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Abstract - In this paper the compositions of stochastic systems with final
sequence states and interdependent transitions are studied. The ordered
and unordered sequential compositions and excludable and nonexcludable
parallel compositions are analyzed. For these compositions the problem of
determining the main probabilistic characteristics (distribution low, expec-
tation, variance, n-order initial moments) of the evolution time is considered.
The elaborated polynomial algorithms are based on the main properties of
degenerated homogeneous linear recurrences.
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1. Introduction

In the last years various modifications of the continuous and discrete
Markov processes have been intensively studied. These stochastic systems
are applied for solving many important problems from some actual domains:
economy, technology, medicine, industry, biology and others.

The main properties of Markov stochastic systems were described in [2],
[3], [12] and [14]. Various stochastic models were analyzed and simulated in
[5]. Some recent applications of discrete Markov processes are described in
[4], [10], [11] and [15].

The stochastic systems with final sequence states generalize the discrete
Markov processes. For these systems a stopping condition is defined. In
this case the problem of determining the main probabilistic characteristics
of evolution time of the system, is important to be solved. This problem was
studied in [7] and [10]. The obtained algorithms have polynomial complexity
and are based on the main properties of homogeneous linear recurrences,
the basic properties of generating function (described in [13]) and numerical
derivation of regular rational fractions.
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In this paper the compositions of stochastic systems with final sequence
states and interdependent transitions are studied. These systems represent
an extension of stochastic systems with final sequence states, studied in
[8] and [9], and generalize the results obtained in [6]. The ordered and
unordered sequential compositions and the excludable and nonexcludable
parallel compositions are analyzed. For these composed stochastic systems
the efficient methods for determining the main probabilistic characteristics
(expectation, variance, initial moments) of evolution time are elaborated.

2. Statement of the problem

In this section the problems that will be analyzed in this paper are formu-
lated. The stochastic systems with final sequence states and interdependent
transitions (IDSSFSS) are described. The sequential and parallel compo-
sitions of these systems are presented. For all studied models the evolution
time is defined.

2.1. IDSSFSS

Let us consider a discrete stochastic system L with the set of possible
states denoted by V, such that |V| = w < oo. The state of the system at
every moment of time ¢ € N is denoted by v(t) € V.

Let p*(v) represents the probability that v(0) = v, v € V, and p(u,v)
represents the probability of transition from the state u € V tov € V.

Let x1,x2,...,2,m € V be fixed. We say that the system stops, when it
passes through all the states x1,xo,..., T, consecutively. The moment of
time when the system stops is denoted by T and it is called the stopping
time of the system. Since the starting time of the system is equal to 0,
the stopping time T represents the evolution time of the stochastic system
L. Our goal is to characterize the evolution time T for determining its
expectation, variance and initial moments.

2.2. Sequential and parallel compositions of IDSSFSS

The sequential and parallel compositions of IDSSFSS are defined in the
similar way that the definition of the sequential and parallel compositions
of ISSFSS (stochastic systems with final sequence states and independent
transitions), introduced in [6]. We consider IDSSFSS L[¥l with evolution
time T, & =T, s.

Definition 2.1. The stochastic system L[O], whose evolution is obtained by
concatenating the evolutions of the systems LIk =Ts, is called sequential
composition of these systems. If the concatenation is performed in fixed
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order, then the sequential composition is called ordered, otherwise is called
unordered.

Let S5 be the set of all permutations of degree s. We consider an arbi-
trary permutation § € S5. We suppose that the sequential composed system
Lgﬂ goes from final state of the component system LI to the initial state
of the successor component system LI*+D] i Ts(k), 5(k+1) bime units. So,

for the system LES} the matrix A = (7, x); 75 of transit time through
intermediate systems is defined.

