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Redundancy and inversion of the Compton
transform

Voichita Maxim

Abstract - Data acquired with a Compton gamma-camera are empiri-
cal measures of the Compton transform. This integral transform consists
to calculate integrals of the intensity distribution of the source on conical
surfaces. In this work, we analyze the direct problem and we show that
under the non-realistic hypothesis of an infinite extent detector it is possi-
ble to isolate classes of Compton projections that are related together via
the Radon transform. A reduction of dimensionality may be operated in
the data space, leading to a new transform that reveals to be invertible.
The invertibility of the Compton transform follows as a consequence and
takes the form of a particular filtered backprojection tomographical recon-
struction formula. In practical situations where the acquired data allows a
rather poor estimation of the Compton projections, averaging projections
that belong to the same class allows to reduce the noise in the reconstructed
images. In the case of a finite extent camera, numerical experiments show
that the reconstructed images present artifacts due to absence of data in
some projections. Selection of non-truncated projections may be a way to
partially get around this issue.
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1. Introduction

The electronically collimated camera, or Compton camera, is a gamma-ray
detection system initially developed for imaging sources in the energy range
of 1–30 MeV and was used in astronomy. First introduced into nuclear
medicine imaging in 1974 by Todd and Nightingale [14], the concept ben-
efits of a renewal of interest due to recent advances in electronics and to
increase in computing power. Several groups in the world actively work on
various aspects of this mode of imaging. The benefits that it may bring
are investigated in astronomy (see, e.g. [2]), nuclear medicine (e.g. [6, 5]),
security and nuclear nonproliferation (e.g. [8]).

At the date, the most widely used image reconstruction algorithms for
the Compton camera are iterative, generally List-Mode Maximum Likeli-
hood Expectation Maximization algorithms. In 1994, Cree and Bones [4]
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developed an analytic algorithm for photons scattered in the direction or-
thogonal to the first detector. Although this limitation balance out the
benefits of the imaging device, the method has the merit to be the first ana-
lytical reconstruction method and also to show that in the case of an infinite
extent parallel-plate Compton camera, a properly chosen subset from the set
of data suffices to reconstruct the image. Methods consisting to transform
the Compton projections in either 3D Radon projections or line projections
were proposed afterwards by several authors. Some of them, e.g. [3, 11, 7],
relate on spherical harmonics series decomposition. The Hilbert transform
may also be used for the same purpose. In [12], B. Smith developed two
reconstruction methods corresponding to two usual models of the Compton
projections. Further, a discussion of the completeness conditions is carried
and suggestions about the ideal geometry are made in [13].

A central-slice theorem for the inversion of the Compton transform was
given by Maxim et al in [10]. Further developments reported in [9] lead to a
filtered backprojection expression facilitating the computer implementation.

This work is taking further the results from [10] and [9]. It gives a new
formulation of the direct problem and analyzes the redundant structure in
the model of the data. The reconstruction method, based on a filtered
backprojection formulation of the inverse transform, allows several slightly
different data aggregation or selection procedures and thus possibly an ame-
lioration of the signal-to-noise ratio for real data. The paper is organised as
follows. Section 2 presents the functioning principle of the Compton camera
and the model considered afterwards for the Compton projections. Classes
of projections that are related together via the Radon transform are defined
in section 3 and a method for the inversion of the Compton transform is
proposed in section 4. Section 5 is devoted to numerical tests in a realistic
setup, where a finite extent camera with finite spatial and energy resolution
was simulated with the Monte-Carlo simulation tool MEGAlib [15], based
on Geant4 [1]. Finally, section 6 draws some conclusions from the study.

2. Direct Compton transform

A Compton camera is composed of two position and energy sensitive de-
tectors. The first one, called the scatter detector, is designed to produce
with high probability the Compton scattering of an incident γ ray. It also
has low photoelectric absorption probability. The second detector, called
the absorption detector, is designed to have a high photoelectric absorption
probability. If the energy of the incoming ray is E0 and the energy transmit-
ted to the electron in the scattering process is E1, the Compton scattering
angle β ∈ [0, π] may be calculated by energy conservation as

cosβ = 1− mec
2E1

(E0 − E1)E0
, (2.1)
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where mec
2 is the energy of an electron at rest. The direction of the scat-

tered γ ray, as measured by the position sensitive detectors, along with the
Compton angle confine the possible incoming path of the initial γ ray to
the surface of a cone of half-opening angle β, called hereafter the Compton
cone.
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Figure 1: Principle of the Compton camera detection (a) and positioning of
the direct frame Oxyz (b).

