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Abstract - The paper deals with macroscopic elasto-plastic models able to
describe the material behaviour of the crystalline body containing defects at
the microstructural level (structural defects), such as dislocations and discli-
nations. Within the finite elasto-plasticity the defects will be presented in
the so-called plastically deformed configurations, which are embedded with
a non-Riemannian geometric structure, characterized by the plastic distor-
tion and the so-called plastic connection. There are presented different,
independent ways from the geometrical point of view in defining the two
types of defects, which lead to completely different mathematical descrip-
tions or theories. The presence of the Burgers and Frank vectors is the
starting point in constructing the dislocation and disclination models. The
consequences that follow from the finite elasto-plastic deformations, when
the small elastic and plastic distortions are small, are compared with the
incompatibilities in small deformation elasto-plasticity. The energetic argu-
ments are analyzed to show how the structural defects can be incorporated
into the models.
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1. Introduction

The papers deals with macroscopic elasto-plastic models able to describe
the material behaviour of the crystalline body containing defects at the
microstructural level (structural defects), such as dislocations and disclina-
tions. Within the finite elasto-plasticity the defects will be presented in the
so-called plastically deformed configurations, which are embedded with a
non-Riemannian geometric structure, characterized by the plastic distortion
and the so-called plastic connection. The defects such as dislocations and
disclinations are characterized (from physically point of view) by the pres-
ence of zones with supplementary atoms and by their geometrical measure
in terms of the torsion and curvature of the so-called plastic connection - see
de Wit [17], Kröner [26], [27], Cleja-Ţigoiu [7], [8], [9]. The point defects (see
Kröner [26]), which means extra-matter or voids from the physical point of
view, have been characterized from the geometrical point of view in terms

9
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of the non-metric property of the plastic connection and are not considered
here. Such type of defects have been included for instance in the paper by
Cleja-Ţigoiu and V. Ţigoiu in [10]. In [14], within the small deformation
framework, de Wit provided that is not possible to have a disclinations the-
ory without dislocations, but a a pure dislocations theory can be constructed.
The presence of the Burgers and Frank vectors is the starting point in con-
structing the dislocations and disclinations models - see Gurtin [21], [22].
Under the constitutive relationships the geometric aspects of the deforma-
bility of materials with microstructural defects are related with the forces
(i.e. with the statics) and the balance equations for forces lead to initial and
boundary value problems, which complete the models - see Acharya [2] and
Gurtin et al., [22].

Material properties of the metals are strongly influenced by the mi-
crostructural and substructural changes during the deformation processes,
operating on the structural (micro scale) as well as the substructural (sub-
micro scale). The scale level in the deformed material is classified as atomic
scale in the range of 1 to 10 nanometer, dislocation scale from 0.1 to 1 mi-
cron, grain scale from 1 to 100 µm, and macro scale if the size is grater than
100 µm.

From the historical point of view, Volterra (1909), [46], was the first
who introduced lattice defects related to their translational and rotational
motions, called distortions. Disclinations, as a second species of deforma-
tion carrying defects, are especially adapted to rotational modes and to the
mesoscopic and structural levels, unlike the dislocations, which are especially
adapted to translational modes and to the microstructure. The dislocations
as well as the disclinations have been illustrated similarly with the help of
a Volterra process: an elastic hollow cylinder is cut by a median plane, the
two shores of the cut are rotated (disclinations) instead of the translated
(dislocations) relative to each other. The strength of dislocation is deter-
mined by Burgers vector b, which is equal to the translational displacement
of the non-deformed surfaces of the cut bounded by a dislocation line. In a
similar way, the strength of dislocation is related to an axial vector Ω (Frank
vector), which defines the mutual rotation of the undeformed surfaces of the
cut bounded by a disclination line.