If the system LEg] represents an ordered sequential composition of the
systems LFl, k = 1, s, generated by permutation § € Ss, then we denote
S
L8 = 5~ LWy,
k=1

Let ¢ : S — [0, 1] be a probability function and 6[¢] be a discrete random

variable with distribution ¢. If the stochastic system LES] » Tepresents an

unordered sequential composition of the systems LK k=15, generated by
distribution ¢ of order, then we write L[g] 6= 2 LUIIRIA],
’ k=1

Definition 2.2. The stochastic system ng], whose evolution is formed by

simultaneous evolutions of the systems LM k=15, is called parallel com-
position of these systems. A parallel composition is called excludable if the
finishing evolution of every component system interrupts immediately the
evolution of all component systems. A parallel composition is called nonex-
cludable if the finishing evolution of every component system does not inter-
rupt the evolution of other component systems.

If L,, represents an excludable parallel composition of the stochastic

S
systems LI k = T,s, then we denote L,, = (| L¥. If Ly represents a
k=1

nonexcludable parallel composition of the stochastic systems L, k =T,
S

then we write Ly, = (J L.
k=1

3. Homogeneous linear recurrences

The elaborated algorithms for probabilistic characterization of the evolu-
tion time are based on the theory of the homogeneous linear recurrences. In
this section the main properties of these recurrences are described.

3.1. Definitions and notations

Next we remind the main definitions and notations from [6], [7] and [10].
We consider an arbitrary subfield K of the field C.
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Definition 3.1. The sequence a = {an}32 o C C is called homogeneous line-

ar m — recurrent sequence on the set K if there ewists ¢ = (qk)?:_ol e K™
m—1
such that an, = Y. qran—1-k, for all n > m. The vector q represents the

k=0
generating vector and the vector L[g] = (an)™y is called initial state of the

sequence a. If gm—1 # 0 then the sequence a is called non-degenerated; else
it is called degenerated.

Definition 3.2. The sequence a is called homogeneous linear recurrent se-
quence on the set K if there exists m € N* such that the sequence a represents
a homogeneous linear m-recurrent sequence on the set K.

We introduce the following notations:

Rol[K][m] is the set of non-degenerated homogeneous linear m-recurrent
sequences on the set K;

Rol[K] is the set of non-degenerated homogeneous linear recurrent sequences
on the set K;

G[K][m](a) is the set of generating vectors of length m of a € Rol[K][m];
G[K](a) is the set of generating vectors of a € Rol[K];

Rol*[K][m] is the set of homogeneous linear m-recurrent sequences on K;
Rol*[K] is the set of homogeneous linear recurrent sequences on K;
G*[K][m|(a) is the set of generating vectors of length m of a € Rol*[K|[m];
G*[K](a) is the set of generating vectors of a € Rol*[K].

o0
Definition 3.3. The function Gl9(2) = 3 an2™ is called generating func-

n=0
t—1
tion of the sequence a = (ay)52y € C and the function G,[fa](z) = Y apz" is
n=0

called partial generating function of ordert of the sequence a = (a,)5>, C C.

Definition 3.4. Let a € Rol*[K|[m] and q € G*[K]|[m|(a). For the se-
quence a we will consider the wunit characteristic polynomial
ng}(z) =1- ZGL%](Z) and the characteristic equation Hr[g](z) = 0. For an
arbitrary o € K* the polynomial HT[,Z]a(z) = aH,[ﬂ,](z) is called characteristic
polynomial of the sequence a of order m.

The following notations are introduced:

H[K][m|(a) is the set of characteristic polynomials of order m of the se-
quence a € Rol[K|[m];
H[K](a) is the set of characteristic polynomials of the sequence a € Rol[K];

H*[K][m|(a) is the set of characteristic polynomials of order m of the se-
quence a € Rol*[K][m];
H*[K](a) is the set of characteristic polynomials of the sequence a € Rol*[K].



COMPOSITIONS OF STOCHASTIC SYSTEMS... 293

Definition 3.5. The sequence a € Rol*[K] is called m-minimal on the set
K if a € Rol*[K][m| and a ¢ Rol*[K][t], for all t < m. The number m is
called dimension of sequence a on the set K (denote dim[K|(a) =m).