We place the origin of an orthogonal coordinate system Oxyz at the
center of the scatter detector, with the Oz axis orthogonal to the detectors,
oriented such that the absorber is located at a depth z2 < 0.

A recorded event corresponds to a γ particle interacting first in the scat-
terer, at a point D1(x1, y1, 0), then in the absorber, at a point D2(x2, y2, z2).
We denote respectively α and δ the polar angle and the azimuth of the vector−−−→
D2D1 giving the direction of the axis of the Compton cone. After normali-
sation, the same vector may be represented as:

Ω(α, δ) = (sinα cos δ, sinα sin δ, cosα). (2.2)

The equation of a Compton cone of apex u = (x, y, z), half-opening angle β
and axis directed by Ω(α, δ) is:

v ∈ R3, (v − u).Ω(α, δ) = ‖v − u‖2 cosβ. (2.3)

The acquisition process with a Compton gamma-camera is related to a par-
ticular integral transform, the Compton transform ([10]) and to Compton
projections:

Definition 2.1. The Compton transform C maps a function on R3 into the
set of its weighted integrals over conical surfaces. More specifically, if α ∈
[0, π], δ ∈]−π, π] and β ∈ [0, π], the Compton projection Cα,δ,β associates to
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a function f ∈ S (R3), the Schwartz space, the application Cα,δ,βf : R3 → R
defined by

Cα,δ,βf(u) =

∫
(v−u).Ω(α,δ)=‖v−u‖2 cosβ

f(v) cos θdv

=

∫
(v−u).Ω(α,δ)=‖v−u‖2 cosβ

f(v)
z

‖v − u‖2
dv,

(2.4)

where v = (x, y, z) is a vector from R3, θ is the polar angle of the vector
v − u and Ω(α, δ) = (sinα cos δ, sinα sin δ, cosα).

When a source of γ particles having intensity distribution represented
by a function f : R3 → R is observed by a Compton camera, the fraction
of events recorded with parameters (u, α, δ, β) is proportional to Cα,δ,βf(u),
which is the integral of f , weighted by a factor accounting for the efficiency
of the camera at different incidence angles, on the surface of the Compton
cone with apex u, axis directed by Ω(α, δ) and half-opening angle β. A
Compton camera having an infinite extent planar scatterer at z = 0 (as the
one represented in figure 1), measures Compton projections Cα,δ,βf(u) for
all u = (x1, y1, 0) ∈ R2 × {0}.

Let (e1, e2, e3) be the standard basis of R3. The vectors d1 = (cos δ, sin δ, 0),
d2 = (− sin δ, cos δ, 0) and e3 also form an orthonormal basis of R3, defining
a reference frame Otsz obtained by rotation of Oxyz about the Oz axis.

Let us consider a Compton cone that intersects each plane z = z0 upon
an ellipse, as in figure 2. This constrain may also be expressed by the
equation sin2 β < cos2 α. When α, β ∈ [0, π/2), an equivalent formulation is

α+ β < π/2. (2.5)
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Figure 2: The intersection between the Compton cone and a plane z = z0 is
an ellipse with its major axis parallel to Ot.
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Let us define:

a(α, β) =
sinβ cosβ

cos2 α− sin2 β
, (2.6)

b(α, β) =
sinβ√

cos2 α− sin2 β
, (2.7)

c(α, β) =
sinα cosα

cos2 α− sin2 β
. (2.8)

Lemma 2.1. For some α, β ∈ [0, π/2) verifying α + β < π/2 and some
δ ∈ (−π, π], the Compton projection Cα,δ,βf of a function f ∈ S (R3), at a
point of coordinates (x1, y1, 0) = td1 + sd2, may be expressed as

Cα,δ,βf(td1 + sd2) = b(α, β)

∫ ∞
0

∫ 2π

0
f((t+ zc(α, β) + za(α, β) cosϕ)d1

+(s+ zb(α, β) sinϕ)d2 + ze3)zdϕdz.
(2.9)

