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Abstract - This paper deals with the analysis of a class of implicit vari-
ational inequalities which generalizes some dynamic contact problems cou-
pling adhesion and friction between two viscoelastic bodies of Kelvin-Voigt
type. Existence and uniqueness results are proved for a general system
of evolution inequalities that constitutes a unified approach to study some
complex dynamic surface interactions, including rebonding, debonding and
friction conditions. The proofs are based on incremental formulations, sev-
eral estimates, compactness arguments and a fixed point technique. These
results are applied to dynamic frictional contact conditions with reversible
adhesion and the coefficient of friction depending on the slip velocity.
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1. Introduction

The aim of this paper is to study a system of evolution inequalities that
generalizes some interaction laws including dynamic contact, recoverable
adhesion and friction between two viscoelastic bodies, when the coefficient
of friction depends on the slip velocity, which represents a more realistic
model than the one described in [11].

An interface model coupling unilateral contact, irreversible adhesion and
local friction for elastic bodies was considered in the quasistatic case in [26]
and its mathematical analysis has been provided in [9].

Nonlocal friction laws, given by appropriate regularizations of the nor-
mal component of the stress vector which occurs in the Coulomb friction
conditions, and normal compliance models have been considered by several
authors in the (quasi)static case, see, e.g. [17, 27] and references therein.

Dynamic frictional contact problems with normal compliance laws for a
viscoelastic body have been studied in [23, 17, 18, 5] and dynamic unilateral
or bilateral contact problems with friction for viscoelastic bodies have been
considered in [16, 12, 19, 20, 10].

More recently, dynamic frictionless problems with adhesion were studied
in [6, 21, 29] and a dynamic viscoelastic problem coupling unilateral contact,
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recoverable adhesion and nonlocal, mathematically consistent, friction was
analyzed in [11].

Some interesting relaxed unilateral contact condition with pointwise fric-
tion have been proposed in [25] in the static case and extended in [8] to the
quasistatic case.

This paper is organized as follows. First, existence and uniqueness results
are proved for a general system of evolution inequalities that constitutes
a unified approach to study some complex dynamic surface interactions,
including rebonding, debonding and friction conditions.

Second, the classical formulation of a dynamic contact problem with
adhesion and friction is presented and a corresponding variational formu-
lation is given as a system which contains an implicit evolution variational
inequality coupled with a parabolic variational inequality.

Finally, based on the previous abstract results, the existence and unique-
ness of variational solutions are analyzed.

2. Analysis of a system of evolution inequalities

Let (H0, |.|, (. , .)), (V0, ‖.‖, 〈. , .〉), (U0, ‖.‖U0) and (Π0, |.|Π0 , (. , .)Π0) be
four Hilbert spaces such that V0 ⊂ U0 ⊆ H0, the imbedding from V0 into U0

is compact and V0 dense in H0.

Let Λ0 be a closed convex set in Π0 such that 0 ∈ Λ0. Suppose also that
Λ0 is bounded, to simplify the estimates.

Define two bilinear and symmetric forms, a0, b0 : V0× V0 → R and the
mapping γ0 : V0 ×Π0 ×Π0 → R such that

∃ma, mb > 0 a0(u, v) ≤ ma ‖u‖ ‖v‖, b0(u, v) ≤ mb ‖u‖ ‖v‖, (2.1)

∃A, B > 0 a0(v, v) ≥ A ‖v‖2, b0(v, v) ≥ B ‖v‖2 ∀u, v ∈ V0, (2.2)

∀u ∈ V0, γ0(u, ·, ·) is a bilinear and symmetric form, (2.3)

∃mγ > 0 such that ∀u1,2 ∈ V0, ∀ δ1,2 ∈ Λ0, ∀ η ∈ Π0,

|γ0(u1, δ1, η)− γ0(u2, δ2, η)| ≤ mγ(‖u1 − u2‖+ |δ1 − δ2|Π0) |η|Π0 , (2.4)

γ0(u, η, η) ≥ 0 ∀u ∈ V0, ∀ η ∈ Π0. (2.5)
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Let φ0 : [0, T ]× Λ0 × V 3
0 → R be a mapping such that