3.2. Main properties of homogeneous linear recurrences

The main properties of homogeneous linear recurrences are described by
the following theorems. The proofs of these theorems are based on the proofs
of corresponding theorems from [6], presented also in [10].

The next theorem represents the formula for determining the generating
function:

Theorem 3.1. If a € Rol*[K][m| and q € G*[K]|[m](a), then
@),y a
Gi'(2) = 3 w2 1G4 (2)
k=

OHJ,%}(z) : (3.1)

Gll(z) =

Proof. Let a € Rol*[K][m| and q € G*[K][m|(a). Similarly than in [10],

0 o] m—1
Gll(z) — Glal(z) = Z anz" = Z 2" QkCp—1—k
n=m n=m k=0
m—1 00
=2) g2 Z p_g 2" H
k=0 n=m
m—1
=2 a2 (Gl(z) - G (2)),
k=0
that implies the formula (3.1). In this way we obtain the assertion. O

The following theorem is more important and allows to increase the order
of homogeneous linear recurrence a € Rol*[K][m]:

Theorem 3.2. If a € Rol*[K][m] and P(z) € H*[K|[m](a) then
a € Rol*[K][m + 1] and Q(z) = (2 — a)P(z) € H*[K]|[m + 1](a), Ya € K*.

Proof. Let a € Rol*[K][m|, P(z) € H*[K|[m](a) and r = deg(P(z)). We
consider the subsequence b = (b)), of the sequence a, where b, = apim—r,
for all n > 0. It is easy to observe that b € Rol[K][r] and P(z) € H[K][r](b).
Applying Theorem 2 from [6], we obtain b € Rol[K][r + 1] and
Q(z) € HIK][r 4+ 1](b), that implies the assertion. O

The function L.C.M. means the least common multiple of respectively
polynomials. The following properties hold:
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Theorem 3.3. Let a9 € Rol*[K][m;], Pj(z) € H*[K][m;](a"), a; € C,

¢

j = T,t. Then a = Y axa™ € Rol*[K][m] with characteristic poly-
k=1

nomial P(z) = L.C.M.((Pj(2))=,) € H*[K][m](a), where m = r + s,

r=deg(P(2)), rj = deg(P;(2)), j = 1, and s = max(m; — r;).
Jj=1,
Proof. Let aV) € Rol*|K|[m;], P;(z) € H*[K|[m;](aV)), a; € C, j=T,L

We consider the subsequence b\ = (bgf ))n o of the sequence a9, where
(G _ @)
br;

= an+mj_rj, j =1,t, for all n > 0. It is easy to observe that

b € Rol[K][r;] and P;(z) € H[K][r;](bY), j =T1,%.
Next, we consider the subsequence ¢¥) = (c (J))n o of the sequence b)),
where ¢ = SJ)FS, j = 1,t, for all n > 0. We have ¢ € Rol[K]] ]]

and Pj(z ) € H[K][r;](cY)), j = T,t. Applying Theorem 3 from [6], we
obtain ¢ = (an+s)5y € Rol[K]|[r] and P(z) € H[K][r](c), that implies
a € Rol*[K][r + s] and P(z) € H*[K][r + s](a). O

Theorem 3.4. Let a € Rol*[C|[m1], b € Rol*[C][mz], w e G*[C][mi](a)
and v € G*[C][m2](b). Suppose that all distinct roots zj, of multiplicity sy,

k =0,p— 1, of the polynomial H7[n}1( ) and all distinct roots z; of multiplicity
st, 1 =0,p* — 1, of the polynomial ILL[n]2 (2) are known. Then ab € Rol*[C][m]
and P(z) = L.C.M.({(z— 2z} )** ™17 | k = 0,p — 1, | = 0,p* — 1}) belongs
to H*[C]|[m](ab), where m =1+ s, r; = deg(H#f]l(z)), ro = deg(H%]Z(z)),
r =deg(P(z)) and s =max{mj —r1, mg —r2}.