There are different, independent ways from the geometrical point of view
in defining the two types of defects, which include dislocations and discli-
nations, namely by considering the discrete lines of defects, continuous dis-
tributions of the defects, or continuous distribution of infinitesimal loops,
which may or may not be related to each other, and which lead to com-
pletely different mathematical descriptions or theories. Nabarro [32], was
the first who paid attention to the disclinations, as physical objects, as a
special and strong source of internal energy which is very large in comparison
to the energy of standard dislocations.
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The transmission electron microscopy put into evidence the occurrence of
self organized structures, ladder like structure or persistent slip bands which
evolve, and provides measurements of wavelengths and of the dislocations
and disclinations global average densities - see for instance references
in [39]. The physical examples of rotational defect structures, related with
disclinations and which can be observed in crystalline materials are pre-
sented by Romanov in [38]. The properties of the disclinations are also dis-
cussed as well as disclinations models are developed to explain the physical
and mechanical properties of materials. Romanov and Kolesnikova, see [39]
proposed that the diffraction contrast observed in the transmission electron
microscopy to be associated with the elastic distortion of the crystalline lat-
tice caused by disclinations. The evolution of the dislocation-disclination
ensemble is described by Romanov [38], Romanov and Kolesnikova [39],
Walgraef and Aifantis [47], [49], Seefeldt and Klimanek [40], [41] and Seefledt
et al. [42]. The evolution equations in terms of the densities of dislocations
and disclinations, denoted by ρ and θ can be found in [38], as follows

∂ρ

∂t
= F (ρ)− L(θ)Bρ2 −Mρθ +D

∂2ρ

∂ x2
,

∂θ

∂t
= −Q(θ) + µMρθ.

(1.1)

F (ρ) is the source term for dislocations, L(θ) reflects the role of the discli-
nations on the process of annihilation, interactions of disclinations with dis-
locations lead to a decrease of the dislocation density ρ with the rate Mρθ
and to the formation of disclination defects (with µ << 1). The mobility of
dislocations is described with the aid of diffusion-like term, with D the dif-
fusion like coefficient. The parameters which enter the evolution equations
have to be determined from microscopic considerations.

The aims of the researches in the mentioned direction are motivated
to schematize the essential microstructural features of the deformed single
crystals and to connect the above mentioned defects to yield stress contri-
butions.

There are four main structural levels which are dealt with the physics
of plasticity, a microscopic level - the scale of the lattice constant, a meso-
scopic level - the scale of dislocation substructure, a structural level - the
scale of grains in polycrystals, a macroscopic level - the scale of an average
physical and mechanical properties. The mesoscopic level (of dislocations)

can be characterized by lmeso =
Gb

σl
, where G is the elastic shear modulus,

b is the magnitude of lattice dislocation Burgers vector, σl is the resistance
to motion of an individual dislocation. Generally lmeso ∈ [0.1µm, 1.0µm].

In the present paper, after a short introduction, the incompatibilities in
classical elasticity are presented within the small deformation formalism, the
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consequences that follow from the finite elasto-plastic deformations when the
small elastic and plastic distortions are considered, the different approaches
to structural defects like dislocations and disclinations are analyzed and fi-
nally the characteristic features of the model with configuration with torsion
(namely an anholonomic configuration, see [1]) is presented to show how the
structural defects can be incorporated into the models.

Further the following notations will be used:
• Lin− the set of the linear mappings from the vector space V to V, i.e the
set of second order tensor; u·v,u×v,u⊗v denote scalar, cross and tensorial
products of vectors; (u,v, z) := (u×v) ·z is the mixt product of the vectors
from V; a⊗ b and a⊗ b⊗ c are defined to be a second order tensor and a
third order tensor by - (a⊗b)u = a(b ·u), and (a⊗b⊗c)u = (a⊗b)(c ·u),
respectively, for all vectors u. For A ∈ Lin - a second order tensor -, we
denote {A}S , {A}a for the symmetric and skew-symmetric parts of A. I
is the identity tensor in Lin, AT denotes the transpose of A ∈ Lin. We
mention also the definition for the trace: trA((u × v) · z) = (Au,v, z) +
(u,Av, z)+(u,v,Az) and for the tensorial product A⊗a for a ∈ V, viewed
as a third order tensor givem by: (A ⊗ a)v = A(a · v),∀v ∈ V. ∂Aφ(x)
denotes the partial differential of the function φ with respect to the field A.
• For the differential operators we use: Curl of a second order tensor field
A as a second order tensor field defined