φ0(t, η, ·, ·, ·) is sequentially weakly continuous, (2.6)

φ0(t, η, u, v, w1 + w2) ≤ φ0(t, η, u, v, w1) + φ0(t, η, u, v, w2), (2.7)

φ0(t, η, u, v, θw) = θ φ0(t, η, u, v, w), (2.8)

φ0(0, 0, 0, 0, w) = 0, (2.9)

∀ t ∈ [0, T ], ∀ η ∈ Λ0, ∀u, v, w, w1,2 ∈ V0, ∀ θ ≥ 0,

∃ mφ > 0 such that ∀ t1,2 ∈ [0, T ], ∀ η1,2 ∈ Λ0, ∀ u1,2, v1,2, w1,2 ∈ V0,

|φ0(t1, η1, u1, v1, w1)− φ0(t1, η1, u1, v1, w2)

+ φ0(t2, η2, u2, v2, w2)− φ0(t2, η2, u2, v2, w1)|

≤ mφ (|t1 − t2|+ |η1 − η2|Π0 + ‖u1 − u2‖U0 + ‖v1 − v2‖U0) ‖w1 − w2‖.

(2.10)

Assume that L0 ∈ W 1,∞(0, T ;V0), u0, u1 ∈ V0, β0 ∈ Λ0 and that the
following compatibility condition holds: ∃ l0 ∈ H0 such that ∀w ∈ V0

(l0, w) + a0(u0, w) + b0(u1, w) + φ0(0, β0, u0, u1, w) = 〈L0(0), w〉. (2.11)

Consider the following problem.

Problem Q : Find u ∈ W 2,2(0, T ;H0)∩W 1,2(0, T ;V0), β ∈ W 1,∞(0, T ; Π0)
such that u(0) = u0, u̇(0) = u1, β(0) = β0, β(τ) ∈ Λ0 for all τ ∈ ]0, T [,
and a.e. t ∈ ]0, T [

(ü, v − u̇) + a0(u, v − u̇) + b0(u̇, v − u̇) (2.12)

+φ0(t, β, u, u̇, v)− φ0(t, β, u, u̇, u̇) ≥ 〈L0, v − u̇〉 ∀ v ∈ V0,

(β̇, η − β)Π0 + γ0(u, β, η − β) ≥ 0 ∀ η ∈ Λ0. (2.13)

Define the set

X0 = {η ∈ C0([0, T ]; Π0) ; η(0) = β0, η(t) ∈ Λ0 ∀ t ∈ ]0, T ]},

where the Banach space C0([0, T ]; Π0) is endowed with the norm

‖η‖k = max
t∈[0,T ]

[exp(−kt) |η(t)|Π0 ] for all η ∈ C0([0, T ]; Π0), k ≥ 0.

The existence and uniqueness of the solution of the problem Q will be proved
by using the following lemmas and a fixed point argument, see also [11] for
the particular case when the coefficient of friction is slip rate independent.
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Lemma 2.1. For each β ∈ X0 there exists a unique uβ ∈ W 2,2(0, T ;H0)∩
W 1,2(0, T ;V0), solution of the inequality (2.12) such that uβ(0) = u0,
u̇β(0) = u1.

The proof is based on some incremental formulations, see, e.g. [10], and
on a useful estimate, see [22] or [28], which, when applied to the spaces
V0 ⊂ U0 ⊆ H0, implies the following result: for every ε > 0 there exists
Cε > 0 such that

‖u‖U0 ≤ ε ‖u‖+ Cε |u| ∀u ∈ V0. (2.14)

The full proof will be presented in a forthcoming paper.