Proof. Let a € Rol*[C][mi], b € Rol*[C][mz], u € G*[C][m1](a) and
v € G*[C][ms](b). We consider the subsequence ¢) = (¢ (1))00: of the se-
quence a and the subsequence ¢(?) = (cn (2)yoo )22, of the sequence b, where
07(11) = Gptmy—r, and cg) = bntmo—ry, for all n > 0. It is easy to ob-
serve that ¢) € Rol[C][r;] and ¢® € Rol[C][rp] with generating vectors

u € GIC[r1](cM) and v € G[C][r2](c?). Next, we consider the subse-

quence dU) = (dﬁf))OO_O of the sequence ¢¥), j = T,2, where d( ) = (pts

and d? = bpts, for all n > 0. We have dY¥) € Rol[C][r)], j = 1,2,
u € G[C][r1](dM) and v € G[C][r2](d?). Applying Theorem 4 from [6],
we obtain d = dMd® € Rol[C][r] and P(z) € H[C][r](d), that implies

ab € Rol*[C][r + s] and P(z) € H*[C][r + s](ab). O

Theorem 3.5. For each polynomial P(X) € C[X] with deg(P(X))=m,
¢ = (P(n))ply € Rol[R][m + 1] and Q(z) = (1 — z)™*" € H[R][m + 1](c).

Using Definition 3.5 and Theorems 3.3 and 3.4, we obtain:
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Theorem 3.6. The main properties of the dimension are:

t t
1. dim[K] (Z aka(k)> < S dim[K](a®), Va*) € Rol*[K], ay € C,
k=1 k=1
k=1,t;

t t
2. dim|C] <H a(k)> < [ dim[C](a™®)), Va®) € Rol*[C], k =T,
k=1 k=1

~~

Proof. In this proof we use the notations from the Theorems 3.3 and 3.4.

1. For Ya®) € Rol*[K] and ay, € C, k = 1,1, we have

t t t
dim[K] (Z ozka(k)> <r+s< Zrk + Z(mk — L)
k=1 k=1 k=1

mi =Y _ dim[K](a®);
k=1

I
M@

£
Il

1

2. We use the mathematical induction method. For ¢ = 2 and
Va®) € Rol*[C], k = 1,2, we have

dim[C](a(l)a(z)) <r+s<rirg+ (m1—ri)(mg —r2)
=mimg — r1(mg — r2) — ro(my — 1)
< mima = dim[C](a™)dim|C](a?).

Let us consider true the affirmation for all 2 <t < T, so,

t t
dim|[C] (H a(k)> < [] dim(C](@™®)), Vo™ € Rol*[C), k=T,%.
k=1 k=1

For t =T + 1 we obtain

; e (k) ; : ®) ) g4 (T+1)
dim|[C] Ha < dim|C] Ha dim[C](a )

k=1 k=1
T+1
< [[ dim[C](a™®)
k=1

So, the property is true for all t > 2.

a

The dimension and the unique minimal generating vector of the se-

quence a € Rol*[C][m] can be determined by using the following minimiza-
tion method:
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Theorem 3.7. If a € Rol*[C][m] is a not null sequence, then dim[C](a) =
R and g = (qo0,q1,---,qr-1) € G*[C][R](a), where

R =rank(AlD), Al = (ai1;); ;ogmmr, £ = (k) jesiznzg V0 > 1

and the vector © = (qr—1,qRr-2, - - -,qo) represents the unique solution of the
system A[}%]xT = (fg])T

The homogeneous linear recurrent property of distribution function is:

Theorem 3.8. If a € Rol*[K][m], P(z) € H*[K][m|(a) and b, = GI(1),
n =0,00, thenb = (b,)32, € Rol*[K][m+1] and Q(z) = (z—1)P(z) belongs
to H*[K][m + 1](b).

