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Weak solvability via Lagrange multipliers for two
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Abstract - We consider two frictional contact models, for nonlinearly
elastic materials. For every model, we deliver a weak formulation as a gen-
eralized saddle point problem, and then we prove the existence, uniqueness
and stability of weak solution. The proofs rely on abstract results in the
study of a class of abstract generalized saddle point problems.
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1. Introduction

The purpose of the present paper is to solve two frictional contact mod-
els which involves nonlinear elastic operators, possibly multi-valued. The
envisaged approach is a variational approach which involves dual Lagrange
multipliers. In this approach the unknown is a pair of the displacement field
and a Lagrange multiplier related to the tangential component of the Cauchy
vector on the area of contact. After giving mixed weak formulations, the
existence, uniqueness and stability of the solutions will be discussed. The
models we analyze herein were studied in [18] for a class of single-valued non-
linear elastic operators; there, a primal variational formulation (in terms of
displacement) and a dual variational formulation (in terms of stress) were
delivered, together with their analysis.

The present paper follows [12] and [13]. In [12] it was studied the weak
solvability via Lagrange multipliers of frictionless unilateral and frictional
bilateral contact problems involving single-valued nonlinear elastic opera-
tors. In [13] it was studied the weak solvability via Lagrange multipliers
of a class of frictionless unilateral contact problem involving nonlinear op-
erators, possibly multi-valued. In contrast to [12] we treat here frictional
contact models involving nonlinear elastic operators, possibly multi-valued,
the constitutive law being described by a subdifferential inclusion. Besides,
the present study envisages not only the frictional bilateral contact condi-
tion, but also the frictional contact condition with prescribed normal stress.
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In contrast to [13], the present paper focuses on frictional models. The
analysis me make here relies on abstract results on generalized saddle point
problems, connected to the abstract results in [12] and [13]. For other pa-
pers devoted in recent years to mixed variational formulations in mechanics
we refer e.g. to [2, 10, 14, 15, 16, 17]. The mixed variational formulations in
non-smooth mechanics are suitable to efficiently approximate the weak solu-
tions and this motivates the research in this direction; for modern numerical
techniques involving saddle point problems we refer, e.g., to [1, 8, 9, 11].

Since the saddle point of a functional is the key of the variational ap-
proaches via Lagrange multipliers, it is worth to recall here its definition.

Definition 1.1. Let A and B be two non-empty sets. A pair (u, λ) ∈ A×B
is said to be a saddle point of a functional L : A×B → R if and only if

L(u, µ) ≤ L(u, λ) ≤ L(v, λ) for all v ∈ A, µ ∈ B.

Also, a basic tool of the variational approaches via Lagrange multipliers
is the following existence result.

Theorem 1.1. Let (X, (·, ·)X , ‖ · ‖X), (Y, (·, ·)Y , ‖ · ‖Y ) be two real Hilbert
spaces and let A ⊆ X, B ⊆ Y be non-empty, closed, convex subsets. Assume
that a real functional L : A×B → R satisfies the following conditions

v → L(v, µ) is convex and lower semicontinuous for all µ ∈ B,
µ→ L(v, µ) is concave and upper semicontinuous for all v ∈ A.

Moreover, assume that

A is bounded or lim
‖v‖X→∞,v∈A

L(v, µ0) =∞ for some µ0 ∈ B

and

B is bounded or lim
‖µ‖Y→∞,µ∈B

inf
v∈A
L(v, µ) = −∞.

Then, the functional L has at least one saddle point.

Details on the saddle point theory and its applications can be found for
instance in [3, 4, 5, 7].

2. Abstract auxiliary results

Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y , ‖ · ‖Y ) be two Hilbert spaces. We
make the following assumptions.

Assumption 2.1. A : X → X is a nonlinear operator such that:
i1) ∃mA > 0 : (Au−Av, u− v)X ≥ mA‖u− v‖2X for all u, v ∈ X,
i2) ∃LA > 0 : ‖Au−Av‖X ≤ LA ‖u− v‖X for all u, v ∈ X.
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Assumption 2.2. b : X × Y → R is a bilinear form such that:

j1) ∃Mb > 0 : |b(v, µ)| ≤Mb‖v‖X‖µ‖Y for all v ∈ X, µ ∈ Y,

j2) ∃α > 0 : inf
µ∈Y,µ 6=0Y

sup
v∈X,v 6=0X

b(v, µ)

‖v‖X‖µ‖Y
≥ α.

