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A class of implicit evolution inequalities and
applications to dynamic contact problems
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Abstract - This paper deals with the analysis of a class of implicit vari-
ational inequalities which generalizes some dynamic contact problems cou-
pling adhesion and friction between two viscoelastic bodies of Kelvin-Voigt
type. Existence and uniqueness results are proved for a general system
of evolution inequalities that constitutes a unified approach to study some
complex dynamic surface interactions, including rebonding, debonding and
friction conditions. The proofs are based on incremental formulations, sev-
eral estimates, compactness arguments and a fixed point technique. These
results are applied to dynamic frictional contact conditions with reversible
adhesion and the coefficient of friction depending on the slip velocity.
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1. Introduction

The aim of this paper is to study a system of evolution inequalities that
generalizes some interaction laws including dynamic contact, recoverable
adhesion and friction between two viscoelastic bodies, when the coefficient
of friction depends on the slip velocity, which represents a more realistic
model than the one described in [11].

An interface model coupling unilateral contact, irreversible adhesion and
local friction for elastic bodies was considered in the quasistatic case in [26]
and its mathematical analysis has been provided in [9].

Nonlocal friction laws, given by appropriate regularizations of the nor-
mal component of the stress vector which occurs in the Coulomb friction
conditions, and normal compliance models have been considered by several
authors in the (quasi)static case, see, e.g. [17, 27] and references therein.

Dynamic frictional contact problems with normal compliance laws for a
viscoelastic body have been studied in [23, 17, 18, 5] and dynamic unilateral
or bilateral contact problems with friction for viscoelastic bodies have been
considered in [16, 12, 19, 20, 10].

More recently, dynamic frictionless problems with adhesion were studied
in [6, 21, 29] and a dynamic viscoelastic problem coupling unilateral contact,
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recoverable adhesion and nonlocal, mathematically consistent, friction was
analyzed in [11].

Some interesting relaxed unilateral contact condition with pointwise fric-
tion have been proposed in [25] in the static case and extended in [8] to the
quasistatic case.

This paper is organized as follows. First, existence and uniqueness results
are proved for a general system of evolution inequalities that constitutes
a unified approach to study some complex dynamic surface interactions,
including rebonding, debonding and friction conditions.

Second, the classical formulation of a dynamic contact problem with
adhesion and friction is presented and a corresponding variational formu-
lation is given as a system which contains an implicit evolution variational
inequality coupled with a parabolic variational inequality.

Finally, based on the previous abstract results, the existence and unique-
ness of variational solutions are analyzed.

2. Analysis of a system of evolution inequalities

Let (H0> H’ ('7'))7 (V0> ||H7 <'7'>)’ (UOa ”'HUO) and (HOa HHO> ('7')1_[0) be
four Hilbert spaces such that Vo C Uy C Hp, the imbedding from Vj into Uy
is compact and V dense in Hy.

Let Ag be a closed convex set in Il such that 0 € Ag. Suppose also that
Ag is bounded, to simplify the estimates.

Define two bilinear and symmetric forms, ag, by : Vo x Vo = R and the
mapping 7o : Vo x Iy x IIg = R such that

Ima, mp >0 ao(u,v) <mq|[ull [0, bo(u, v) <mp[luflof|, — (2.1)

JA, B>0 ap(v,v) > A|v|]?, bo(v,v) > Blv||*> Vu,v € Vo, (2.2)

Vu € Vo, 7(u,-,-) is a bilinear and symmetric form, (2.3)
dm, > 0 such that Vui;o € Vg, V12 € Ag, V1 € Iy,

[70(u1, 61,m) = Y0(u2, 62, )| < M ([lur — wall + 01 — 02lmy) 1y, (2:4)
Yo(u,m,m) >0 Vu € Vp, Vn € 1. (2.5)
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Let ¢ : [0,T] x Ag x V@ — R be a mapping such that