Proof. Let P(z) = HLZ]’ y(2) and A = P(0). We have Q(z) = —AR(z),

m -
where R(z) =1—2 ) q;;zk and the coeflicients ¢;, k = 0,m, are given by
k=0

the relations q5 = qo + 1, ¢}, = qx — qe—1, k =1,m — 1, q;;, = —qm—1. For all
n > m + 1 we obtain

m m—1
Z qzbn—l—k = (CIO + 1)bn—l - QTrL—lbn—l—m + Z (Qk - Qk—l)bn—l—k
k=0 k=1
m—1 m—1
=bp1+ Y qr(bno1—k —bn—2-k) =bn1+ Y Grln-2_k
k=0 k=0
=by—1+ an—1="Dby.
So, b € Rol*|K][m + 1] and Q(z) € H*[K]|[m + 1](b). O

3.3. Homogeneous linear recurrent distributions

In this section a new algorithm for determining the main probabilistic
characteristics of natural random variables with homogeneous linear recur-
rent distribution is elaborated. The elaborated algorithm is based only on
properties of homogeneous linear recurrences. The proof of the algorithm is
similar that for the non-degenerated case from [6].

We consider a natural random variable &. Let a, = P({ =n), n =0, cc.
The sequence a = (ay)22, is called distribution of random variable £ and is
noted a = rep(§).

Theorem 3.9. If a = rep(§) € Rol*[C|, then a € Rol*[R] and the formula
dim[R](a) = dim[C](a) holds.

Proof. Let a =rep(§) € Rol*[C][m], ¢ € G*[C][m|(a) and m = dim[C](a).
Then b = (ay)3%,,—, € Rol[C][r] and Q = (qx)j_y € G[C][r](b), where
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r o= deg(H[q]( )), that implies ¢ = (¢,)02y = b/(1 — S) € Rol[C][r] and

m—r—1 00
Q € G[C][r](c), where S = >  ag. Since > ¢, = 1, we can consider a
k=0 n=0
random variable n with distribution ¢ = rep(n). Applying Theorem 9 from
[6], we obtain ¢ € Rol[R][r] and @ € G[R][r](c), that implies b € Rol[R][r]

and Q € G[R][r](b). So, a € Rol*[R][m] and ¢ € G*[R]|[m](a). Since
dim[R](a) > dim[C](a) = m and a € Rol*[R][m|, we have the formula
dim[R](a) = dim[C](a) = m. O

Theorem 3.10. If a = rep(§) € Rol*[C][m], ¢ € G*[C][m](a) and the rela-
tion H}g}(l) = 0 holds, then dim[R](a) # m and the root z =1 is fictive.

Proof. Let a = rep(€) € Rol*[C][m], q € G*[C][m](a) and HY(1) =

Then b = (an)pZy,—, € Rol[C][r] and Q = (a);Zy € GIC][r)(b), Where

r = deg(H, [q]( )), that implies ¢ = (¢,)02y = b/(1 — S) € Rol[C][r] and

Q € G[C][r](c), where S = m_i:_l ay. Since io: ¢n = 1, we can consider a
k=0 n=0

random variable n with distribution ¢ = rep(n). Applying Theorem 10 from
[6], we obtain dim[R](c) # r and the root z = 1 of the polynomial il (2) is
fictive. So, dim[R](a) # m and the root z = 1 of the polynomial H}g}(z) is
fictive. O

Taking into account these results, we can consider only homogeneous
linear recurrent distributions on R with minimal characteristic polynomial
that do not have as a root 1. The following result allows us to calculate
the initial moment v (§) of order & > 1 of natural random variable £ with
distribution a = rep(§) € Rol*[R][m].

