(t, γu′(t); γv) ≤
∫

ΓC

j0(x, t, γu′(t); γv) dΓ

for all v ∈ V and a.e. t ∈ (0, T ). This means that u is a solution to
Problem 4.1.

Next, let u be a solution to Problem 4.1 obtained above. It follows from
Theorem 5.6.38 of [2] that if either j(x, t, ·) or −j(x, t, ·) is regular for a.e.
(x, t) ∈ ΓC×(0, T ), then either J(t, ·) or −J(t, ·) is regular for a.e. t ∈ (0, T ),
respectively, and (4.2) holds with equality. Using the equality in (4.2), it
follows that

〈f(t)− u′′(t)−A(t, u′(t))−B(t, u(t))− (Su)(t), v〉 ≤ J0(t, γu′(t); γv)

for all v ∈ V and a.e. t ∈ (0, T ). Then, by Proposition 2(i) of [12], we have

〈f(t)− u′′(t)−A(t, u′(t))−B(t, u(t))− (Su)(t), v〉 ≤ (J ◦ γ)0(t, u′(t); v)

for all v ∈ V and a.e. t ∈ (0, T ). Therefore, by Proposition 2(ii) of [12]
combined with the definition of the subdifferential we obtain

f(t)− u′′(t)−A(t, u′(t))−B(t, u(t))− (Su)(t) ∈

∈ ∂(J ◦ γ)(t, u′(t)) = γ∗∂J(t, γu′(t)) = F (t, u′(t))

for a.e. t ∈ (0, T ). Thus u is a solution to the evolutionary inclusion in
Problem 3.1. The uniqueness of solution to Problem 4.1 follows now from
the uniqueness result of Theorem 3.1, which completes the proof. 2

5. Stationary history-dependent inclusions and hemivariational
inequalities

In this section we extend the results presented in Sections 3 and 4 to prob-
lems which do not include the derivative of the unknown, the so-called
stationary problems. To this end, let A : (0, T ) × V → V ∗, S : V → V∗,
F : (0, T ) × V → 2Z

∗
, f : (0, T ) → V ∗ be given and consider the following

inclusion.
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Problem 5.1. Find u ∈ V such that

A(t, u(t)) + (Su)(t) + F (t, u(t)) 3 f(t) a.e. t ∈ (0, T ). (5.1)

Here S is assumed to be a history-dependent operator and, therefore,
we refer to Problem 5.1 as a stationary history-dependent inclusion. We
complete this problem with the following definition.

Definition 5.1. A function u ∈ V is called a solution to Problem 5.1 if
there exists z ∈ Z∗ such that{

A(t, u(t)) + (Su)(t) + z(t) = f(t) a.e. t ∈ (0, T ),

z(t) ∈ F (t, u(t)) a.e. t ∈ (0, T ).

Before we provide the result on the existence and uniqueness for Prob-
lem 5.1, we first state a result on the unique solvability of an inclusion in
which the time variable plays the role of a parameter.

Lemma 5.1. Assume that H(A), H(F ) and (H1) hold, and f ∈ V∗. Then
the problem

A(t, u(t)) + F (t, u(t)) 3 f(t) a.e. t ∈ (0, T ) (5.2)

has a unique solution u ∈ V.

Proof. We provide main steps of the proof without details. First, since
the operator A(t, ·) satisfies H(A)(b)–(c), it is pseudomonotone for a.e. t ∈
(0, T ). This follows from the facts that every strongly monotone operator
is monotone and every bounded, hemicontinuous and monotone operator is
pseudomonotone (cf. Proposition 27.6 of [24]). Subsequently, we define the
multivalued map F : (0, T )× V → 2V