Proof. For some given z0 > 0, the intersection of the cone having the apex at
(0, 0, 0) and angular parameters (α, δ, β), with the plane z = z0 is described
by the equation

(t(cos2 α−sin2 β)−z0 sinα cosα)2+s2 cos2 β(cos2 α−sin2 β)=z2
0 sin2 β cos2 β,

(2.10)
when cosα 6= sinβ, and by

−2tz0 sinα cosα+ s2 cos2 β = z2
0(sin2 β − cos2 β) (2.11)

otherwise. For α, β ∈ [0, π/2) such that α+ β < π/2, the intersection is an
ellipse. Its major and minor axes equal z0a(α, β) and z0b(α, β), respectively.
The distance from the center of the ellipse to the axis Oz equals z0c(α, β).
One possible parametric representation of the Compton cone in the case
α+ β < π/2 is then:

t=z
sinα cosα

cos2 α− sin2 β
+ z

sinβ cosβ

cos2 α− sin2 β
cosϕ

s= z
sinβ√

cos2 α− sin2 β
sinϕ

z=z

, z ≥ 0, ϕ ∈ (−π, π].

(2.12)
Consequently, the equation of a cone with apex t0d1 + s0d2 is:

t=t0 + zc(α, β) +za(α, β) cosϕ
s=s0 +zb(α, β) sinϕ
z=z

, z ≥ 0, ϕ ∈ (−π, π]. (2.13)

The result of the lemma follows from (2.4) and (2.13). 2
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The purpose of our method is to determine from the data the values of the
unknown function f , by inverting the Compton transform (2.9). Note that
the problem is overestimated since the image lies in a three dimensional space
whereas the data lie in a five dimensional space. Of course this redundancy
in the data is conditioned by the non realistic assumption that the detectors
are of infinite area. Results reported in [4] show that the image of the source
can be reconstructed from only projections having the parameter α set to
zero. Incidentally, note that when α = 0 the parameter δ has no meaning
and the inversion is done in this case from a three dimensional space to
another three dimensional space. In the following section, we give a new
insight of the method proposed in [10], method that allows to reconstruct
the image of the source when all the projections, for some given value of α

in the range
[
0,
π

2

)
, are known.

A different approach, consisting to gather in a projection all the surface
integrals on cones having a common apex and symmetry axis, was adopted
in [3, 11, 7, 12, 13]. The objective in this case is to calculate either Radon
projections on planes or cone-beam projections that can then be exploited
by an other image reconstruction algorithm.

3. Inversion of the Compton transform

For some given parameters α, δ, β verifying the constraints described in the
previous section and for a planar scatterer, the Compton projection Cα,δ,βf
may also be seen as a function of (u1, u2) ∈ R2. The two-dimensional Radon
transform along a direction ∆ = (cos δ, sin δ) of a function g : R2 → R is
given by:

Rδg(s) =

∫
v.∆=s

g(v)dv =

∫ ∞
−∞

g(s∆ + t∆⊥)dt, (3.1)

where ∆⊥ = (− sin δ, cos δ) is orthogonal to ∆.

For f , real-valued function defined on R3, and for z ∈ R, let fz : (x, y) ∈
R2 7→ f(x, y, z) be the restriction of f to R2.

Proposition 3.1. Let α, β ∈ [0, π/2) verifying α+β < π/2 and δ ∈ (−π, π].
For any f ∈ S (R3) we have:

Rδ+π
2
Cα,δ,βf(s) = b(α, β)

∫ ∞
0

∫ 2π

0
Rδ+π

2
fz(s+ zb(α, β) sinϕ)zdϕdz. (3.2)

Proof. Applying the Radon transform along the direction (− sin δ, cos δ) to
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the Compton projection Cα,δ,βf gives:

Rδ+π
2
Cα,δ,βf(s) =

∫ ∞
−∞

Cα,δ,βf(td1 + sd2)dt

= b(α, β)

∫ ∞
−∞

∫ ∞
0

∫ 2π

0
f((t+ zc(α, β) + za(α, β) cosϕ)d1

+(s+ zb(α, β) sinϕ)d2 + ze3)zdϕdzdt.