[\
D

oo(t,m,-,-,-) is sequentially weakly continuous,

[\)
0.¢]

(
bo(t,n, u, v, w1 + wa) < Po(t,n,u,v,w1) + ¢o(t,n,u,v,ws),
do(t,n, u,v,0w) = 6 ¢o(t,n, u, v, w),

(

— —~ — —
=) ~
~— ~— ~— ~—

¢0 0,0’0707w) = 07

vVt e [0,T],Vn € Ao, Vu, v, w, wio € Vo, V0 >0,

3 meg > 0 such that VtLQ S [O,T], V?]LQ € Ao, Vul,g,vm,wlg e W,

|bo(t1, 1, w1, v, wr) — ¢o(ty, m,ur, v, w2)
(2.10)

+  ¢o(ta, m2, uz, v2,w2) — ¢o(t2, N2, vz, v2,w1)]

<myg ([t1 — to] +|m — 2l + [[ur — uz2llv, + [[v1 — vallvy) lwr — wall.

Assume that Ly € Wh(0,T;Vp), ug, u1 € Vo, Bo € Ao and that the
following compatibility condition holds: iy € Hy such that Vw € Vj

(lo, w) + ao(uo, w) + bo(u1, w) + ¢o(0, Bo, uo, ur, w) = (Lo(0),w). (2.11)
Consider the following problem.

Problem Q: Findu € W22(0,T; Ho)nW12(0,T; Vp), B € WH>(0, T;1lp)
such that u(0) = uo, @(0) = w1, B(0) = Bo, B(r) € A for all 7 €]0,T7,
and a.e. t €]0,T]

(i, v — @) + ap(u, v — u) + bo(w, v — @) (2.12)
+do(t, B,u, 4,v) = ¢o(t, B, u, 4, 4) 2 (Lo,v—1u) Vv € Vo,
(B0 = B)rig +70(u, B, = B) 20 V1 € Ao (2.13)
Define the set
Xo = {n € C°([0,T]; o) ; 9(0) = fo, n(t) € Ao Yt €]0,T]},
where the Banach space C°([0,T]; 1) is endowed with the norm

e = nas lexp(—kt) [n(t)|n,] for all p € C°([0,T];1y), &k > 0.

)

The existence and uniqueness of the solution of the problem () will be proved
by using the following lemmas and a fixed point argument, see also [11] for
the particular case when the coefficient of friction is slip rate independent.
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Lemma 2.1. For each 8 € Xq there exists a unique ug € W22(0,T; Hy)N
WL2(0,T; Vo), solution of the inequality (2.12) such that wug(0) = wup,
The proof is based on some incremental formulations, see, e.g. [10], and
on a useful estimate, see [22] or [28], which, when applied to the spaces

Vo C€ Uy C Hy, implies the following result: for every ¢ > 0 there exists
C¢ > 0 such that

llullv, < €llull + Celul Yu € V. (2.14)

The full proof will be presented in a forthcoming paper.

Lemma 2.2. Let 81, B2 € Xo and let ug,, ug, be the corresponding so-
lutions of (2.12) with the same initial conditions g, uy, respectively. Then
there exists a constant Ci > 0, independent of Bi1, B2, ug,, ug,, such that
forall t € [0,T]

g, (£) — g, ()17 + [lug, () — ug, (D]* < O /0 |B1(s) — Ba(s)[fy, ds. (2.15)

Proof. Let ug,, ug, be the solutions of (2.12) corresponding to fi, B2 €
Xop. Taking in each inequality v = 7g, and v = 1g,, respectively, for a.e.
s €]0, T it follows that
(g, — gy, Upy, — Upy) + ao(up, — up,, g, — Ug,) + bo(Ug, — Ug,, Ug, — Ug,)
< ¢0(5,ﬁ1,u51,11/31,u52) — ¢o(s, b, u51,ﬂ51,ﬂ51)
+¢0(57 B2, uﬁzvﬂﬁw uﬂl) - d)O(S’ B2, UBy s uﬁzquQ)
< m¢>( ‘Bl - /BQ‘HO + Huﬁl - uﬁzqu =+ Huﬁl - u52”Uo )Huﬁl - uﬁz”7

where the second inequality follows by (2.10).
For all t € [0,T], as the solutions wug,, ug, verify the same initial con-
ditions, integrating between 0 and ¢ yields