∗
by F(t, v) = A(t, v) + F (t, v) for all

v ∈ V and a.e. t ∈ (0, T ). From H(A)(a) and H(F )(a), it is clear that
F(·, v) is a measurable multifunction for all v ∈ V . Exploiting Proposition
6.3.66 of [3], we show that F(t, ·) is pseudomonotone and coercive for a.e.
t ∈ (0, T ). Therefore, applying the fundamental surjectivity result (cf. e.g.
Theorem 6.3.70 of [3]), it follows that F(t, ·) is surjective. This implies that
for a.e. t ∈ (0, T ) there exists a solution u(t) ∈ V of the problem (5.2).
Furthermore, owing to the coercivity of F(t, ·), we deduce the following
estimate

‖u(t)‖ ≤ c (1 + ‖f(t)‖V ∗) for a.e. t ∈ (0, T ) with c > 0. (5.3)

Using the strong monotonicity of A(t, ·), H(F )(d) and the hypothesis m1 >
m2, we prove now that the solution to the problem (5.2) is unique. Also,
we prove that the solution of the problem (5.2) is a measurable function on
(0, T ). Since f ∈ V∗, from the estimate (5.3), we conclude that u ∈ V and
(5.2) holds, which completes the proof of the lemma. 2

The existence and uniqueness result for Problem 5.1 reads as follows.
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Theorem 5.1. Assume H(A), H(F ), H(S), (H1) and f ∈ V∗. Then Prob-
lem 5.1 has a unique solution.

Proof. We use a fixed point argument. Let η ∈ V∗. We denote by uη ∈ V
the solution of the following problem

A(t, uη(t)) + F (t, uη(t)) 3 f(t)− η(t) a.e. t ∈ (0, T ). (5.4)

By Lemma 5.1 we know that uη ∈ V exists and it is unique. Next, we
consider the operator Λ: V∗ → V∗ defined by

Λη(t) = (Suη)(t) for all η ∈ V∗, a.e. t ∈ (0, T ).

We show by using the Banach Contraction Principle that the operator Λ
has a unique fixed point η∗ ∈ V∗. Then uη∗ is a solution to Problem 5.1,
which concludes the existence part of the theorem. The uniqueness part
follows from the uniqueness of the fixed point of Λ. Namely, let u ∈ V be
a solution to Problem 5.1 and define the element η ∈ V∗ by η(t) = (Su)(t)
for a.e. t ∈ (0, T ). It follows that u is the solution to the problem (5.4)
and, by the uniqueness of solutions to (5.4), we obtain u = uη. This implies
Λη = Suη = Su = η and by the uniqueness of the fixed point of Λ we have
η = η∗, so u = uη∗ , which completes the proof. 2

Next, we provide a result on existence and uniqueness of a solution to
a class of hemivariational inequalities associated with Problem 5.1, the so-
called stationary history-dependent variational inequalities. With the nota-
tion in Section 4, the problem under consideration reads as follows.

Problem 5.2. Find u ∈ V such that

〈A(t, u(t)) + (Su)(t), v〉+

∫
ΓC

j0(x, t, γu(t); γv) dΓ ≥ 〈f(t), v〉 (5.5)

for all v ∈ V and a.e. t ∈ (0, T ).

From Theorem 5.1, we deduce the following existence and uniqueness
result for Problem 5.2.

Theorem 5.2. Assume that H(A) and H(S) hold, and f ∈ V∗. If one of
the following hypotheses

i) H(j)(a)–(d) and m1 > max{
√

3 c1,m2} c2
e ‖γ‖2

ii) H(j) and m1 > m2 c
2
e ‖γ‖2

is satisfied, then Problem 5.2 has a solution u ∈ V. If, in addition, either
j(x, t, ·) or −j(x, t, ·) is regular on R d for a.e. (x, t) ∈ ΓC × (0, T ), then the
solution of Problem 5.2 is unique.

For the proof of Theorem 5.2 we refer the reader to [18].
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6. Applications to contact problems

In this section we study two frictional contact problems which are described
by nonmonotone and possibly multivalued boundary conditions of subdif-
ferential type. We show that the contact problems under consideration lead
to history-dependent hemivariational inequalities for the displacement and
for the velocity, respectively.

