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A new optimization based approach to the
empirical mode decomposition
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Abstract - In this paper, an alternative optimization based approach to
the empirical mode decomposition (EMD) is proposed. The principle is to
build first an approximation of the signal mean envelope, which serves as
initial guess for the optimization procedure. We develop several optimiza-
tion strategies to approximate the mean envelope which compare favorably
with the original EMD on AM/FM signals.

Key words and phrases : empirical mode decomposition, adaptive
algorithm

Mathematics Subject Classification (2010) : 41,68, 62D99.

1. Introduction

To analyze signals in time and frequency domains at the same time is a
challenging issue and many methods exist to this aim: short-time Fourier
transform, Wigner-Ville distribution and wavelets [2], [7]. This issue was one
of the motivation for the development of the empirical mode decomposition
(EMD). The EMD expands a given signal into a set of functions defined by
the signal itself, the intrinsic mode functions (IMFs) computed through the
so-called ”sifting process” (SP). In the denomination of Huang [5], an IMF
is a function that satisfies two conditions: (a) in the whole data set, the
number of extrema and the number of zero crossings must either be equal or
differ at most by one; and (b) at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the local minima
is zero.

In spite of its practical achievements, the EMD technique is essentially
an algorithmic approach which lacks a well-established theoretical proof and
a direct, systematic optimization of the method. One of the problems posed
by the EMD algorithm arises from the interpolation of the extrema, namely
undershoots and overshoots. To avoid this situation, many alternative ap-
proaches to EMD propose to directly compute an approximation of the
signal mean envelope. This knowledge enables to build the mean envelope
first and then deduce the mode. In that framework, several approaches
have been proposed to find out the intersection points of the signal with
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its mean envelope, see [3],[9],[1],[4] and [8]. In [3], the signal mean enve-
lope is a steady state of some partial differential equation which intersects
inflection points of the signal. In [1], the mean envelope is a B-spline with
knots defined using the signal extrema while, in [4], the mean envelope is
a spline intersecting signal local means. In [8], the mean envelope is com-
puted directly through an optimization procedure by imposing a series of
linear constraints. In this paper, we first compare these methods to asses
of these points of interest for AM/FM signals and we bring about potential
improvements to the mean envelope estimation proposed in [4]. We then
derive new strategies to approximate the mean envelope using an optimiza-
tion procedure. The proposed method appears to behave better than the
original EMD on AM/FM signals. Let us stress that contrary to the original
EMD algorithm where the convergence of the SP is not ensured, we here
seek the mean envelope in a finite dimensional subspace which makes the
proposed procedure convergent. The outline of our work is as follows. In
Section 2, we recall some basic notions about EMD and also present the
results of EMD on a sum of AM/FM signals. In Section 3, motivated by the
results obtained using the EMD, we propose a different method to compute
a mean envelope approximation. We next introduce, in Section 4, a new
optimization procedure to approximate the mean envelope. We finally end
the paper with some numerical examples on a sum of AM/FM signals.

2. EMD basis and limitations

The EMD decomposes a signal into a sequence of AM/FM components.
Let us first briefly recall the principle of the EMD algorithm for a one-
dimensional signal x.

1. Initialization (EMD): r = x, k = 1

2. While r is not monotonic

(a) Initialization (sifting process): m0 = r, i = 0

(b) While mi is not an IMF repeat (sifting process)

i. Compute the mean envelope ei = 1
2(ui + li) of mi ( where ui

(resp. li) denotes the upper (resp. lower) envelope of mi)

ii. mi+1 = mi − ei; i = i+ 1

(c) xk = mi, r = r − xk, k = k + 1.

When the decomposition is complete, one can write x =
K∑
k=1

xk + r. Appar-

ently, the modes xk are computed in an adaptive way. However, the ”sifting
process” (SP) that computes the IMF is dependent on a stopping criterion
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whose choice both influences the number of modes and their shape. Fur-
thermore, in some instances, the SP may not converge. We highlight the
limitations of the original EMD (by applying the MATLAB code correspond-
ing to [11]) to a simple AM/FM signal. For the signal x of Figure 3.(A),
made of two AM/FM signals, the original EMD (with the default parame-
ters (0.05, 0.5, 0.05), see [11] for details), gives 22 IMFs which are physically
not meaningful. A more careful look at the obtained results, shows that the
information contained in the modes x1 and x2 is spread over more than 10
IMFs. To illustrate this, we depict on Figure 1, seven of these significant
modes. The origin of such a behavior is the instability of the SP and this
motivates the search for alternative techniques to determine the modes.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

im
f 
1
1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

im
f 
1
2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

im
f 

1
3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

im
f 
1
4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

im
f 
1
5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2

0

2

im
f 
1
6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

0

1

time

im
f 
1
7

Figure 1: Some of the significant mode obtained for the decomposition of
the signal of Figure 3.(A)

3. First approximation of the mean envelope

In this section, we first investigate several methods that were proposed to
compute a signal mean envelope approximation in relation with the EMD
algorithm. The common idea of these approaches is to seek particular points
of the mean envelope which serve as knots. The approximation is then ei-
ther defined through splines interpolation [4] or piecewise cubic polynomials
interpolation [8]. Usually, the knots are approximation of the intersection
points of the signal with its mean envelope [4][3], but in some approaches
the knots are located at the extrema of the signal [8].