Theorem 3.11. Let £ be a natural random variable, a = rep(§) € Rol*[R][m]
and q € G*[R][m](a). Then

®) = (nFa,) € Rol*[R|[My], ¢® € G*[R][My](c®)
and
ve(€) = G€N(1), for all k> 1, (3.2)

where M = m(k + 1) and
() = (Y () € HRIM(EP). (33)

Proof. Let Vk > 1. We consider d*) = (n*)°2,. We have ¢®) = d®)q.
Using Theorem 3.5, we obtain

d*®) € Rol[R][k + 1] and (1 — ) € H[R][k + 1](d™).
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Applying Theorem 3.4, we have c¢*) € Rol*[C][m + kp] and

Pu(z) = L.O.M.({(z — z)*** | t =0,p — 1})
p—1

@1 - " € Tl + ki),

where z; are all distinct roots of respective multiplicity s;, ¢ = 0,p — 1, of

polynomial Hy, g (2).
k

p—1
Since the polynomial Py(z) = H%](z) <H (z — zt)) divides the poly-
=0

(2) = (HT[Z](Z))]C+1 € R[z], using the result of Theorem 3.2 and
the mequahty deg(HT[g}(z)) < m, we have

nomial H[ (k)}

[¢*)]

™ € Rol[R][My], ¢ € G*[RI[M](¢™) and Hyj (=) € H*[R][Mj](c™).

Next, we obtain the formula v (¢) = 3 nFa, = Gl (1). These values can

n=0
be determined by (3.1) and (3.3). O
The expectation E(£), the variance V' (£) and the mean square deviation
o (&) are obtained by the formulas

E(€) = n(€); V() = ra(§) — (€))% a(€) = VV(€). (3.4)

Taking into account these results, we obtain a new algorithm for probabilis-
tic characterization of random variables with homogeneous linear recurrent
distributions:

Algorithm 1.

Input: q € G*[R][m](a) 1 € R where a = rep(§) € Rol*[R][m].
Output: E(&)? V(é)a 0(5)7 Vk(£)7 k :Ha t>2.

1. If ng](l) =0, go to Step 2, else go to Step 3.

2. Using Horner schema, the vector ¢* € R™~! is determined, vector that

H[Q}
: la*] _m (2) R -
satisfies H,, *,(z) = 1 . Next, set ¢ := ¢* and m := m — 1 and go
-z
to Step 1.
m—1
3. The values a, = > qran—1-k, n =m,m(t+ 1) — 1, are calculated.
k=0

4. For each k = 1,1 the next steps are executed:

(k) _
(a) The initial state I][\Z: = (nkan)?:(?l) ! is determined.
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(b) The generating vector ¢*) from the formula (3.3) is obtained.
(¢) The value v (§) using the relations (3.2) and (3.1) is calculated.

5. The values E(§), V(§), o(§) are obtained by using the formula (3.4).

4. Main results

In this section the elaborated methods for solving the problems introduced
in Section 2 are described. All the results are theoretically grounded.

4.1. IDSSFSS

The IDSSFSS are described in Section 2.1 and the evolution time T of
the system is defined. We consider the distribution a = rep(T).

In [7] and [10], the properties of sequence a were studied. We obtained
that a € Rol*[R][mw] with generating vector ¢ € G*[R][mw](a) that satisfies
the inequality deg(HT[g]w(Z)) < 2m 4+ w — 2. The dimension and the minimal
generating vector of the sequence a are determined using Theorem 3.7 and
the first 2mw elements of the sequence a. These elements can be calculated
using formulas from [10]. The detailed description of the elaborated algo-
rithm can be found in [10]. Using the obtained generating vector and initial
state, applying Algorithm 1 from this paper, we can determine the main
probabilistic characteristics of evolution time of given IDSSFSS.

4.2. Ordered and unordered sequential compositions

The sequential compositions are defined in Section 2.2. In this section the
ordered and unordered sequential compositions are studied. These results
are similarly with the results obtained in [6] for the sequential compositions
of the stochastic systems with independent transitions.

S
We consider L = kzl LPWIA] where § € Ss and A = (7}, k)j k=T 5
Let T be the evolution time of composition L and T'" be the evolution
time of the stochastic system LI¥l, k = T,s. We consider that T < +oo,
k = 1,s. For probabilistic characterization of the evolution time T the
following lemma is necessary.