Assumption 2.3. Λ ⊂ Y is a closed convex bounded set such that 0Y ∈ Y.

Let us consider the following problem.

Problem 2.1. For given f, h ∈ X, find u ∈ X and λ ∈ Λ such that

(Au, v)X + b(v, λ) = (f, v)X for all v ∈ X,
b(u, µ− λ) ≤ b(h, µ− λ) for all µ ∈ Λ.

The existence, uniqueness and stability of solution for this mixed variational
problem was proved in [12] Section 5 for the case Λ unbounded. For the
convenience of the reader, we shall justify below the existence, uniqueness
and stability of solution of Problem 2.1 in the case Λ bounded. However, in
order to avoid repetitions, we shall pick up from Section 5 of [12] the results
which can be proved at the some manner.

Theorem 2.1. [An existence and uniqueness result] If Assumptions 2.1-2.3
hold true, then Problem 2.1 has a unique solution (u, λ) ∈ X × Λ.

Proof. Let η ∈ X be arbitrarily fixed. We consider the following interme-
diate problem: for given f, h ∈ X, find uη ∈ X and λη ∈ Λ such that

(uη, v)X +
mA

2L2
A

b(v, λη) = (
mA

2L2
A

f − mA

2L2
A

Aη + η, v)X v ∈ X, (2.1)

b(uη, µ− λη) ≤ b(h, µ− λη) µ ∈ Λ. (2.2)

As in [12], it can be proved that a pair (uη, λη) ∈ X × Λ verifies (2.1)-(2.2)
if and only if is a saddle point of the functional Lη : X × Λ→ R,

Lη(v, µ) =
1

2
(v, v)X − (

mA

2L2
A

f − mA

2L2
A

Aη + η, v)X +
mA

2L2
A

b(v − h, µ). (2.3)

On the other hand, this functional has at least one saddle point. Indeed,
v → Lη(v, µ) is a convex and lower semi-continuous map on X, for all µ ∈ Λ
and µ→ Lη(v, µ) is a concave and upper semi-continuous map on Λ for all
v ∈ X. Besides,

lim
‖v‖X→∞,v∈X

Lη(v, 0Y ) =∞.

Since Λ is bounded, then Theorem 1.1 ensures us that L has at least one
saddle point.
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Consequently, the intermediate problem has at least one solution. More-
over, using the techniques in [12], we can prove that the solution is unique.

Using the unique solution of the intermediate problem we can define a
contraction as follows,

T : X → X, T (η) = uη,

where uη is the first component of the pair solution (uη, λη) ∈ X × Λ.

If we denote by η∗ the unique fixed point of the operator T, the unique
solution of the intermediate problem (2.1)-(2.2) with η = η∗, (uη∗, λη∗), is
the unique solution of Problem 2.1; for details, see Section 5 in [12]. 2

We also have a stability result.

Theorem 2.2. [A stability result] Assumptions 2.1-2.3 hold true.

i) If h = 0X , then there exists C = C(α,LA,mA) > 0 such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ C‖f1 − f2‖X , (2.4)

where (u1, λ1), (u2, λ2) are two solutions of Problem 2.1 corresponding to
the data f1, f2 ∈ X.

ii) If h 6= 0X , there exists C = C(α,LA,mA,Mb) > 0 such that

‖u1 − u2‖X + ‖λ1 − λ2‖Y ≤ C(‖f1 − f2‖X + ‖h1 − h2‖X), (2.5)

where (u1, λ1), (u2, λ2) are two solutions of Problem 2.1 corresponding to
the data f1, h1 ∈ X and f2, h2 ∈ X, (hi 6= 0X , i ∈ {1, 2}).

This stability result relies on the techniques used in order to prove The-
orems 5.7 and 5.8 in [12].

Next, we focus on the following problem.

Problem 2.2. Find u ∈ X and λ ∈ Λ such that

J(v)− J(u) + b(v − u, λ) ≥ (f, v − u)X for all v ∈ X
b(u, µ− λ) ≤ 0 for all µ ∈ Λ.

Herein J is a functional which fulfills the following assumption.