(curlA)(u× v) := (∇A(u))v − (∇A(v))u, ∀u,v ∈ V (1.2)

We remark that (curlA)pi = εijk
∂Apk
∂xj

are the components of curlA given

in a Cartesian basis. ∇A is the differential (or the gradient) of the field A,
in a coordinate system {xa} (with respect to the reference configuration),

∇A =
∂Aij
∂xk

ei ⊗ ej ⊗ ek. The coordinate basis vector corresponding to xa

are denoted by ea, while the dual basis ea, is defined by the inner product
eb ·ea = δba. We use the notation for a third order field Γ[Fp,Fp], associated
with any second order field Fp, and third order tensor field Γ

((Γ[Fp,Fp])u)v = (Γ(Fpu))Fpv, (1.3)

2. Modeling the structural inhomogeneities in finite elasto-
plasticity

The plastic deformability of metals, which are crystalline materials, is pro-
duced due to the existence of lattice defects inside the microstructure. Crys-
talline materials behave like an elastic body, either if there are not lattice
defects, or if the forces acting on the body are not sufficiently large to move
these defects. The lattice defects, among which the dislocations, discli-
nations and point defects were mathematically modeled by the differential
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geometry concepts, as torsion, curvature and measure of non-metricity - see
Kröner [27] and Noll [37]. The linear approximation of the continuum the-
ory of lattice defects within the non-Euclidean geometry has been proposed
by de Wit [17].

We provide now the fundamental concepts related to the model of the
materials which contain defects, as a combination of dislocations and discli-
nations, inside the microstructure, as it can be derived within the second
order finite elasto-plasticty, following the papers by Cleja-Ţigoiu [7], [8], [9].

As a first step we recall the classical results concerning the integrability
theorems (in the smooth case).

Theorem 2.1. (First Integrability Theorem.) Let U be a simply con-
nected domain in R3 and F : U −→ Lin. The following three assertions are
equivalent

a. F is a gradient ,

b. (∇F(x)(u))v − (∇F(x)v)u = 0, ∀ x ∈ U , ∀u,v ∈ V

c. (curl F(x))(u× v) = 0, ∀ x ∈ U , ∀u,v.

(2.1)

Definition 2.1. A connection Γ is integrable if there exists a tensor field F
such that the partial differential equation (written in a local representation)
is satisfied

Γ = F−1∇ F, ∀ x ∈ U , (2.2)

Definition 2.2. The fourth order Riemann-curvature tensor R, attached to
Γ, is defined by

R(u,v) = ((∇ Γ)u)v − ((∇ Γ)v)u + (Γu)(Γv)− (Γv)(Γu). (2.3)

The equation written in definition (2.2) is known as the second integra-
bility condition. The following theorem states a relationship between the
two definitions.

Theorem 2.2. The second integrability condition takes place if the Riemann-
curvature tensor R belonging to Γ is vanishing, which means the Frobenius
condition holds.

The models for elasto-plastic materials with structural defects are de-
veloped within the constitutive framework of continuum mechanics, using
general concepts given by Noll [37], Truesdell and Noll [45], see also Marsden
and Hughes [31].