[K]

Lemma 4.1. We consider the independent random variables f(j), j=1n.
Let vy, = ve(ED)) be the k-order moment of the variable €9, j =T, n, for

all k € N. Then the k-order moment of the random variable £ = 3 €W s
j=1

k
Vk(€) = Vin, where vy = v}y and vg; = ) CiVij—1Vi_ij, = 2,n, Yk € N.
i=0
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i .
Proof. We denote U; = ¢€0, 5 =T, n. We have
i=1

U =€, Uy =Upa €9, j=2m

Let k > 0. It is easy to observe that v(U;) = v (¢€) and, for j = 2,n

k
ve(Uj) = E((Uj—1 + ¢U)F) =Y CLEWU! ) E((€D))

1=0

k
=3 Clun(Uj-1)miil€D).
=0

Denoting v, = vp(€9), I/k] = v(Uj), j = 1,n, we obtain the assertion. O
s—1

We observe that 7' = Z T 45 (6) holds, where kp(6) = 3O T5(k),5(k+1)-
k=1 k=1

The random variables T, k = T, s, are independent and the value kA (9)

denotes a constant. So, we can apply Lemma 4.1 for independent random

variables £¢%) = T L =T s and €611 = k,(6) and obtain the moments

vi(T), k = 0,r. The expectation E(T), the variance V(T') and the mean

square deviation o(7") can be determined by using the relation (3.4).

. s
We consider the unordered sequential composition L = S LIPPIRI[A]
k=1

— — S
with evolution time T. We have T = T* + rp(3[4]), where T* = > T,
k=1
The moments v (T*), k = 0,r, can be determined using Lemma 4.1 for
independent random variables ¢¥) = T L = T s. It is easy to observe
that the random variable 7™ does not depend on order generated by random
permutation §[¢]. Applying the Newton’s formula, for & = 0, we have

vie(T) = E(E((T* + ka(8[¢]))* | 3[0) ZCVH “Jv;(ka(0]0))),

where v;(ka(0[¢])) = 3 ¢(0)(1a(0)), j =0, 7.

dESs
If there exists j € {1,2,..., s} such that TUl = 450, then the expectation
and the moments of the evolution time 7' are unbounded.

4.3. Excludable and nonexcludable parallel compositions

The parallel compositions are defined in Section 2.2. In this section the ex-
cludable and nonexcludable parallel compositions are studied. These results
are similarly with the results obtained in [6] for the parallel compositions of
the stochastic systems with independent transitions.
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We consider the excludable parallel composition L,, = [) LI¥ and the
k=1

S
nonexcludable parallel composition Ly = |J LI Let T}, be the evolution

time of excludable composition L,,, Ths be the evolution time of nonexclu-
dable composition Ljy; and TU! be the evolution time of component system
LUl j =71 s. Suppose that T/ < 400, k =1, s. It is easy to observe that

T, = min TV and Ty, = mzﬁT[ﬂ.
j=1,s j=1,s

Let a¥) = rep(TV)), j =15, a* = rep( m), A* = rep(Ty). In Section
4.1 we obtained that IM; € N* such that aU) € R R ][ i, i=1s.

Let Fj, = P(T), < n), Gn = P(Ty < n), FY) = P(TU < n), j = 1,3,
n = 0,00. We consider the sequences

F= (Fn)%o:Oa G = (G )n 0> F(]) ( T(Lj))%o:m J=1s.

We have
Fy=P(T,<n)=1-P(TW >n, j=T15)
=1-[[P@W =n)=1-[J(1-FY),
j=1 j=1
Gn:P(TM <n—-1)=PTW<n—-1, j=15)
_HP <n-1)=[]FY,
j=1
a;; = Fyp1 — Iy, A;kl = Gn+1 - Gy,
n—1
FY) = G%m](l) = Z 23)7 j=1,8, n=0,00.
=0
Let M* = [[(M; +1), r* = [[(M; +2) and m* = r* + 1. Using

j=1 j=1
Theorem 3.8, we obtain FU) € Rol*[R][M; + 1], j = 1, s.