3.1. Determination of points of interest on the mean envelope

Here, we adopt the point of view of [4] or [3], that is we look for the intersec-
tion of the signal with its mean envelope, the mean envelope approximation
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Figure 2. Different regions for the best approximations of θ by t, t(2), t(4)

being defined by spline interpolation. We now propose an improved version
of the method developed in [4] which will compare favorably to the exist-
ing ones. In what follows, x(tj) denotes the set of values corresponding to
the extrema of x located at tj . In [4], the mean envelope is assumed to
interpolate (t̄j , x̄j) defined by:

x̄j =
1

tj+1 − tj

∫ tj+1

tj

x(t)dt, t̄j =

∫ tj+1

tj

t(x(t)− x̄j)2dt∫ tj+1

tj
(x(t)− x̄j)2dt

. (3.1)

The choice for x̄j is motivated by the fact that, if the extrema of the signal
corresponded to those of the first mode x1, putting x = x1 +e and assuming
the integral of a mode is null between its extrema we would obtain: x̄j =

1
tj+1−tj

∫ tj+1

tj
e(t)dt, which is indeed a point of the mean envelope since, from

the classical mean theorem for continuous functions, there exist d ∈ [tj , tj+1]

such that: 1
tj+1−tj

∫ tj+1

tj
e(t)dt = e(d).

However, there exist two strong limitations to that model which are the
following: the extrema of x do not, in general, coincide with those of x1
and the second, the integral of x1 between its successive extrema does not
necessarily vanish (think of frequency modulated signals for instance). In
order to discuss the above remarks, we consider the following example:

x(t) = cos(2πt) + a cos(2πft) 0 < f < 1 a ∈ R+. (3.2)

We first focus on the determination of the locations of the extrema of x1
given x. For the signal x defined in (3.2), x1 = cos(2πt). We study, in this
particular example, the approximation of the locations of the extrema of x1
by those of even order derivative of x. As remarked in [6], the extrema of
the second order derivative is more likely to give a better approximation of
the location of the extrema of x1 than the extrema of the original signal.
However, the proof given in [6] only involves maximal deviation and do not
correspond to the general case which we now study. Let us denote by θ the
locations of the extrema of x1 and by t(2m) the locations of the extrema
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of x(2m) the 2mth order derivative of x. Let us recall that #X denotes
the cardinality of the set X. To illustrate our strategy to find the best
approximation of the locations θ, we only consider m = 1 and m = 2 the
extension to higher order derivatives being straightforward. By using either
t,t(2) or t(4) to approximate θ, we use the following procedure:

• If #θ = #t = #t(2) = #t(4), then we compute :

θ̂ = argmin
l∈t,t(2),t(4)

1

#θ

∑
j

|θj − lj |

• otherwise, if #θ = #t = #t(2), then we compute :

θ̂ = argmin
l∈t,t(2)

1

#θ

∑
j

|θj − lj |,

and we proceed similarly for the two other cases (#θ = #t(2) = #t(4)

and #θ = #t = #t(4)).

• otherwise, if #θ = #t then θ̂ = t (and similarly if #θ = #t(2), θ̂ = t(2)

or #θ = #t(4), θ̂ = t(4))

• otherwise, the cardinality of any of t, t(2) or t(4) is different from that
of θ, and we cannot conclude only using x(2) and x(4) and we need to
consider higher order derivatives.

The results of the proposed procedure are displayed on Figure 2, for the
signal defined in (3.2). These numerical simulations show that the best way
to approximate θ strongly depends on a and f . In general, θ is unknown and
may not be equal to t. In that case, the EMD algorithm sometimes manages
to compute, from x, a first mode having the correct number of extrema, but
the underlying process is unclear. The numerical simulations of Figure 2.
show that we can retrieve the number of extrema of x1 by considering those
of higher even order derivatives of x. More precisely, in the above example,
to find the number of the extrema of x1, one considers the smallest order m0

such that #t(2m0) = #t(2m0+2), for which we always have #t(2m0) = # θ. In
that context, the estimation of θ should be computed using only t(2m), m ≥
m0. With this in mind, we will assume #t = #θ, of which a particular
example is given by the signal x, sum of two AM/FM modulated functions
x1 and x2, displayed on Figure 3. In this case, the first mode is known to
be x1 while the sought mean envelope is x2. We then plot the values of x1
at t, t(2) and t(4) (see Figure 3 (B)). If we assume that the extrema of x1 are
known, we consider the following error measurement: E(l) = 1