Lemma 2.2. Let β1, β2 ∈ X0 and let uβ1 , uβ2 be the corresponding so-
lutions of (2.12) with the same initial conditions u0, u1, respectively. Then
there exists a constant C1 > 0, independent of β1, β2, uβ1 , uβ2 , such that
for all t ∈ [0, T ]

|u̇β1(t)− u̇β2(t)|2 + ‖uβ1(t)− uβ2(t)‖2 ≤ C1

∫ t

0
|β1(s)− β2(s)|2Π0

ds. (2.15)

Proof. Let uβ1 , uβ2 be the solutions of (2.12) corresponding to β1, β2 ∈
X0. Taking in each inequality v = u̇β2 and v = u̇β1 , respectively, for a.e.
s ∈ ]0, T [ it follows that

(üβ1 − üβ2 , u̇β1 − u̇β2) + a0(uβ1 − uβ2 , u̇β1 − u̇β2) + b0(u̇β1 − u̇β2 , u̇β1 − u̇β2)

≤ φ0(s, β1, uβ1 , u̇β1 , u̇β2)− φ0(s, β1, uβ1 , u̇β1 , u̇β1)

+φ0(s, β2, uβ2 , u̇β2 , u̇β1)− φ0(s, β2, uβ2 , u̇β2 , u̇β2)

≤ mφ( |β1 − β2|Π0 + ‖uβ1 − uβ2‖U0 + ‖u̇β1 − u̇β2‖U0 )‖u̇β1 − u̇β2‖,

where the second inequality follows by (2.10).
For all t ∈ [0, T ], as the solutions uβ1 , uβ2 verify the same initial con-

ditions, integrating between 0 and t yields

1

2
|u̇β1(t)− u̇β2(t)|2 +

1

2
a0(uβ1(t)− uβ2(t), uβ1(t)− uβ2(t))

+

∫ t

0
b0(u̇β1 − u̇β2 , u̇β1 − u̇β2) ds ≤ mφ

∫ t

0
|β1 − β2|Π0 ‖u̇β1 − u̇β2‖ ds

+mφ

∫ t

0
( ‖uβ1 − uβ2‖U0 ‖u̇β1 − u̇β2‖+ ‖u̇β1 − u̇β2‖U0 ‖u̇β1 − u̇β2‖ ) ds.

Using (2.14), Young’s inequality for the last three terms with appropriate
constants, V0 - ellipticity of a0, b0 and Gronwall’s inequality, the estimate
(2.15) follows. 2
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Now, for every element u ∈ W 1,2(0, T ;V0), consider the inequality (2.13)
with the initial condition β0, the solution of which is denoted by βu. The ex-
istence and uniqueness results for this parabolic inequality follow by classical
references, see, e.g. [4], [1], [2], and a direct proof is presented in [11].

Lemma 2.3. For each u ∈ W 1,2(0, T ;V0) there exists a unique solution
βu ∈ X0 ∩W 1,∞(0, T ; Π0) of the inequality (2.13).

Lemma 2.4. Let u1, u2 ∈ W 1,2(0, T ;V0) and let βu1 , βu2 ∈ X0 be the
corresponding solutions of (2.13) with the same initial condition β0, respec-
tively. Then there exists a constant C2 > 0, independent of u1, u2, βu1 , βu2 ,
such that for all t ∈ [0, T ]

|βu1(t)− βu2(t)|2Π0
≤ C2

∫ t

0
‖u1(s)− u2(s)‖2 ds. (2.16)

Proof. Let βu1 , βu2 be the solutions of (2.13) corresponding to u1, u2.
Taking in each inequality η = βu2 , η = βu1 , respectively, for all t ∈ ]0, T [,
integrating over [0, t], using (2.4) and some elementary inequality yield

1

2
|βu1(t)− βu2(t)|2Π0

≤
∫ t

0
[γ0(u2, βu2 , βu1 − βu2)− γ0(u1, βu1 , βu1 − βu2)] ds

=

∫ t

0
[γ0(u2, βu2 , βu1 − βu2)− γ0(u2, βu1 , βu1 − βu2)] ds

+

∫ t

0
[γ0(u2, βu1 , βu1 − βu2)− γ0(u1, βu1 , βu1 − βu2)] ds

≤ mγ

∫ t

0
|βu1 − βu2 |2Π0

ds+mγ

∫ t

0
‖u1 − u2‖ |βu1 − βu2 |Π0 ds

≤ mγ

2

∫ t

0
‖u1(s)− u2(s)‖2 ds+

3mγ

2

∫ t

0
|βu1(s)− βu2(s)|2Π0

ds.