The physical setting is as follows. A viscoelastic body occupies a subset
Ω of Rd, d = 2, 3 in applications. The body is acted upon by volume forces
and surface tractions and, as a result, its state is evolving. We are interested
in evolution process of the mechanical state of the body on the time interval
[0, T ] with 0 < T < ∞. The boundary Γ of Ω is supposed to be Lipschitz
continuous and therefore the unit outward normal vector ν exists a.e. on Γ.
It is assumed that Γ is divided into three mutually disjoint measurable parts
ΓD, ΓN and ΓC such that the measure of ΓD is positive. We suppose that
the body is clamped on ΓD, so the displacement field vanishes there. Volume
forces of density f0 act in Ω and surface tractions of density fN are applied
on ΓN . The body may come in contact with an obstacle over the potential
contact surface ΓC . Let Sd be the linear space of second order symmetric
tensors on Rd (equivalently, the space R d×d

s of symmetric matrices of order
d) and let Q = Ω × (0, T ), ΣD = ΓD × (0, T ), ΣN = ΓN × (0, T ) and
ΣC = ΓC×(0, T ). For simplicity we skip the dependence of various functions
on the spatial variable x ∈ Ω ∪ Γ.

The first problem of contact we consider is dynamic. Following [16], its
classical formulation is as follows: find the displacement field u : Q → Rd
and the stress tensor σ : Q→ Sd such that

u′′(t)− div σ(t) = f0(t) in Q (6.1)

σ(t) = A(t, ε(u′(t))) + B(t, ε(u(t))) +

∫ t

0
C(t− s)ε(u(s)) ds in Q (6.2)

u(t) = 0 on ΣD (6.3)

σ(t)ν = fN (t) on ΣN (6.4)

−σν(t) ∈ ∂jν(t, u′ν(t)), −στ (t) ∈ ∂jτ (t, u′τ (t)) on ΣC (6.5)

u(0) = u0, u′(0) = v0 in Ω. (6.6)

Note that equation (6.2) represents the constitutive law, where A is a
nonlinear operator describing the purely viscous properties of the material,
while B and C are the nonlinear elasticity and the linear relaxation oper-
ators, respectively which may depend explicitly on time. One-dimensional
constitutive laws of the form (6.2) can be constructed by using rheological
arguments, see for instance [4], Chapter 6 of [6] and [16].

Conditions (6.5) represent the frictional contact condition in which jν
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and jτ are given functions and the subscripts ν and τ indicate normal and
tangential components of tensors and vectors. The symbol ∂j denotes the
Clarke subdifferential of j with respect to the last variable. Concrete ex-
amples of frictional conditions which lead to subdifferential boundary con-
ditions of the form (6.5) with the functions jν and jτ satisfying assumptions
H(jν) and H(jτ ) below can be found in [13, 19]. We only remark that
these examples include the viscous contact and the contact with nonmono-
tone normal damped response, associated to a nonmonotone friction law, to
Tresca’s friction law or to a power-law friction.

In order to give the variational formulation of the problem (6.1)–(6.6),
we recall the following notation. The inner products and the corresponding
norms on Rd and Sd are defined by

u · v = uivi, ‖v‖Rd = (v · v)1/2 for all u, v ∈ Rd,

σ : τ = σij τij , ‖τ‖Sd = (τ : τ)1/2 for all σ, τ ∈ Sd.

Summation convention over repeated indices running from 1 to d is adopted
and the index that follows a comma indicates a partial derivative. We need
the spaces H = L2(Ω;Rd), H = L2(Ω; Sd), H1 = {u ∈ H | ε(u) ∈ H},
H1 = {τ ∈ H | div τ ∈ H}, where ε : H1(Ω;Rd)→ L2(Ω; Sd) and div : H1 →
L2(Ω;Rd) denote the deformation and the divergence operators, respectively,
given by

ε(u) = {εij(u)}, εij(u) =
1

2
(ui,j + uj,i), div σ = {σij,j}.