Assumption 2.4. J : X → [0,∞) is a convex lower semicontinuous func-
tional. In addition, there exist m1, m2 > 0 such that, for all v ∈ X, we have
m1‖v‖2X ≥ J(v) ≥ m2‖v‖2X .

Theorem 2.3. If Assumptions 2.4, 2.2 and 2.3 hold true, then Problem 2.2
has at least one solution.



Weak solvability via Lagrange multipliers for contact problems 183

Proof. Let us define

L : X × Λ→ R , L(v, µ) = J(v)− (f, v)X + b(v, µ).

By standard arguments it can be proved that a pair (u, λ) is a solution of
Problem 2.2 if and only if it is a saddle point of the functional L, i. e.

L(u, µ) ≤ L(u, λ) ≤ L(v, λ), ∀v ∈ X,∀µ ∈ Λ. (2.6)

Besides, the functional L has at least one saddle point. Indeed, keeping in
mind the definition of the functional L , as J is convex and lower semicontin-
uous and the functional b is bilinear and continuous, it is straightforward to
deduce that, for all µ ∈ Λ, v → L(v, µ) is convex and lower semicontinuous,
and, for all v ∈ X, µ → L(v, µ) is concave and upper semicontinuous. In
addition, we note that

L(v, 0Y ) = J(v) + b(v, 0Y )− (f, v)X ≥ m2‖v‖2X − ‖f‖X‖v‖X ,

which allows us to say that

lim
‖v‖X→∞

L(v, 0Y ) =∞.

As Λ is a bounded subset of the space Y, we can apply Theorem 1.1 to
deduce that the functional L has at least one saddle point. 2

Let us make an additional assumption.

Assumption 2.5. J : X → [0,∞) is a Gâteaux differentiable functional.

Denoting by ∇J the Gâteaux differential of J then Problem 2.2 is equiv-
alent to the following problem: find u ∈ X and λ ∈ Λ such that

(∇J(u), v)X + b(v, λ) = (f, v)X for all v ∈ X,
b(u, µ− λ) ≤ 0 for all µ ∈ Λ.

To continue, we introduce a new assumption as follows.

Assumption 2.6.
h1) ∃m > 0 : (∇J(u)−∇J(v), u− v)X ≥ m‖u− v‖2X u, v ∈ X.
h2) ∃L > 0 : ‖∇J(u)−∇J(v)‖X ≤ L‖u− v‖X u, v ∈ X.

Denoting ∇J by A, the following theorem is a straightforward conse-
quence of Theorems 2.1 and 2.2.

Theorem 2.4. If Assumptions 2.4, 2.2, 2.3, 2.5 and 2.6 hold true, then
Problem 2.2 has a unique solution, and in addition, there exists C > 0 such
that

‖u− u∗‖X + ‖λ− λ∗‖Y ≤ C‖f − f∗‖X
where (u, λ) and (u∗, λ∗) are two solutions of Problem 2.2 corresponding to
the data f ∈ X and f∗ ∈ X.
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Remark 2.1. This section focuses on the case Λ bounded because this case
fits to the mechanical framework we investigate below. Nevertheless, it is
worth to emphasize that replacing Assumption 2.3 with the following one

Λ is a closed convex subset of Y such that 0Y ∈ Λ, (2.7)

which is more general, covering the ”bounded case” as well as the ”un-
bounded case”, then Theorem 2.1, Theorem 2.2, Theorem 2.3 and Theorem
2.4 are also valid. For details on the case Λ unbounded see Section 5 of [12]
and Section 4 in [13].

3. The models and their weak solvability

We consider a body that occupies the bounded domain Ω ⊂ R3, with the
boundary partitioned into three measurable parts, Γ1, Γ2 and Γ3, such that
meas(Γ1) > 0. The unit outward normal vector to Γ is denoted by n and
is defined almost everywhere. The body Ω is clamped on Γ1, body forces of
density f0 act on Ω and surface traction of density f2 acts on Γ2. On Γ3

the body is in frictional contact with a foundation. We denote by u = (ui)
the displacement field, by ε = ε(u) the infinitesimal strain tensor and by
σ = (σij) the Cauchy stress tensor. Everywhere below Ω denotes Ω ∪ ∂Ω.

According to the previous physical setting we can state the following
boundary value problem.