1 1

§|ZZ51 (t) — Ug, (t)|2 + 5“0 (u51 (t) — UBy (t), ugy (t) — UBy ()

t t
+/0 bo(tig, — Up,, g, — Up,) ds < m¢/0 181 — Baln, ||tp, — g, ds

t
+m¢/0 ( Huﬂl - uﬁz”Uo ||u/81 - uﬁb” + ||uﬂl - uﬁb”Uo Huﬂl - uﬂQH ) ds.

Using (2.14), Young’s inequality for the last three terms with appropriate
constants, V{ - ellipticity of ag, by and Gronwall’s inequality, the estimate
(2.15) follows. O
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Now, for every element v € W2(0,T; Vj), consider the inequality (2.13)
with the initial condition [y, the solution of which is denoted by 3,. The ex-
istence and uniqueness results for this parabolic inequality follow by classical
references, see, e.g. [4], [1], [2], and a direct proof is presented in [11].

Lemma 2.3. For each u € WY2(0,T;Vp) there erists a unique solution
By € XoNWh(0,T;1g) of the inequality (2.13).

Lemma 2.4. Let uy, us € WY2(0,T;Vy) and let By, Bu, € Xo be the
corresponding solutions of (2.13) with the same initial condition By, respec-

tively. Then there exists a constant Cy > 0, independent of ui, u2, Buy, Buys
such that for all t € [0,T)

t
|Bus () = Bus (1), < 02/0 lu(s) = ua(s)|* ds. (2.16)
Proof. Let B,,, Bu, be the solutions of (2.13) corresponding to w1, ua.

Taking in each inequality n = By,, 7 = Bu,, respectively, for all ¢ €]0, T,
integrating over [0, ], using (2.4) and some elementary inequality yield

1
LB (8 — Bua O,
t
< / ['70(“2761@7 Bul - Buz) - 70(“17/8u176u1 - Buz)] ds
0
t
= /0 ['70(“2751@7 Bul - Bu2) - 70(u2aﬁu175u1 - Buz)] ds
t
+/ [’70(”275u175u1 - Buz) - 70(ulaﬁupﬂu1 - BUQ)] ds
0
t t
<o [V = By ds [ =l [y = Bl ds

t 3 !
< 77;7/0 [ur (5) — ua(s)]|* ds + T/O 1B (5) = Bus ()11, ds.

By Gronwall’s inequality the estimate (2.16) is established. O
Now we can prove the following existence and uniqueness result for the
abstract problem Q.

Theorem 2.1. Assume that conditions (2.1)-(2.11) hold. Then there erists

a unique solution of the problem Q).

Proof. Forevery 8 € X let ug € W2%(0,T; Hy) NWh2(0,T;V;) be the
solution of the inequality (2.12) corresponding to [ such that ug(0) = uo,
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ug(0) = w1 and let B,, € Xo N WH®(0,T;Iy) be the solution of the
inequality (2.13) corresponding to ug. Define the mapping 7 : Xo — Xp
as VB € Xo TpB = Puy- We shall prove that 7 : Xo — X has a unique
fixed point, which is equally the solution of the problem Q.

For all f1, B2 € X, for all ¢ € [0,7], (2.16) and (2.15) imply that

t
TBi(t) — Th(B), < / g (5) — gy (5)|2 ds

<1 /0 t < /0 " exp(—2kr) - exp(2kr) |B1(r) — Ba(r)[, dr) ds

! exp(2ks
<C1 G2 |5 —52”%/ Xp2<k)d3
0
C, C
< - exp(2ht) B~ Ball}.