By Gronwall’s inequality the estimate (2.16) is established. 2

Now we can prove the following existence and uniqueness result for the
abstract problem Q.

Theorem 2.1. Assume that conditions (2.1)-(2.11) hold. Then there exists
a unique solution of the problem Q.

Proof. For every β ∈ X0 let uβ ∈ W 2,2(0, T ;H0)∩W 1,2(0, T ;V0) be the
solution of the inequality (2.12) corresponding to β such that uβ(0) = u0,
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u̇β(0) = u1 and let βuβ ∈ X0 ∩ W 1,∞(0, T ; Π0) be the solution of the
inequality (2.13) corresponding to uβ. Define the mapping T : X0 → X0

as ∀β ∈ X0 T β = βuβ . We shall prove that T : X0 → X0 has a unique
fixed point, which is equally the solution of the problem Q.

For all β1, β2 ∈ X0, for all t ∈ [0, T ], (2.16) and (2.15) imply that

|T β1(t)− T β2(t)|2Π0
≤ C2

∫ t

0
‖uβ1(s)− uβ2(s)‖2 ds

≤ C1C2

∫ t

0

(∫ s

0
exp(−2kr) · exp(2kr) |β1(r)− β2(r)|2Π0

dr

)
ds

≤ C1C2 ‖β1 − β2‖2k
∫ t

0

exp(2ks)

2k
ds

≤ C1C2

4k2
· exp(2kt) ‖β1 − β2‖2k.

Then

‖T β1 − T β2‖k = max
t∈[0,T ]

[exp(−kt) |T β1(t)− T β2(t)|Π0 ]

≤
√
C1C2

2k
‖β1 − β2‖k.

Hence, for all β1, β2 ∈ X0

‖T β1 − T β2‖k ≤
√
C1C2

2k
‖β1 − β2‖k,

so that if k is sufficiently large it follows that T is a contraction and its
fixed point is the solution of the problem Q. 2

3. A dynamic contact problem with adhesion and friction

Consider two viscoelastic bodies, characterized by a Kelvin-Voigt constitu-
tive law, which occupy the reference domains Ωα of Rd, d = 2 or 3, with
Lipschitz continuous boundaries Γα = ∂Ωα, α = 1, 2. Assume the small
deformation hypothesis. Let Γα1 , Γα2 and Γα3 be three open disjoint suffi-
ciently smooth parts of Γα such that Γα = Γ

α
1 ∪Γ

α
2 ∪Γ

α
3 and, to simplify the

estimates, meas(Γα1 ) > 0, α = 1, 2.
Let yα(xα, t) be the position at time t ∈ [0, T ], where T > 0, of

the material point represented by xα in the reference configuration and
uα(xα, t) := yα(xα, t)−xα be the displacement vector of xα at time t, with
the Cartesian coordinates uα = (uα1 , ..., u

α
d ) = (uα, uαd ).

Let εα, with the Cartesian coordinates (εij (uα)), and σα, with the
Cartesian coordinates (σαij), be the infinitesimal strain tensor and the stress
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tensor, respectively, corresponding to Ωα, α = 1, 2. The usual summation
convention will be used for i, j, k, l = 1, . . . , d.

Assume that the displacement Uα = 0 is prescribed on Γα1 × ]0, T [ , α =
1, 2, and, to simplify, that the densities of both bodies are equal to 1. Let
f = (f1,f2) and F = (F 1,F 2) denote the given body forces in Ω1∪Ω2 and
tractions on Γ1

2 ∪ Γ2
2, respectively. The initial displacements and velocities

of the bodies are denoted by u0 = (u1
0,u

2
0), u1 = (u1

1,u
2
1).