Problem 3.1. Find u : Ω→ R3 and σ : Ω→ S3 such that

Divσ + f0 = 0 in Ω, (3.1)

σ(x) ∈ ∂ω(ε(u(x))) in Ω, (3.2)

u = 0 on Γ1, (3.3)

σ ν = f2 on Γ2, (3.4)

σν = F, ‖στ‖ ≤ k|σν |, στ = −k|σν | uτ‖uτ‖ if uτ 6= 0 on Γ3, (3.5)

where S3 is the space of second-order symmetric tensors on R3, ω : S3 →
[0,∞) is a constitutive function, F : Γ3 → R+ is the prescribed normal
stress and k : Γ3 → R+ is the coefficient of friction. We recall that the
normal and the tangential components of the Cauchy vector σν are given
by the formulas σν = (σν) · ν, στ = σν − σνν. Besides, the normal and
the tangential components on the boundary of the displacement vector are
defined as follows uν = u · ν, uτ = u− uνν. Everywhere in this paper, ‖ · ‖
denotes the Euclidean norm on R3 and S3, and | · | denotes the absolute
value of a real number.

Problem 3.1 has the following structure: (3.1) represents the equilibrium
equation, (3.2) represents the constitutive law, (3.3) represents the displace-
ments boundary condition, (3.4) represents the traction boundary condition



Weak solvability via Lagrange multipliers for contact problems 185

and (3.5) models the frictional contact with prescribed normal stress. For
details on this model we send the reader to, e.g., [18].

We shall study the weak solvability of this model under the following
assumptions.

Assumption 3.1. ω : S3 → [0,∞) is a convex, lower semicontinuous func-
tional. In addition, there exist α1, α2 > 0 such that α1‖ε‖2 ≥ ω(ε) ≥
α2‖ε‖2 for all ε ∈ S3.

Assumption 3.2. ω is Gâteaux differentiable, and in addition
o1) ∃L > 0 : ‖∇ω(ε)−∇ω(τ )‖ ≤ L‖ε− τ‖ for all ε, τ ∈ S3,
o2) ∃m > 0 : (∇ω(ε)−∇ω(τ )) · (ε− τ ) ≥ m‖ε− τ‖2 for all ε, τ ∈ S3.

An example of such a function is the following one:

ω : S3 → [0,∞), ω(ε) =
1

2
Eε · ε+

β

2
‖ε− PKε‖2

where E is a fourth order symmetric tensor satisfying the ellipticity condi-
tion, β is a strictly positive constant, K ⊂ S3 denotes a closed convex set
which contains the zero element of S3 and PK : S3 → K is the projection
operator.

Assumption 3.3. The density of the volume forces verifies f0 ∈ L2(Ω)3

and the density of the tractions verifies f2 ∈ L2(Γ2)3.

Assumption 3.4. The prescribed normal stress verifies F ∈ L2(Γ3) and
F (x) ≥ 0 a.e. x ∈ Γ3.

Assumption 3.5. The coefficient of friction verifies k ∈ L∞(Γ3) and k(x) ≥
0 a.e. x ∈ Γ3.

Let us replace now (3.5) with the following condition

uν = 0, ‖στ‖ ≤ ζ, στ = −ζ uτ
‖uτ‖

if uτ 6= 0. (3.6)

This condition is a frictional bilateral contact condition where ζ : Γ3 → R+

denotes the friction bound.
Now, a second model can be formulated as follows.

Problem 3.2. Find u : Ω → R3 and σ : Ω → S3 such that (3.1)-(3.4) and
(3.6) hold true.

We shall study Problem 3.2 under Assumptions 3.1-3.3, and in addition
we shall make the following assumption.

Assumption 3.6. The friction bound verifies ζ ∈ L2(Γ3) and ζ(x) ≥
0 a.e. x ∈ Γ3.
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3.1. Weak solvability of Problem 3.1

In order to deliver a weak formulation we assume that u and σ are smooth
enough functions which verify (3.1)-(3.5). Using a Green’s formula, for all
v ∈ H1(Ω)3 we have

(σ, ε(v))L2(Ω)3×3 = (f0,v)L2(Ω)3 +

∫
Γ
σ(x)ν(x) · γ v(x) dΓ.