(3.3)

After a permutation of the integrals we obtain:

Rδ+π
2
Cα,δ,βf(s)

= b(α, β)

∫ ∞
0

∫ 2π

0

∫ ∞
−∞

f((t+ zc(α, β) + za(α, β) cosϕ)d1

+(s+ zb(α, β) sinϕ)d2 + ze3)zdtdϕdz.

(3.4)

Equation (3.2) results now from (3.4) and the definition of the Radon trans-
form. 2

The right-hand side term of the equation (3.2) depends on α and β only
through b(α, β), meaning that it gets the same value for all couples (α, β)
such that b(α, β) equals to some given τ ≥ 0. When b(α, β) = τ ≥ 0, either α
or β can be calculated from (2.7) as function of the other parameter through
the relation:

τ cosα =
√

1 + τ2 sinβ, (3.5)

since both applications β ∈
[
0, π2 − α

)
7→ b(α, β) ∈ R+, for some given α ∈(

0, π2
)
, and α ∈

[
0, π2 − β

)
7→ b(α, β) ∈ R+, for some given β ∈

[
0, π2 − α

)
,

are one-to-one. For the instance, when α = 0 one gets τ = tanβ.
It is then natural to define a new integral transform, that we will call

hereafter P, which is a Radon transform composed with a Compton trans-
form.

Definition 3.1. For some given τ ≥ 0 and δ ∈ (−π, π], the projection
Pτ,δf of a function f ∈ S (R3) is defined as:

s ∈ R, Pτ,δf(s) = τ

∫ ∞
0

∫ 2π

0
Rδ+π

2
fz(s+ zτ sinϕ)zdϕdz. (3.6)

Proposition 3.2. For any given τ ≥ 0, δ ∈ (−π, π], α, β ∈ [0, π/2) verify-
ing α+ β < π/2 and b(α, β) = τ , we have:

Pτ,δ = Rδ+π
2
Cα,δ,β. (3.7)

Proof. The proof follows immediately from definition 3.1 and proposition
3.1. 2

Equation (3.7) can be interpreted as a consistency condition for the
Compton projections. A numerical illustration of this result is presented
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in figure 3 for Compton projections calculated through equation (2.9). It
shows the same projection P√3,π/4 of a small spherical source with uniform
intensity distribution, calculated both from the Compton projections C0,π

4
,π
3

and Cπ
5
,π
4
,arcsin(

√
3

2
cos π

5
)
.

(a) (b)

(c) (d)

Figure 3: The same projection Pτ,δ may be calculated from any of an
infinity of different Compton projections. On the top row, two Compton
projection Cα,π

4
,β of the same spherical source are presented. Image (a) was

obtained for α = 0 and β = π/3. Image (b) was obtained for α = π/5,

β = arcsin(
√

3
2 cos π5 ). For both images b(α, β) =

√
3. In this simulation

the projections were calculated exactly, from (2.9). Plots (c) and (d) on
the bottom row represent the Radon projections of angle δ + π

2 = 3π
4 of,

respectively, (a) and (b). The similarity between (c) and (d) is a consequence
of (3.7).

Note that the P transform produces a data set included in a three
dimensional space, indexed by τ ≥ 0, δ ∈ (−π, π] and s ∈ R. The size of
the minimally required data set can be further reduced, as shown by the
following lemma.

Lemma 3.1. For any given α, β ∈ [0, π/2), α + β < π/2, and any given
δ ∈ (−π, π] we have:

Rδ+π
2
Cα,δ+π,β = Rδ+π

2
Cα,δ,β. (3.8)

Proof. Let us consider a function f ∈ S (R3). Let d′1 = (cos(δ+ π), sin(δ+
π)) and d′2 = (− sin(δ+π), cos(δ+π)) be the opposite vectors to, respectively,
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d1 and d2. Then

Rδ+π
2
Cα,δ+π,βf(s) =

∫ ∞
−∞

Cα,δ+π,βf(td1 + sd2)dt

=

∫ ∞
−∞

Cα,δ+π,βf(−td′1 − sd′2)dt. (3.9)

From the expression of the Compton transform given by lemma 2.1 we get:

Rδ+π
2
Cα,δ+π,βf(s)

= b(α, β)

∫ ∞
−∞

∫ ∞
0

∫ 2π

0
f((−t+ zc(α, β) + za(α, β) cosϕ)d′1

+(−s+ zb(α, β) sinϕ)d′2 + ze3)zdϕdzdt.