Suppose that the solids can be in contact between the potential contact
surfaces Γ1

C and Γ2
C that can be parametrized by two C1 functions, ϕ1, ϕ2,

defined on an open subset Ξ of Rd−1 such that ϕ1(ξ)− ϕ2(ξ) ≥ 0 ∀ ξ ∈ Ξ
and each ΓαC is the graph of ϕα on Ξ that is ΓαC = { (ξ, ϕα(ξ)) ∈ Rd ; ξ ∈
Ξ}, α = 1, 2. Let mα : Ξ → Rd, with m1(ξ) := (∇ϕ1(ξ),−1), m2(ξ) :=
(−∇ϕ2(ξ), 1), ∀ ξ ∈ Ξ, be the outward normal to ΓαC , α = 1, 2. Since the
displacements, their derivatives and the gap are assumed small, by using
a method similar to the one presented in [3] (see also [10]) the following
unilateral contact condition at time t on the set Ξ is obtained:

0 ≤ ϕ1(ξ)− ϕ2(ξ) + u1
d(ξ, ϕ

α(ξ), t)− u2
d(ξ, ϕ

α(ξ), t)

−∇ϕ1(ξ) · u1(ξ, ϕ1(ξ), t) +∇ϕ2(ξ) · u 2(ξ, ϕ2(ξ), t) ∀ ξ ∈ Ξ.

Using the definition of m1, m2, this relation can be written under the
following form: for all ξ ∈ Ξ

m1(ξ) · u1(ξ, ϕ1(ξ), t) +m2(ξ) · u2(ξ, ϕ2(ξ), t) ≤ ϕ1(ξ)− ϕ2(ξ). (3.1)

Let nα := mα/|mα| denote the unit outward normal vector to ΓαC , α =
1, 2, and define the initial normalized gap between the two contact surfaces
by

g0(ξ) :=
ϕ1(ξ)− ϕ2(ξ)√
1 + |∇ϕ1(ξ)|2

∀ ξ ∈ Ξ.

Let the normal and tangential components of a displacement field vα, α =
1, 2, of the relative displacement corresponding to v := (v1,v2), including
the initial gap g0 in the normal direction, and of the stress vector σαnα on
ΓαC be given by

vα := vα(ξ, t) = vα(ξ, ϕα(ξ), t),

vαN := vαN (ξ, t) = vα(ξ, ϕα(ξ), t) · nα(ξ), vαT := vαT (ξ, t) = vα − vαNnα,

[vN ] := [vN ](ξ, t) = v1
N + v2

N − g0, [vT ] := [vT ](ξ, t) = v1
T − v2

T ,

σαN := σαN (ξ, t) = (σαnα) · nα, σαT := σαT (ξ, t) = σαnα − σαNnα,

(3.2)

for all ξ ∈ Ξ and for all t ∈ [0, T ]. Let g := −[uN ] = g0 − u1
N − u2

N

be the gap corresponding to the solution u := (u1,u2). Assuming that
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∇ϕ1(ξ) ' ∇ϕ2(ξ), it follows that the unilateral contact condition (3.1) at
time t can be written as

[uN ] (ξ, t) = −g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ. (3.3)

Let β denote an internal state variable, see, e.g. [13]–[15], representing the
intensity of adhesion or the adhesion field (β = 1 means that the adhesion
is total, β = 0 means that there is no adhesion and 0 < β < 1 is the case of
partial adhesion).

3.1. Classical formulation

Let Aα, Bα denote two fourth-order tensors, the elasticity tensor and the
viscosity tensor corresponding to Ωα, with the components (Aαijkl) and
(Bαijkl), respectively. Assume that these components satisfy the follow-
ing classical symmetry and ellipticity conditions: Cijkl = Cjikl = Cklij ∈
L∞(Ωα),∀ i, j, k, l = 1, . . . , d, ∃αC > 0 such that Cijklτijτkl ≥ αC τijτij ,
∀ τ = (τij) verifying τij = τji, ∀ i, j = 1, . . . , d, where Cijkl = Aαijkl,
C = Aα or Cijkl = Bαijkl, C = Bα ∀ i, j, k, l = 1, . . . , d, α = 1, 2.

We choose the following state variables: the infinitesimal strain ten-
sor (ε1, ε2) = (ε(u1), ε(u2)) in Ω1 ∪ Ω2, the relative normal displacement
[uN ] = u1

N + u2
N − g0, the relative tangential displacement [uT ] = u1

T −u2
T ,

and the intensity of adhesion β in Ξ.
Let µ = µ(ξ, [u̇T ]) ≥ 0 be the slip rate dependent coefficient of friction

and assume that µ : Ξ × Rd → R+ is a bounded function such that
for a.e. ξ ∈ Ξ, µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant
independent of ξ and for any v ∈ Rd, µ(·, v) is measurable.