Let us introduce the macro balance equations in the deformed configu-
ration, in forms that contain not only the Cauchy stress, but also the higher
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order stresses, as the so-called macro-momentum, following Fleck et al. [18],
namely

1. balance of the linear momentum∫
χ(P,t)

ρ̂adV =

∫
χ(P,t)

ρ̂ bdV +

∫
∂χ(P,t)

t(n)dA. (2.4)

2. balance of the angular momentum∫
χ(P,t)

r ∧ ρadV =

∫
χ(P,t)

r ∧ ρ bdV +

∫
∂χ(P,t)

r ∧ t(n)dA+

+

∫
χ(P,t)

ρ̂ BmdV +

∫
∂χ(P,t)

M(n)dA,

(2.5)

where χ is the motion of the body, ρ̂ is the mass density in the deformed
configuration and r ∧ a is a skew-symmetric tensor, such as (r ∧ a)w =
(r × a)×w, ∀ r,a,w ∈ V.

Remark 2.1. The balance laws for linear and angular momenta lead to
the existence of the Cachy non-symmetric stress tensorial field, T such
that Tn = t(n), and of the macro momentum, a third order tensor µ,
which satisfies the relationship µn = M(n), and consequently local balance
equations for the linear and angular momentum can be derived

div T + ρ̂b = ρ̂a,

−2Ta = div µ+ ρ̂Bm.
(2.6)

As a direct consequence of the balance equations written above, we write
the balance equation

div
(
Ts − 1

2
{div µ}a

)
+ ρ̂b = ρ̂a, (2.7)

and the compatibility condition {div µ}s + ρ̂Bm = 0, if Bm ∈ Sym holds.
We describe the behaviour of an elasto-plastic material, as in Cleja-

Ţigoiu [8] and [9], based on the existence of time dependent configurations
with torsion, denoted by Kt ≡ K. The configuration with torsion is viewed
like a second order deformation, namely a pair of a second order tensor,
called plastic distortion Fp, and a third order tensor which is associated with

the so-called plastic connection with torsion
(p)

Γ , in a local representation.
It is supposed that

• the material behaves like an hyperelastic (second order) material in
terms of macroforces;
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• lattice defects are modeled as differential geometry concepts;

• micro stress and stress momentum obey balance laws and satisfy the
viscoplastic type constitutive equations, in Kt;

• energetic arguments, like the macro and micro balance equations and
the energy imbalance principle are extended to incorporate the dissi-
pated power during the irreversible behaviour cumulated by the de-
veloped defect mechanism as well as by the plastic mechanism.

The thermomechanical restrictions on the constitutive functions will be

driven. Further more, the evolution equations for Kt, namely for (Fp,
(p)

Γ )
as well as the evolution equations for defects will be derived in a form to be
compatible with the reduced dissipation inequality.

The composition rule of second order gradients, has been reformulated
for second order deformations in [7], [9], following Cross [12] and Wang [50]

(F,Γ) := (Fe,
(e)

ΓK) ◦ (Fp,
(p)

Γ ), (2.8)

where

F = FeFp, F = ∇χ, (2.9)

with χ−motion of the body B, the multiplicative decomposition for F and

Γ = Fp
(e)

ΓK [(Fp)−1, (Fp)−1]+
(p)

Γ , Γ = F−1∇F}, (2.10)

i.e. the composition rule of the connections.

The defects inside the microstructure of the elasto-plastic body will be
defined in terms of the geometric characteristics of the local plastic con-
nection. We assume that the plastic connection is metric with respect to
the metric measure of the non-Riemannian dislocated space, namely to the
plastically deformed configuration.

Definition 2.3. The plastic connection
(p)

Γ has metric property with respect
to the plastic metric tensor Cp := (Fp)TFp, if

(∇ Cp)u = (
(p)

Γ u)TCp + Cp(
(p)

Γ u), ∀ u ∈ V. (2.11)

Remark 2.2. If the plastic connection
(p)

Γ has metric property then the
covariant derivative of the metric tensor Cp relative to the affine connection
(p)

Γ is vanishing (like in the Riemannian geometry).
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We introduce the Bilby’s type connection, [4], by
(p)

A := (Fp)−1∇Fp .
As a consequence of the hypotheses and definitions introduced above, we

give the following theorem.