Applying Theorem 3.6, we obtain G € Rol*[R][M*]. Since G = (G,,)>2,
represents a subsequence of the sequence G, we have G € Rol*[R][M*] with
the same generating vector. Using Theorem 3.3, we obtain that A* = G -G
belongs to Rol*[R]|[M*].

By applying three times Theorem 3.6, we obtain F' € Rol*[R][m*]. Since
the sequence F = (Fnt1)5 is a subsequence of the sequence F', we have

F € Rol*[R][m*]. By using Theorem 3.3, we obtain that a* = F'— F belongs
to Rol*[R][m*].

The values aj, k = 0,2m* —1 and A}, | = 0,2M* — 1, are obtained
by using the formulas described above. Using the minimization method
(see Theorem 3.7), the dimensions d* = dim[R](a*) and D* = dim[R](A*)
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together with the minimal generating vectors ¢* € G*[R][d*](a*) and

Q* € G*[R][D*](A*) are calculated. Next, we can apply Algorithm 1 to

determine the probabilistic characteristics of evolution times T;, and Th;.
If there exists j € {1,2,...,s} such that TUl = 40, then the expecta-

tion and the moments of the evolution time Tj; of nonexcludable parallel

composition Lj; are unbounded and L,, = N LI,
ke{1,2,...s1\{j}

5. Numerical example

Example 5.1. We consider two IDSSFSS L; and Lo with the same set
of states V = {v1,v2}, the same initial distribution of states p*(v1) = 0.3,
p*(v2) = 0.7 and the same transition probabilities p(vi,v1) = p(ve,v1) = 0.3,
p(v1,v2) = p(va,v2) = 0.7. Let X1 = (v1,v2) be the final sequence states of
the system L; and Xy = (vg,v1) be the final sequence states of L. Consider
the compositions Lg = (L1+ La)[A], Ly, = L1NLg and Ly = L1ULg, where

3 4
mean square deviation and the moments of order 1 and 2 of the evolution
time of stochastic systems L1, Lo, Lg, Ly, L.

1 2 . . . .
A= < > The goal is to determine the expectation, the variance, the

Solution.

Let T}, be the evolution time of the system Lj and a®) = rep(Ty),
ke {1,2,S,m,M}. Applying the method described in Section 4.1, we ob-
tain that = oV = a® € Rol*[R][4], ¢* = (1,-0.21,0,0) € G*[R][4](a)
and 1" = (0,0.21,0.21,0.1659). So, we have a, = ap_1 —0.21a,_s, ¥n > 4.
Using Theorem 3.7, we obtain a € Rol*[R][2], ¢ = (1,-0.21) € G*[R][2](a)
and 1) = (0,0.21).

Using the method elaborated and grounded in Section 4.3, we have
that o™ e Rol*[R][3], ¢ = (0.79,—0.1659,0.0093) € G*[R][3](a(™)
and I = (0,0.3759,0.2877). Also, we obtain that a™) € Rol*[R][5],
™M) = (1.79, —1.1659, 0.3411, —0.0441,0.0019) € G*[R][5](a{*)) and
1197 = (0,0.0441,0.1323,0.1669,0.1576).

Applying Algorithm 1 for the sequences a, a™_ ¢M) and method ela-
borated in Section 4.2 for the random variables T, T2 T(5) we obtain
the following final results:

M)

k | system | evol. time | v1(Ty) | vo(Tx) | E(Tx) | V(Tx) | o(Tx)
1 Ly Ty 3.7619 | 22.5420 | 3.7619 | 8.3901 | 2.8966
2 Lo 15 3.7619 | 22.5420 | 3.7619 | 8.3901 | 2.8966
S Lg Tg 9.5238 | 107.483 | 9.5238 | 16.7802 | 4.0964
m Ly, T 2.3003 | 7.5943 | 2.3003 | 2.3029 | 1.5175
M Ly T 5.2236 | 37.4896 | 5.2236 | 10.2036 | 3.1943
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All obtained results can be verified using Monte Carlo method described

in [1]. Also, we can compare these results with the solution of Example 1
from [6], since these problems are equivalent.
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