Given v ∈ H1/2(Γ;R d) we denote by vν and vτ the usual normal and
the tangential components of v on the boundary Γ, vν = v · ν, vτ = v− vνν.
Similarly, for a smooth tensor field σ : Ω → Sd, we define its normal and
tangential components by σν = (σν) · ν and στ = σν − σνν. Let V be the
closed subspace of H1(Ω;Rd) given by

V = { v ∈ H1(Ω;Rd) | v = 0 on ΓD }.

On the space V we consider the inner product and the corresponding norm
defined by

〈u, v〉 = 〈ε(u), ε(v)〉H, ‖v‖ = ‖ε(v)‖H for u, v ∈ V.

It follows from Korn’s inequality that ‖·‖H1(Ω;Rd) and ‖·‖ are the equivalent
norms on V .

In the study of problem (6.1)–(6.6) we consider the following assump-
tions on the viscosity operator A, on the elasticity operator B and on the
relaxation operator C.
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H(A) : A : Q× Sd → Sd is such that

(a) A(·, ·, ε) is measurable on Q for all ε ∈ Sd.
(b) A(x, t, ·) is continuous on Sd for a.e. (x, t) ∈ Q.

(c) ‖A(x, t, ε)‖Sd ≤ c1 (b(x, t) + ‖ε‖Sd) for all ε ∈ Sd, a.e. (x, t) ∈ Q with
b ∈ L2(Q), b ≥ 0 and c1 > 0.

(d) (A(x, t, ε1)−A(x, t, ε2)) : (ε1 − ε2) ≥ m1‖ε1 − ε2‖2Sd for all ε1, ε2 ∈ Sd,
a.e. (x, t) ∈ Q with m1 > 0.

(e) A(x, t, ε) : ε ≥ c2‖ε‖2Sd for all ε ∈ Sd, a.e. (x, t) ∈ Q with c2 > 0.

H(B) : B : Q× Sd → Sd is such that

(a) B(·, ·, ε) is measurable on Q for all ε ∈ Sd.
(b) ‖B(x, t, ε)‖Sd ≤ b̃1(x, t) + b̃2 ‖ε‖Sd for all ε ∈ Sd, a.e. (x, t) ∈ Q with

b̃1 ∈ L2(Q), b̃1, b̃2 ≥ 0.

(c) ‖B(x, t, ε1) − B(x, t, ε2)‖Sd ≤ LB‖ε1 − ε2‖Sd for all ε1, ε2 ∈ Sd, a.e.
(x, t) ∈ Q with LB > 0.

H(C) : C : Q × Sd → Sd is such that C(x, t, ε) = c(x, t)ε and c(x, t) =

{cijkl(x, t)} with cijkl = cjikl = clkij ∈ L2(0, T ;L∞(Ω)).

The contact and frictional potentials jν and jτ satisfy the following hy-
potheses.

H(jν) : jν : ΣC × R→ R satisfies

(a) jν(·, ·, r) is measurable for all r ∈ R and jν(·, ·, 0) ∈ L1(ΣC).

(b) jν(x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΣC .

(c) |∂jν(x, t, r)| ≤ cν (1 + |r|) for a.e. (x, t) ∈ ΣC , all r ∈ R with cν > 0.
(d) (η1−η2)(r1−r2) ≥ −mν |r1−r2|2 for all ηi ∈ ∂jν(x, t, ri), ri ∈ R, i = 1,

2, a.e. (x, t) ∈ ΣC with mν ≥ 0.
(e) j0

ν(x, t, r;−r) ≤ dν(1 + |r|) for all r ∈ R, a.e. (x, t) ∈ ΣC with dν ≥ 0.