Then
T80 = Thall = mas exp(—kt) [T (8) = TBa(D)ln]
< VC1 Cy
- 2k
Hence, for all g1, B2 € Xo

|81 — B2llk-

VC1 Cy
2k

17581 —TBallx < 181 — B2k
so that if k is sufficiently large it follows that 7 is a contraction and its
fixed point is the solution of the problem Q. O

3. A dynamic contact problem with adhesion and friction

Consider two viscoelastic bodies, characterized by a Kelvin-Voigt constitu-
tive law, which occupy the reference domains Q% of R%, d = 2 or 3, with
Lipschitz continuous boundaries I'* = 0Q%, o = 1,2. Assume the small
deformation hypothesis. Let I'Y?', I'S and I'§ be three open disjoint suffi-
ciently smooth parts of I'® such that T = T UT5 UT5 and, to simplify the
estimates, meas(I'Y) > 0, a=1,2.

Let y*(x*,t) be the position at time ¢ € [0,7], where T > 0, of
the material point represented by x® in the reference configuration and
u(x?,t) := y*(x*,t) — x® be the displacement vector of ® at time ¢, with
the Cartesian coordinates u® = (uf,...,u§) = (W, ug).

Let €%, with the Cartesian coordinates (g;; (u®)), and o®, with the
Cartesian coordinates (o7;), be the infinitesimal strain tensor and the stress
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tensor, respectively, corresponding to Q%, o = 1,2. The usual summation
convention will be used for i, j, k, =1, ...,d.

Assume that the displacement U® = 0 is prescribed on I'{ x 10, T[, o =
1,2, and, to simplify, that the densities of both bodies are equal to 1. Let
f=(f' 5 and F = (F!, F?) denote the given body forces in Q' UQ? and
tractions on I'} U T3, respectively. The initial displacements and velocities
of the bodies are denoted by ug = (u}, u3), u1 = (ul,u?).

Suppose that the solids can be in contact between the potential contact
surfaces Fé and F2C that can be parametrized by two C! functions, ¢!, ©?,
defined on an open subset Z of R~ such that ¢'(¢) — p?(§) >0 VEe€ 2
and each I'g is the graph of ¢ on Z that is T% = { (&, p*(¢)) € R%; € €
E}, a =1, 2. Let m® : = — R, with m!(&) := (Vp!(€), —1), m?(§) =
(=V2(£),1), V& € E, be the outward normal to I'%, a = 1, 2. Since the
displacements, their derivatives and the gap are assumed small, by using
a method similar to the one presented in [3] (see also [10]) the following
unilateral contact condition at time ¢ on the set = is obtained:

0 < (&) — (&) + ub(&,¢¥(€), 1) — ud(&, v2(€), 1)
V(&) - THE @1 (€),t) + V2 (€) - T2(E, 92 (€),t) VE €

0

Using the definition of m!, m?, this relation can be written under the
following form: for all £ € Z

m* (&) - u'(£,0"(8), 1) + m* (&) - uP (&, 9°(£), 1) < ' (&) — ¥*().  (3.1)

Let m® := m®/|m®| denote the unit outward normal vector to I'%, o =
1, 2, and define the initial normalized gap between the two contact surfaces
by

v (&) — (&)

PO = A N eor

V¢ € E

Let the normal and tangential components of a displacement field v*, o =
1, 2, of the relative displacement corresponding to v := (v!, v?), including
the initial gap gg in the normal direction, and of the stress vector o*n® on