Define a truncation operator ϑ = ϑl0 by ϑ : R → R, ϑ(s) = −l0 if
s ≤ −l0, ϑ(s) = s if |s| < l0 and ϑ(s) = l0 if s ≥ l0, where l0 > 0 is a
given characteristic length (see, e.g. [26, 29]).

Let κ : R× [0, 1]→ R be a bounded Lipschitz continuous function such
that κ(0, 0) = 0. Note that various normal compliance conditions, friction
and adhesion with damage laws can be obtained by choosing particular
functions as κ, see [17, 18, 21, 27, 29].

We consider the following classical formulation of the dynamic contact
problem coupling adhesion and friction.

Problem Pc : Find (u1,u2), β such that u(0) = u0 = (u1
0,u

2
0), u̇(0) =

u1 = (u1
1,u

2
1) in Ω1 × Ω2 , β(0) = β0 in Ξ and, for all t ∈]0, T [,

üα − divσα(uα, u̇α) = fα in Ωα, (3.4)

σα(uα, u̇α) = Aαε(uα) + Bαε(u̇α) in Ωα, (3.5)

uα = 0 on Γα1 , σ
αnα = F α on Γα2 , α = 1, 2, (3.6)

σ1n1 + σ2n2 = 0 in Ξ, (3.7)
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σN = κ([uN ], β) in Ξ, (3.8)

|σT | ≤ µ([u̇T ]) |σN | in Ξ and (3.9)

|σT | < µ([u̇T ]) |σN | ⇒ [u̇T ] = 0,
|σT | = µ([u̇T ]) |σN | ⇒ ∃ θ ≥ 0, [u̇T ] = −θσT ,

β ∈ [0, 1] in Ξ and (3.10)

b β̇ ≥ w if β = 0,

b β̇ = w − CN ϑ([uN ]2)β if β ∈ ]0, 1[,

b β̇ ≤ w − CN ϑ([uN ]2) if β = 1,

where β0 ∈ [0, 1] in Ξ, CN > 0, b > 0, w > 0, σα = σα(uα, u̇α), α = 1, 2,
σN := σ1

N , σT := σ1
T , σ := σ1.

3.2. Variational formulation

We adopt the following notations:

Hs := [Hs(Ω1)]d × [Hs(Ω2)]d ∀ s ∈ R,
〈v,w〉−s,s = 〈v1,w1〉H−s(Ω1),Hs(Ω1) + 〈v2,w2〉H−s(Ω2),Hs(Ω2)

∀ v = (v1,v2) ∈ H−s, ∀w = (w1,w2) ∈ Hs.

Define the Hilbert spaces (H, |.|) with the associated inner product denoted
by (. , .), (V , ‖.‖) with the associated inner product (ofH1) denoted by 〈. , .〉
and the set Λ as follows:

H := H0 =
[
L2(Ω1)

]d × [L2(Ω2)
]d
, V = V 1 × V 2, where

V α = {vα ∈
[
H1(Ωα)

]d
; vα = 0 a.e. on Γα1 }, α = 1, 2,

Λ = {η ∈ L2(Ξ) ; η ∈ [0, 1] a.e. in Ξ}.

Assume that F α ∈ W 1,∞(0, T ; [L2(Γα2 )]d), fα ∈ W 1,∞(0, T ; [L2(Ωα)]d),
α = 1, 2, u0, u1 ∈ V and β0 ∈ Λ.

Let a, b be two bilinear, continuous and symmetric mappings defined
on H1 ×H1 → R as

a(v,w) = a1(v1,w1) + a2(v2,w2), b(v,w) = b1(v1,w1) + b2(v2,w2)

∀v = (v1,v2), w = (w1,w2) ∈H1, where, for α = 1, 2,

aα(vα,wα) =

∫
Ωα

Aαε(vα)·ε(wα) dx, bα(vα,wα) =

∫
Ωα

Bαε(vα)·ε(wα) dx.