Let us introduce the space

V = {v ∈ H1(Ω)3 : γ v = 0 a.e. on Γ1}, (3.7)

where γ denotes the Sobolev trace operator γ : H1(Ω)3 → L2(Γ)3. We
recall that γ is a linear, continuous and compact operator. The space V is
a Hilbert space endowed with the inner product

(·, ·)V : V × V → R (u,v)V = (ε(u), ε(v))L2(Ω)3×3 . (3.8)

For all v ∈ V we have

(σ, ε(v))L2(Ω)3×3 = (f0,v)L2(Ω)3 +

∫
Γ2

f2(x) · γ v(x) dΓ

+

∫
Γ3

σ(x)ν(x) · γ v(x) dΓ.

Let us introduce the space

L2
s(Ω)3×3 = {µ = (µij) : µij ∈ L2(Ω), µij = µji for all i, j ∈ {1, 2, 3}}

which is a Hilbert space endowed with the inner product

(µ, τ )L2(Ω)3×3 =

∫
Ω
µij(x)τij(x) dx.

We define a functional as follows,

W : L2
s(Ω)3×3 → [0,∞), W (τ ) =

∫
Ω
ω(τ (x)) dx. (3.9)

Since σ(x) ∈ ∂ω(ε(u(x)) almost everywhere in Ω, for all v ∈ H1(Ω)3 we
have

ω(ε(v(x)))− ω(ε(u(x))) ≥ σ(x) · (ε(v(x))− ε(u(x))).

Hence, we can write

W (ε(v))−W (ε(u)) ≥
∫

Γ
σν · (γv − γu) dΓ

−(Div σ,v − u)L2(Ω)3 ∀v ∈ H1(Ω)3,
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and from this

W (ε(v))−W (ε(u)) ≥
∫

Γ2

f2 · (γv − γu) dΓ

+

∫
Γ3

σν · (γv − γu) dΓ + (f0,v − u)L2(Ω)3 ∀v ∈ V.

Using Riesz’s representation Theorem, we define f ∈ V such that, for
all v ∈ V,

(f , v)V =

∫
Ω
f0(x) · v(x) dx+

∫
Γ2

f2(x) · γv(x) dΓ−
∫

Γ3

F (x)vν(x) dΓ.

Therefore, for all v ∈ V,

W (ε(v))−W (ε(u)) ≥ (f ,v − u)V + +

∫
Γ3

στ · (vτ − uτ ) dΓ.

Next, we define the functional

J : V → [0,∞), J(v) = W (ε(v)). (3.10)

Let D be the dual of the Hilbert space

M = {ṽ = γv|Γ3
v ∈ V }.

We define λ ∈ D such that

〈λ,w〉 = −
∫

Γ3

στ (x) ·wτ (x) dΓ for all w ∈M,

where 〈·, ·〉 denotes the duality pairing between D and M, and wτ = w −
(w · ν|Γ3)ν|Γ3 . Furthermore, we define a bilinear form as follows,

b : V ×D → R, b(v, µ) = 〈µ,γv|Γ3
〉, for all v ∈ V, µ ∈ D.

Let us introduce the following subset of D,

Λ =
{
µ ∈ D : 〈µ, γv|Γ3〉 ≤

∫
Γ3

k F ‖γvτ ‖ dΓ v ∈ V
}
. (3.11)

It is easy to observe that λ ∈ Λ. Moreover, by (3.5) it follows that

b(u,λ) =

∫
Γ3

k(x)F (x)‖γuτ (x)‖ dΓ,

and, by (3.11),

b(u,µ) ≤
∫

Γ3

k(x)F (x)‖γuτ (x)‖ dΓ for all µ ∈ Λ.

Consequently, we are led to the following weak formulation of Problem 3.1.
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Problem 3.3. Find u ∈ V and λ ∈ Λ, such that

J(v)− J(u) + b(v − u,λ) ≥ (f , v − u)V for all v ∈ V,
b(u,µ− λ) ≤ 0 for all µ ∈ Λ.

A solution of Problem 3.3 is called a weak solution of Problem 3.1.

Theorem 3.1. If Assumptions 3.1, 3.3-3.5 hold true, then Problem 3.3 has
at least one solution (u,λ) ∈ V × Λ. If, in addition, Assumption 3.2 is
fulfilled, then Problem 3.3 has a unique solution; moreover, there exists C >
0 such that

‖u− u∗‖V + ‖λ− λ∗‖D ≤ C‖f − f∗‖V , (3.12)

where (u,λ) and (u∗,λ∗) are two solutions of Problem 3.3 corresponding to
the data f ∈ V and f∗ ∈ V.