I'Z be given by

v 1= v, t) = v¥(§, ¥ (), 1),

/Uj.\éf = U?\[f(ga t) = va<£7 (pa(f),t) : na(€)7 ’U% = ’U%(gvt) =v* — v?\é/na7

(3.2)
[UN] = [UN](gvt) = Ujl\f + sz\] — 9o, [vT] = [UT](gat) = v%‘ - 'U%,
o =03 (&, t) = (6*n®) -n®, 0% =03 t) =0"n" —oyn®,
for all ¢ € E and for all ¢t € [0,T]. Let g := —[un] = gy — uf — v’

be the gap corresponding to the solution u := (u!,u?). Assuming that
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Vl(€) ~ V?(€), it follows that the unilateral contact condition (3.1) at
time ¢t can be written as

[un] (€,t) = —g(£,t) <0 V¢ € E. (3.3)

Let 8 denote an internal state variable, see, e.g. [13]-[15], representing the
intensity of adhesion or the adhesion field (8 = 1 means that the adhesion
is total, 8 = 0 means that there is no adhesion and 0 < 8 < 1 is the case of
partial adhesion).

3.1. Classical formulation

Let A%, B denote two fourth-order tensors, the elasticity tensor and the
viscosity tensor corresponding to %, with the components (A;) and
(Bf‘jkl), respectively. Assume that these components satisfy the follow-

ing classical symmetry and ellipticity conditions: C;ji = Cjire = Criij €
L>(Q*),Yi, 4, k, 1 =1, ...,d, Ja¢c > 0 such that Cjju7ijmm > ac 7iTij,
V1 = (1) verifying 7;; = 75, Vi, j = 1,...,d, where Cyju = A%klv

C =A% or Cyw =By, C=B* Vi, j, k, 1=1,....d, a=1,2.

We choose the following state variables: the infinitesimal strain ten-
sor (e, €?) = (e(u'),e(u?)) in Q' U Q2, the relative normal displacement
[un] = uly +u3; — go, the relative tangential displacement [ur] = ul —u?,
and the intensity of adhesion 5 in Z.

Let u= (&, [wr]) >0 be the slip rate dependent coefficient of friction
and assume that p : Z x R? — R, is a bounded function such that
for a.e. £ € 2, p(,-) is Lipschitz continuous with the Lipschitz constant
independent of ¢ and for any v € R%, u(-,v) is measurable.

Define a truncation operator ¥ = ¥;, by ¥ : R — R, 9(s) = —lp if
s < —lp, U(s)=1s if |s| <lp and V(s) =1y if s> Iy, where lp >0isa
given characteristic length (see, e.g. [26, 29]).

Let k:R x[0,1] = R be a bounded Lipschitz continuous function such
that x(0,0) = 0. Note that various normal compliance conditions, friction
and adhesion with damage laws can be obtained by choosing particular
functions as k, see [17, 18, 21, 27, 29].

We consider the following classical formulation of the dynamic contact
problem coupling adhesion and friction.

Problem P.: Find (u!,u?), 8 such that u(0) = ug = (u},ud), 4(0) =
up = (ui,u?) in Q' x Q% 3(0) = By in Z and, for all t €]0,T],

4 —dive*(u®,u®) = f¢ in Q°,
o%(u*,u*) = A% (u”) + B%(1*) in Q°,
u*=0 on I'Y, o*n*=F* on I'Y, a=1,2,

o'n'+06’n?>=0 in Z,

N TN TN TN
g o O
D22 Z8 2
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on = k(lun], ) in E, (3.8)
lor| < p([er]) |ony| in E and (3.9)
lor| < p(lar]) [on | = [ur] =0,
lor| = p(lér)) [on| =30 >0, [ur] = 0o,
Bel0,1] in = and (3.10)

b3>w if B=0,
b =w—CnO(un]?) B8 if B €]0,1],
b3 <w—Cnd(un)?) if B=1,

where 8y € [0,1]in E, Cy >0, b>0, w >0, 6® = o*u*u%), a=1,2,
oN =0k, O =0, o:=0l

3.2. Variational formulation
We adopt the following notations:
H* = [H5(QY)]? x [H*(02)]? Vs €R,

<’U,w>_375 = <v1,'w1>H75(Q1)7H5(Q1) + (v2,w2>H75(Q2)7H3(Q2)
Vo= (vh,v?) € H* Vw = (w!,w?) € H".