H(jτ ) : jτ : ΣC × Rd → R satisfies

(a) jτ (·, ·, ξ) is measurable for all ξ ∈ R d and jτ (·, ·, 0) ∈ L1(ΣC).

(b) jτ (x, t, ·) is locally Lipschitz for a.e. (x, t) ∈ ΣC .

(c) ‖∂jτ (x, t, ξ)‖Rd ≤ cτ (1 + ‖ξ‖Rd) for a.e. (x, t) ∈ ΣC , all ξ ∈ Rd with
cτ > 0.

(d) (η1 − η2) · (ξ1 − ξ2) ≥ −mτ‖ξ1 − ξ2‖2Rd for all ηi ∈ ∂jτ (x, t, ξi), ξi ∈ Rd,
i = 1, 2, a.e. (x, t) ∈ ΣC with mτ ≥ 0.

(e) j0
τ (x, t, ξ;−ξ) ≤ dτ (1 + ‖ξ‖Rd) for all ξ ∈ Rd, a.e. (x, t) ∈ ΣC with
dτ ≥ 0.

The volume force and traction densities satisfy
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H(f) : f0 ∈ L2(0, T ;H), fN ∈ L2(0, T ;L2(ΓN ;Rd))

and the initial data have the regularity

H(0) : u0 ∈ V , v0 ∈ H.

We introduce the operators A : (0, T ) × V → V ∗, B : (0, T ) × V → V ∗

and C : (0, T )× V → V ∗ defined by

〈A(t, u), v〉 = 〈A(t, ε(u)), ε(v)〉H, (6.7)

〈B(t, u), v〉 = 〈B(t, ε(u)), ε(v)〉H, (6.8)

〈C(t)u, v〉 = 〈C(t, ε(u)), ε(v)〉H, (6.9)

for u, v ∈ V and t ∈ (0, T ). We also consider the function f : (0, T ) → V ∗

given by

〈f(t), v〉 = 〈f0(t), v〉H+(fN (t), v)L2(ΓN ;Rd) for v ∈ V, a.e. t ∈ (0, T ). (6.10)

Then, the variational formulation of the contact problem (6.1)–(6.6), in
terms of displacement, is the following.

Problem 6.1. Find a displacement field u ∈ V such that u′ ∈ W and

〈u′′(t) +A(t, u′(t)) +B(t, u(t)) +

∫ t

0
C(t− s)u(s) ds, v〉+

+

∫
ΓC

(
j0
ν(x, t, u′ν(x, t); vν(x)) + j0

τ (x, t, u′τ (x, t); vτ (x))
)
dΓ ≥

≥ 〈f(t), v〉 for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = v0.

The unique solvability of Problem 6.1 is given by the following result,
which represents an extension of Theorem 5.1 in [16].

Theorem 6.1. Assume that H(A), H(B), H(C), H(jν), H(jτ ), H(f), H(0)
hold, c2 > 2

√
3 max{cν , cτ} c2

e ‖γ‖2 and m1 > (mν + mτ ) c2
e ‖γ‖2. Then

Problem 6.1 admits at least one solution. If, in addition,
either jν(x, t, ·) and jτ (x, t, ·) are regular

or − jν(x, t, ·) and − jτ (x, t, ·) are regular

for a.e. (x, t) ∈ ΣC ,

(6.11)

then Problem 6.1 has a unique solution.
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Proof. The main steps of the proof are the following.

a) Under the assumptions H(A), H(B) and H(C), the operators A, B
and C defined by (6.7), (6.8) and (6.9) satisfy condition H(A), H(B) and
H(C) in Section 4, respectively.

b) Let j : ΣC × Rd → R be the function defined by

j(x, t, ξ) = jν(x, t, ξν) + jτ (x, t, ξτ ) a.e. (x, t) ∈ ΣC , all ξ ∈ Rd.