(3.10)

Integrating first on t and applying the definition of the Radon transform
leads to:

Rδ+π
2
Cα,δ+π,βf(s) =

∫ ∞
0

∫ 2π

0
Rδ+π

2
fz(s− zb(α, β) sinϕ)zdϕdz. (3.11)

Equation (3.8) results now after the change of variables ϕ′ = ϕ + π in the
right-hand side term of (3.11) and from proposition 3.1. 2

As a consequence, the projections Pτ,δ may be calculated by either of
the equations

Pτ,δ = Rδ+π
2
Cα,δ,β (3.12)

and
Pτ,δ = Rδ+π

2
Cα,δ+π,β, (3.13)

for α, β chosen such as b(α, β) = τ . Thus the projections Cα,δ+π,β and Cα,δ,β
share the same information required by the P transform.

4. The inverse P transform

We will show now that the function f may be computed as soon as all its
projections Pτ,δ are available, for τ ≥ 0 and δ ∈ [0, π).

Theorem 4.1. The P transform is invertible, meaning that any function
f ∈ S (R3) may be calculated from its P projections as:

f(x, y, z) = 2π

∫ π

0

∫ ∞
−∞

(∫ ∞
0

P̂τ,δf(ρ)J0(2πzτρ)dτ

)
×e2iπρ(−x sin δ+y cos δ)|ρ|3dρdδ.

(4.1)

Proof. Taking the Fourier transform of Pτ,δf from (3.6) leads, for all ρ ∈ R,
to

P̂τ,δf(ρ) = 2πτ

∫ +∞

0
R̂δ+π

2
fz(ρ)J0(2πzτρ)zdz, (4.2)
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where J0 is the zero-order Bessel function of first kind. By the projection-
slice theorem, the Fourier transform of the Radon projection Rδ+π

2
fz may

be replaced by a line from the two-dimensional Fourier transform of fz and
equation (4.2) becomes:

P̂τ,δf(ρ) = 2πτ

∫ +∞

0
f̂z(ρd2)J0(2πzτρ)zdz. (4.3)

On the right hand side one can recognize the Hankel transform of the func-
tion z 7→ f̂z(ρd2) at a point τρ. The Hankel transform being invertible, for
some given δ and ρ and for any z > 0 we get:

f̂z(ρd2) = 2π

∫ +∞

0

1

τ
P̂τ,δf(ρ)J0(2πzτρ)τρd(τρ)

= 2πρ2

∫ +∞

0
P̂τ,δf(ρ)J0(2πzτρ)dτ.

(4.4)

The expression of the two-dimensional inverse Fourier transform in polar
coordinates may be written as:

fz(x, y) =

∫ π

0

∫ ∞
−∞

f̂z(ρd2)e2iπρ(−x sin δ+y cos δ)|ρ|dρdδ. (4.5)

Since f(x, y, z) = fz(x, y), the expression of f may then be obtained imme-
diately from (4.4) and (4.5). 2

The inversion formula for the Compton transform is now straight for-
ward:

Theorem 4.2. Let f be a function from S (R3). Suppose that for each
τ ≥ 0 and δ ∈ [0, π) there is a triple

(α, β, δ) ∈
{

(α′, β′, δ′) ∈
[
0,
π

2

)
×
[
0,
π

2

)
× R

∣∣∣α′ + β′ <
π

2
,

b(α, β) = τ, δ′ ≡ δ [π]
}
,

(4.6)

such that the Compton projection Cα′,δ′,β′ is known. Then the function
f may be uniquely found from (4.1), where Pτ,δ should be replaced with
Rδ+π

2
Cα′,δ′,β′.

Theorem 4.2 shows that the inversion of the Compton transform may be
done from only projections bellonging to some proper subsets of the set of
Compton projections. In this sense we say that the Compton transform is
redundant. However, in each subset there are projections that may not be
measured with a finite extent planar camera. Indeed, for large enough values
of α, Compton cones that intersect the source have the apex u = (x1, y1, 0)
out of the detector, thus Cα,δ,β(u) is not acquired.
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5. Numerical results

The proposed method was tested on Monte-Carlo simulated data. Simula-
tions were performed using Cosima, a Monte-Carlo tool based on Geant4 [1]
(version 9.5), which is part of the MEGAlib package [15]. The Geant4 Liv-
ermore package was used for electromagnetic interactions and the standard
QGSP-BIC-HP physics list for hadronic interactions.