Define the Hilbert spaces (H, |.|) with the associated inner product denoted
by (.,.), (V, ||.|) with the associated inner product (of H') denoted by {(.,.)
and the set A as follows:

H = H° = [L2(QY)]" x [L2(92)]?, V = V! x V2, where
Ve ={v*e [Hl(Qa)]d; v* =0 ae onI'{}, a=1,2,
A={ne L*Z);ne[0,1] ae. in =}.

Assume that F® € Wh(0,T;[L?(T$)]%), f* € WHe(0,T; [L?(Q%)]%),
a=1,2,up, u; € V and fy € A.

Let a, b be two bilinear, continuous and symmetric mappings defined
on H'x H' - R as

a(v,w) = a' (v}, w') + a*(v?, w?), blv,w) = b (v, w') + b (v?, w?)
Vo = (v, v?), w= (w!,w?) € H', where, for a=1,2,

a®(v*, w*) = A%e(v”)-e(w?®) dz, b* (v, w*) = BY(v")-e(w") dx.
Qo Qo
Consider L as an element of WH>(0,T; H') such that ¥t € [0, 7]

(L,v) = Z fe-v%de + Z F*. v%ds Yv= (v} e H.
a=1,278 a=1,271%



176 MAarius Cocou

We define the following mappings:

J:L*(E) x (HY)? - R,

J(B,u,v,w) = | p(lor]) | w(fun], B) | fwr] | d€

VB e LAE), V(u,v,w) € (H1)3,

[1

Cn

v H' x [L2(E)]2 = R, y(u,d,n) = T’lg([uNP)énd&

T

w: L*(E) = R, w(n) :/Higndf Vu € H', V4,1 € L*E).

Assume the following compatibility condition: 31 € H such that

(l,'U) + CL('LL(),’U) + b(ul,'v) — (I{,([UON], BO);UN)E

(3.11)
+J(Bo, up, u1,v) = (L(0),v) Vv € V.

A variational formulation of the problem P, is the following.
Problem P, : Findu € W22(0,T; H)NnW2(0,T; V), 3 € WL>(0,T; L*(Z))

such that u(0) = ug, w(0) = w1 in Q' U Q% B(0) = By in Z, B(r) € A for
all 7 €]0,7[ and a.e. ¢t € 10,7

(,v —u) + a(u,v —u) + b(u,v —u) — (k([un], B), vy —UnN)= (3.12)
+J(B,u,u,v) — J(B,u,w,u) > (L,v—u) Yv eV,
(8,1 = B) 12z +v(w, B,n— B) > w(n—B) ¥y € A (3.13)

The formal equivalence between the variational system (3.12),(3.13) and the
classical problem (3.4)—(3.10) can be easily proved by using Green’s formula.
3.3. Existence and uniqueness of variational solutions

The following existence and uniqueness result holds.

Theorem 3.1. Under the above assumptions, there exists a unique solution
of the Problem P,.

Proof. We apply Theorem 2.1 to Hy = H, Vo =V, Uy = H'™*, where
1/2>L>0, H0:L2(E), Ao = A, ugp = ug, u1 = uwy, ag = a, by = b,
Lo=L, vo=~v—w and
¢0(ta77,U,’Ua ’lU) - _(K([UN])U))MN)E + J(nu u,v, ’U))
vVt € [0,T], Vn € L*(E), Yu, v, w € V.
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One can easily verify the properties (2.1)-(2.11). Thus, by Theorem 2.1
there exists a unique solution of the problem P,. O

Note that the same method can be used to study the dynamic contact

problem with irreversible adhesion (see, e.g. [29]), for which the evolution
of the intensity of adhesion is governed by a differential equation.
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