#θ

∑
j |θj−lj |,

For the signal of Figure 3.(A), we get E(t) = 15.83, E(t(2)) = 8.34 and
E(t(4)) = 27.07. A more careful look at these numerical results shows that
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Figure 3: (A): signal x made of two modulated signals x1 and x2.
(B): signal x1 and its values at t, t(2) and t(4).

the error using t(4) as an estimator of θ is much larger when the frequency
of x1 is locally lower, which is in accordance with the results displayed on
Figure 2. On the contrary, when the frequency of x1 is locally higher, the
estimation is better using the extrema of higher order derivatives (note that
such results are obtained because the amplitude modulation is between 0.5
and 1.5 both for x1 and x2, see Figure 2). In what follows, θ̂ will denote the
locations of the extrema of the even order derivative chosen to approximate
θ.

3.2. Initial guess for the mean envelope

The study of the previous subsection suggests that the model given by (3.1)
should be replaced by xj,θ̂

xj,θ̂ =
1

θ̂j+1 − θ̂j

∫ θ̂j+1

θ̂j

x(t)dt, tj,θ̂ =

∫ θ̂j+1

θ̂j
t(x(t)− xj,θ̂)

2dt∫ θ̂j+1

θ̂j
(x(t)− xj,θ̂)2dt

.

Note that (tj(θ̂), xj,θ̂) does not necessarily belong to the graph of x. There-

fore, we replace tj(θ̂) by the abscissa cj obtained by the mean theorem,
namely:

∃cj s.t.
1

θ̂j+1 − θ̂j

∫ θ̂j+1

θ̂j

x(t)dt = x(cj) = xj,θ̂j . (3.3)

Then, if one defines the mean envelope as the cubic spline interpolant at
(c, x(c)) := (cj , x(cj))j , the signal and its approximative mean envelope
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coincide at that point. To illustrate these improvements, we now com-
pare the mean envelope computed using (c, x(c)) with those proposed in
[8], in [3] and in [4] (recalled in (3.1)). For the sake of consistency, let us
recall the methods defined in [8] and in [3]. In the latter, the mean en-
velope approximation intersects the inflection points of the signal, while
in [8], the mean envelope approximation satisfies the interpolation con-
ditions that follows. Assume that x(tj) is a minimum for x and that
x(tj) is an extremum for the sequence (x(tj−2), x(tj), x(tj+2). Depend-
ing on the cases, the shape of the upper (resp. lower) envelope is used
to derive that of the lower (resp. upper). Indeed, Let t̃j be abscissae
of the intersection (when it exists) of straight lines L1 and L2 defined by

L1 : f1(t) =
x(tj)−x(tj−2)

tj−tj−2
t+

x(tj−1)(tj−tj−2)−(x(tj)−x(tj−2))tj−1

tj−tj−2
and L2 : f2(t) =

x(tj+2)−x(tj)
tj+2−tj t +

x(tj+1)(tj+2−tj)−(x(tj+2)−x(tj))tj+1

tj+2−tj . If t̃j > tj , one imposes :

(1/2)(f1(tj) + x(tj)) = e(tj). Otherwise, one sets (1/2)(f2(tj) + x(tj)) =
e(tj). Note, that when the sequence (x(tj−2), x(tj), x(tj+2) is monotonic no
interpolation condition is imposed on the mean envelope.

We now carry out the comparison of these methods on the modulated
sinus functions displayed on Figure 3.(A) The estimation error is computed

through the following quantity: Ef (l, x̃) =

√√√√∑
j
(x2(lj)−x̃j)2∑
j
(x2(lj))2

. By consider-

ing that inf denotes the inflection points of x, the results are as follows:
Ef (inf, x(inf)) = 0.2712, Ef (t̄, x̄) = 0.3423, E(c, x(c)) = 0.1876, (where

θ̂ = t(2)). The method developed in [8] leads to significantly worse results.
Finally, we assume that the extrema of x1 are known and we compute (3.3)
replacing θ̂ by θ: we obtain a new c̃ such that Ef (c̃, xj,θ) = 0.1246 which
means that x(c̃) = xj,θ is not necessarily a point of the sought mean enve-
lope. However, the estimation of the intersection points given by (3.3) is
helpful in the following sense: our concern is to define a strategy to find the
intersection points of the signal with its mean envelope starting from the
initial guess (c, x(c)), which we do in the following section.
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Figure 4: The signal mf obtained from the signal x of Figure 3.(A) as well
as its upper and lower envelopes, for one interval strategy (A) and for three
intervals strategy (B).
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Figure 5: L2 norm of mj with respect to j, for one interval strategy (A)
and for three intervals strategy (B). (C) and (D): L2 error of x1 −mj with
respect to j, for one interval strategy (C) and for three intervals strategy
(D).