Proof. Let us set X = V, Y = D and f = f . Due to Assumption 3.1, the
functional J defined by (3.10) fulfills Assumption 2.4. On the other hand,
by standard arguments, see e.g. [12], it can be proved that the form b fulfills
Assumption 2.2. Also, the set Λ defined by (3.11) fulfills Assumption 2.3.
Then, the first assertion of Theorem 3.1 is a straightforward consequence
of Theorem 2.3. In addition, due to Assumption 3.2, the functional J ful-
fills also Assumptions 2.5-2.6. Hence, we conclude Theorem 3.1 applying
Theorem 2.4. 2

3.2. Weak solvability of Problem 3.2

In order to weakly solve Problem 3.2, we use a technique similar to that
used in the previous section. However, the functional frame is different.

In this section we need to introduce the space

V1 =
{
v ∈ V | vν = 0 a.e. on Γ3

}
which is a closed subspace of the space V defined in (3.7). Obviously,
(V1, (·, ·)V1 , ‖ · ‖V1) is a Hilbert space, where

(·, ·)V1 : V1 × V1 → R (u,v)V1 = (u,v)V for all u,v ∈ V1.

For all v ∈ V1 we have

(σ, ε(v))L2(Ω)3×3 = (f0,v)L2(Ω)3 +

∫
Γ2

f2(x) · γ v(x) dΓ

+

∫
Γ3

στ (x) · vτ (x) dΓ.
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Using Riesz’s representation Theorem we define f1 ∈ V1 such that, for
all v ∈ V1,

(f1, v)V =

∫
Ω
f0(x) · v(x) dx+

∫
Γ2

f2(x) · γv(x) dΓ.

Therefore, for all v ∈ V1,

W (ε(v))−W (ε(u)) ≥ (f ,v − u)V +

∫
Γ3

στ · (vτ − uτ ) dΓ,

with W defined by (3.9). Next, we define the functional

J1 : V1 → [0,∞), J1(v) = W (ε(v)).

Let D1 be the dual of the Hilbert space

M1 = {ṽ = γv|Γ3
v ∈ V1}.

We define λ ∈ D1 such that

〈λ,w〉 = −
∫

Γ3

στ (x) ·wτ (x) dΓ, for all w ∈M1,

where 〈·, ·〉 denotes the duality pairing between D1 and M1, and as usual,
wτ = w− (w · ν|Γ3)ν|Γ3 . Furthermore, we define a bilinear form as follows,

b : V1 ×D1 → R, b1(v, µ) = 〈µ,γv|Γ3
〉, for all v ∈ V1, µ ∈ D1.

Let us introduce the following subset of D1,

Λ1 =
{
µ ∈ D1 : 〈µ, γv|Γ3〉 ≤

∫
Γ3

ζ(x) ‖γvτ ‖ dΓ v ∈ V1

}
.

Clearly, λ ∈ Λ1. Furthermore,

b1(u,λ) =

∫
Γ3

ζ(x)‖γuτ (x)‖ dΓ,

b1(u,µ) ≤
∫

Γ3

ζ(x)‖γuτ (x)‖ dΓ for all µ ∈ Λ1.

Consequently, we are led to the following weak formulation of Problem 3.2.

Problem 3.4. Find u ∈ V1 and λ ∈ Λ1, such that

J1(v)− J1(u) + b1(v − u,λ) ≥ (f1, v − u)V for all v ∈ V1,

b1(u,µ− λ) ≤ 0 for all µ ∈ Λ1.
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Setting X = V1, Y = D1, Λ = Λ1 and f = f1, the following theorem is a
straightforward consequence of Theorem 2.4 in Section 2.

Theorem 3.2. If Assumptions 3.1-3.3 and 3.6 hold true, then Problem 3.4
has a unique solution; moreover, there exists C > 0 such that

‖u− u∗‖V1 + ‖λ− λ∗‖D1 ≤ C‖f − f∗‖V1

where (u,λ) and (u∗,λ∗) are two solutions of Problem 3.4 corresponding to
the data f ∈ V1 and f∗ ∈ V1.

A solution of Problem 3.4 is called a weak solution of Problem 3.2.
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