The simulated Compton camera is composed of a stack of three double-
sided Silicon-strip scatter detectors and an absorber composed of 64 × 64
CsI crystals. Each strip detector is made of 3 × 3 wafers of size 6.3 × 6.3
cm2, for a total size of 19.4×19.4 cm2. Each wafer contains 128×128 strips.
A uniform 1-sigma energy resolution of 1 keV and a 10 keV threshold were
assumed in the scatterer.

Figure 4. Geometry setup of the experiment.

The elements of the absorber are 0.5× 0.5× 2 cm3 bars. The total size
of the absorber is 36.8 × 36.8 × 2 cm3. A 1-sigma energy resolution of 9.3
keV at 364 keV and a threshold of 20 keV were assumed. For an event to
be triggered at least one hit in the scatterer and one hit in the absorber
were required. The distance between the lower layer of the scatterer and the
absorber is 30 cm and the distance between two consecutive layers of the
scatterer is 1 cm (see figure 4).

A line source of γ particles having energies of 364 keV was simulated.
The line segment has the extremities in, respectively, (0,−11, 0) cm (out
of the vertical parallelepiped having the scatterer as base) and (0, 0, 0) cm
(situated on the normal to the camera at its center).

The simulation was run until a number of 8.25 × 105 triggered events
was reached. From them, 5.3 × 105 were selected for the reconstruction
algorithm, as having Compton cones of parameters α, β ∈ [0, π/2) that also
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(a) (b)

Figure 5: Line source, with extremities at (0,−11, 0) and (0, 0, 0). A slice
parallel to the camera at altitude z = 0 cm is shown in (a). The dimensions
of the image are 24 × 24 cm2. The extremities of the line source may be
correctly identified on the reconstructed image. In (b), a slice orthogonal
to the camera is shown. It may be noted that the resolution of the image
in the vertical direction is sensibly worst than in directions parallel to the
camera.

satisfy the constraint α + β < π/2. A five-dimensional table was created
by binning the measured events according to the values of the parameters
α, δ, β, x1 and x2, corresponding to the set of Compton projections Cα,δ,β.
From them, the P projections were calculated. The empirical projections
Pτ,δ corresponding, by virtue of proposition 3.2 and lemma 3.1, to identical
theoretical projections were averaged together.

A three-dimensional image of the source was reconstructed, one slice
parallel to the camera at a time, with Matlab. The size of the entire volume
is 24× 24× 10 cm3. Two central slices from the volume are shown in figure
5, one parallel to the camera and one orthogonal to it. In both images,
the size of a pixel is 0.4 × 0.4 cm2. It may be noted that the resolution
in the plane parallel to the camera is better that in the plane orthogonal
to it. Some star-shaped artifacts recalling X-ray computed tomography
may be observed. The absence of measures in some projections explain the
elongation of the source in the z direction and also its displacement towards
the detector, artifacts that may be observed in figure 5 (b). For the same
reason, more the source point is close to the azimuth of the camera, better it
is reconstructed. The central extremity of the line source may be recovered
with a very good precision.
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6. Conclusions

We proposed a method for the inversion of the Compton transform to be
used in tomographical reconstruction of Compton camera images. We shown
that there are classes of Compton projections that are related together. Pro-
jections from the same class may equally be employed in the reconstruction
process or averaged for better the signal-to-noise ratio. However, for a finite
size camera, most projections are truncated or even not measured. A selec-
tion of (less truncated) measures may be useful in practice. The finite size
of the camera has an impact especially the orthogonal direction. Smaller
the camera, closer to the detector and elongated appears to be the source.

Analytic algorithms are deemed to be fast in tomographic reconstruction.
They need relatively small memory amount and calculation time compared
to their iterative counterparts. Also, they do not require often untractable
calculation of normalisation factors and their results are not dependent on
the choice of the number of iteration steps. These reasons made analyti-
cal methods quantitative, meaning that the activity of the source may be
related by some proportionality factor to the values in the reconstructed
image. However, in Compton camera imaging with a finite extent detector,
projection truncation is a key issue that should be addressed in order to
allow quantitative imaging.
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