4. Optimization procedure for the estimation of the mean envelope

The optimization procedure proposed here computes an approximation of
the mean envelope of x. Our approach is based on the fact that, for each
cj , (defined by (3.3)), there exists an intersection point of x and of its mean
envelope in the vicinity of the points (cj , x(cj)). Note that contrary to the
approach of [4], where the approximation of the mean envelope serves as
initial guess to the SP, we replace the SP by an optimization procedure. In
what follows, we will assume that #θ̂ = #θ and that x is sampled at the
rate ∆t. We denote for any signal x, by e(x) its mean envelope obtained

as u(x)+l(x)
2 , where u(x) (resp . l(x)) is the upper (resp. lower) envelope

of x, obtained as usual by cubic spline interpolation of its maxima (resp.
minima).

4.1. Initialization part

We start from (c1, x(c1)) = (c, x(c)), which defines the mean envelope e1

of x through cubic spline interpolation. In relation with the classical EMD
algorithm, we notice that e1 should be such that e(m1) (with m1 = x− e1,
having extrema located at τ1), has a L2 norm which should be close to zero.

Our strategy is then to modify (c1, x(c1)) to obtain (c2, x(c2)) leading to
e2 in such a way that the L2 norm of e(m2) (with m2 = x−e2 having extrema
τ2) is lesser than that of e(m1). To do so, we seek c2j in the interval [c1j −
p∆t, c1j + p∆t] (the choice for p will be discussed later) for each j, following
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a certain optimization criterion based on the L2 norm of e(m2). Note that
the optimal solution lies in a finite dimensional space which ensures the
convergence of our procedure. To explore all the possibilities in this finite
dimensional space will be computationally prohibitive. Therefore, we decide
to move the points (c1j , x(c1j )) sequentially using one of the following two
strategies:

• one (resp. three) interval(s) strategy

– find the interval [τ1j0 , τ
1
j0+1] (resp. [τ1j0−1, τ

1
j0+2]), minimizing lo-

cally the L2 norm of e(m1).

– put c2j = c1j , j 6= j0 and find c2j0 ∈ [c1j0 − p∆t, c1j0 + p∆t], such

that the L2 norm of e(m2) is minimal over the interval [τ2j0 , τ
2
j0+1]

(resp. [τ2j0−1, τ
2
j0+2]).

These two strategies are designed to test the influence of the neighborhood
on the computation of the optimal mean envelope.

4.2. Loop part

Once c2 has been computed the interval indexed by j0 is marked and we
pass on other intervals following the same strategy, never considering the
interval indexed by j0 again. After #θ steps, all the intervals have been
marked and we obtain a certain set (c#θ, x(c#θ)). Then, we unmark all the
intervals and we start again the procedure from the initialization step with
(c, x(c)) = (c#θ, x(c#θ)). We run the algorithm until convergence.

5. Numerical results

We give an illustration of the two strategies on the signal x of Figure 3.(A)
assuming θ̂ = t(2). The results are shown on Figure 4, where we depict the
mode mf (corresponding to the computed mode at the last iteration) as well
as its upper, lower and mean envelope, for both strategies, when p = 15.
The results show very little differences between the obtained modes. We
show on Figure 5.(A) and (B), the decrease of the L2 norm of the mean
envelope of mj computed with both strategies for p = 5, 10, 15 with respect
to the iteration. Again, the results show very little differences between the
two strategies. On Figure 4.(C) and (D), we check that with the proposed
strategies, the error between x1 and mj decreases in L2 norm, again for
p = 5, 10, 15. We notice that the convergence of mj to x1 is improved with
the second strategy (three intervals strategy) when p is larger which is not
the case with the first strategy. This suggests that to consider a larger
interval for the minimization of the L2 norm of e(mj) leads to smoother
upper and lower envelopes for mj . Note also that with the second strategy
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when p is increased the convergence to x1 is improved, which is in accordance
which what we expected.

6. Conclusion

In this paper we first discussed the approximation of the extrema of the
first mode in the EMD method by the extrema of even order derivatives.
This study enabled us to build a signal mean envelope approximation, which
we then used as initial guess for a new optimization procedure to improve
the approximation. This procedure replaces advantageously the SP of the
original EMD for AM/FM signals as numerical results show. Future work
should involve the improvement of the computational cost which is beyond
the scope of present article.
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Grenoble - France

E-mail: sylvain.meignen@imag.fr