Consider L as an element of W 1,∞(0, T ;H1) such that ∀ t ∈ [0, T ]

〈L,v〉 =
∑
α=1,2

∫
Ωα
fα · vα dx+

∑
α=1,2

∫
Γα2

F α · vα ds ∀v = (v1,v2) ∈H1.
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We define the following mappings:

J : L2(Ξ)× (H1)3 → R,

J(β,u,v,w) =

∫
Ξ
µ([vT ]) |κ([uN ], β) | | [wT ] | dξ

∀β ∈ L2(Ξ), ∀ (u,v,w) ∈ (H1)3,

γ : H1 × [L2(Ξ)]2 → R, γ(u, δ, η) =

∫
Ξ

CN
b
ϑ([uN ]2) δ η dξ,

$ : L2(Ξ)→ R, $(η) =

∫
Ξ

w

b
η dξ ∀u ∈ H1, ∀ δ, η ∈ L2(Ξ).

Assume the following compatibility condition: ∃ l ∈ H such that

(l,v) + a(u0,v) + b(u1,v)− (κ([u0N ], β0), vN )Ξ

+J(β0,u0,u1,v) = 〈L(0),v〉 ∀v ∈ V .
(3.11)

A variational formulation of the problem Pc is the following.

Problem Pv : Find u ∈ W 2,2(0, T ;H)∩W 1,2(0, T ;V ), β ∈ W 1,∞(0, T ;L∞(Ξ))
such that u(0) = u0, u̇(0) = u1 in Ω1 ∪ Ω2, β(0) = β0 in Ξ, β(τ) ∈ Λ for
all τ ∈ ]0, T [ and a.e. t ∈ ]0, T [

(ü,v − u̇) + a(u,v − u̇) + b(u̇,v − u̇)− (κ([uN ], β), vN − u̇N )Ξ (3.12)

+J(β,u, u̇,v)− J(β,u, u̇, u̇) ≥ 〈L,v − u̇〉 ∀v ∈ V ,

(β̇, η − β)L2(Ξ) + γ(u, β, η − β) ≥ $(η − β) ∀η ∈ Λ. (3.13)

The formal equivalence between the variational system (3.12),(3.13) and the
classical problem (3.4)–(3.10) can be easily proved by using Green’s formula.

3.3. Existence and uniqueness of variational solutions

The following existence and uniqueness result holds.

Theorem 3.1. Under the above assumptions, there exists a unique solution
of the Problem Pv.

Proof. We apply Theorem 2.1 to H0 = H, V0 = V , U0 = H1−ι, where
1/2 > ι > 0, Π0 = L2(Ξ), Λ0 = Λ, u0 = u0, u1 = u1, a0 = a, b0 = b,
L0 = L, γ0 = γ −$ and

φ0(t, η,u,v,w) = −(κ([uN ], η), wN )Ξ + J(η,u,v,w)

∀ t ∈ [0, T ], ∀ η ∈ L2(Ξ), ∀u, v, w ∈ V .
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One can easily verify the properties (2.1)-(2.11). Thus, by Theorem 2.1
there exists a unique solution of the problem Pv. 2

Note that the same method can be used to study the dynamic contact
problem with irreversible adhesion (see, e.g. [29]), for which the evolution
of the intensity of adhesion is governed by a differential equation.
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[26] M. Raous, L. Cangémi and M. Cocou, A consistent model coupling adhesion,
friction, and unilateral contact, Comput. Meth. Appl. Mech. Engrg., 177 (1999), 383-
399.

[27] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic
Contact, Lect. Notes Phys. 655, Springer, Berlin, Heidelberg, 2004.

[28] J. Simon, Compact sets in the space Lp(0, T ;B), Ann. Mat. Pura Appl., 146 (1987),
65-96.

[29] M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact
Problems with Adhesion or Damage, Chapman & Hall/CRC, Boca Raton, 2006.

Marius Cocou

Aix-Marseille University, CNRS, LMA UPR 7051, Centrale Marseille

Address:
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