It can be shown that, under the assumptions H(jν) and H(jτ ), the function
j satisfies condition H(j) in Section 4 with c̃ = max{cν , cτ} and m̃2 =
mν +mτ .

c) The assumptions H(f) and H(0) combined with (6.10) imply that
(H0) holds. It is clear that (H1) also is satisfied.

The steps above allow us to apply Theorem 4.1 to obtain the existence
of a solution to the hemivariational inequality in Problem 6.1. It can be
easily observed that the regularity hypotheses on jν , jτ or −jν , −jτ imply
the regularity of j or −j, respectively. In this case by Corollary 4.1, we
deduce the uniqueness of a solution to Problem 6.1. 2

Denote by σ the function defined by (6.2). Then, the couple (u, σ) is
called a weak solution of the frictional contact problem (6.1)–(6.6). We
conclude, under the hypotheses of Theorem 6.1, that the frictional con-
tact problem (6.1)–(6.6) has at least one weak solution which satisfies u ∈
H1(0, T ;V )∩C(0, T ;V ), u′ ∈ C(0, T ;H), u′′ ∈ L2(0, T ;V ∗), σ ∈ C(0, T ;H),
div σ ∈ L2(0, T ;V ∗). If, in addition, (6.11) holds, then the weak solution is
unique.

The second problem of contact we consider is quasistatic. Following [19],
its classical formulation is as follows: find the displacement field u : Q→ Rd
and the stress field σ : Q→ Sd such that

−div σ(t) = f0(t) in Q (6.12)

σ(t) = A(t, ε(u′(t))) + B(t, ε(u(t))) in Q (6.13)

u(t) = 0 on ΣD (6.14)

σ(t)ν = fN (t) on ΣN (6.15)

−σν(t) ∈ ∂jν(t, u′ν(t)), −στ (t) ∈ ∂jτ (t, u′τ (t)) on ΣC (6.16)

u(0) = u0 in Ω. (6.17)

The variational formulation of problem (6.12)–(6.17), in terms of veloc-
ity, is the following.
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Problem 6.2. Find a velocity field w ∈ V such that

〈A(t, ε(w(t))), ε(v)〉H +
〈
B
(
t, ε(

∫ t

0
w(s) ds+ u0)

)
, ε(v)

〉
H

+

+

∫
ΓC

(
j0
ν(t, wν(t); vν) + j0

τ (t, wτ (t); vτ )
)
dΓ ≥ 〈f(t), v〉

for all v ∈ V and a.e. t ∈ (0, T ).

Note that Problem 6.2 represents a stationary history-dependent hemi-
variational inequality. Therefore, using Theorem 5.2, we obtain the following
result.

Theorem 6.2. Assume that H(A), H(B) and H(f) hold, and u0 ∈ V . If
one of the following hypotheses

i) H(jν)(a)–(d), H(jτ )(a)–(d) and

m1 > max
{√

3(cν + cτ ),mν ,mτ

}
c2
e ‖γ‖2

ii) H(jν), H(jτ ) and m1 > max{mν ,mτ} c2
e ‖γ‖2

is satisfied, then Problem 6.2 has at least one solution. If, in addition, (6.11)
holds, then the solution of Problem 6.2 is unique.

Let w be a solution of Problem 6.2. Since w = u′, by using the initial
condition (6.17), it follows that

u(t) =

∫ t

0
w(s) ds+ u0 for all t ∈ [0, T ].

Denote by σ the function defined by (6.13). Then, the couple (u, σ) is
called a weak solution of the frictional contact problem (6.12)–(6.17). We
conclude, under the hypotheses of Theorem 6.2, that the frictional contact
problem (6.12)–(6.17) has at least one weak solution with the regularity
u ∈W 1,2(0, T ;V ), σ ∈ L2(0, T ;H), div σ ∈ L2(0, T ;V ∗). If, in addition, the
regularity condition (6.11) holds, then the weak solution of is unique.
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[10] S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact
problem with normal damped response and friction, Applicable Analysis, 84 (2005),
669-699.
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