Theorem 2.3. The plastic connection with metric property with respect to
Cp is represented under the form, see [8], [9]

(p)

Γ =
(p)

A +(Cp)−1
(
Λ× I

)
, (2.12)

where the third order tensor Λ× I is defined by

((Λ× I)u)v = Λu× v, ∀ u,v. (2.13)

Λ ∈ Lin is called the disclination tensor.
Lattice defects will be characterized in terms of the plastic connection

and the Cartan torsion.

Definition 2.4. The Cartan torsion Sp, as a third order tensor, is given by

(Su)v = (
(p)

Γ u)v − (
(p)

Γ v)u. (2.14)

Theorem 2.4. The second order torsion tensor N p, introduced by N p(u×
v) = (Spu)v, is expressed by

N p = (Fp)−1curl(Fp) + (Cp)−1
(
(tr Λ)I− (Λ)T

)
,

(Spu)v = (Fp)−1(curl(Fp) (u× v) + (Cp)−1(Λu× v −Λv × u).
(2.15)

The following tensorial densities associated with the incompatible (defect)
fields are introduced by

α := (Fp)−1curlFp, dislocation density,

αΛ := (Cp)−1
(

tr ΛI− (Λ)T
)
, disclination density.

As a consequence, we define Burgers and Frank vectors in terms of the

plastic distortion Fp and plastic connection
(p)

Γ .
The Burgers vector is defined in terms of the plastic distortion Fp

and it is associated with a circuit C0 in the reference configuration. Let A0

be a surface with normal N, which is bounded by C0 a closed curve in the
reference configuration of the body. The Burgers vector associated with the
circuit is defined by

bK ≡ {
∫
CK

dxK} =

∫
C0

Fp dX =

∫
A0

(curl(Fp))NdA =

=

∫
AK

αKnKdAK.

(2.16)
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αK is called dislocation density tensor. Now we can introduce the expressions
for the dislocation density tensor, namely:

• αK :=
1

detFp
(curl(Fp))(Fp)T , which is written in the configuration

with torsion and is called Noll’s dislocation density, and
• α := (Fp)−1curlFp, written in the reference configuration.

Definition 2.5. We say that Fp characterizes a screw dislocation if the
generated Burgers vector through a circuit with the appropriate normal N is
collinear with the normal, i.e. b ‖ N, and an edge dislocation if b ⊥ N.

In order to introduce a definition for the Frank vector, we state the propo-
sition

Proposition 2.1. Let the curvature tensor that belongs to Λ × I be calcu-
lated as in (2.3), and denoted by RΛ. Then there exists a second order tensor
field rΛ such that the following relation hold

rΛ(u× v) = (CpRΛu)v and rΛ = curl Λ + (Adj Λ)T . (2.17)

Adjoint of Λ, denoted Adj(Λ), is the second order tensor(
Λu,Λv,w

)
:=
(
u,v, (Adj Λ)w

)
, ∀ u,v,w. (2.18)

The Frank vector is associated with a circuit C0 in the reference configu-
ration and is defined here by

ΩK =

∫
C0

Λ dX =

∫
A0

(curlΛ)NdA =

∫
AK

αΛ
KnKdAK, (2.19)

where the disclination density αΛ
K =

1

det(Fp)
(curlΛ)(Fp)T is defined in the

configuration with torsion.

3. Incompatibilities in classical elasticity with small deformations

It is assumed that the displacement vector u is twice continuously differ-
entiable at any point of a simple connected body undergoing elasto-plastic
deformation. The total distortion tensor H = ∇u is called compatible, since
from (2.1) the compatibility condition for the distortion H holds.

curlH = 0 (3.1)

In the elasto-plastic theory of dislocations, the plastic, Hp, and the elastic
He, components of the displacement gradient H do not satisfy the compat-
ibility condition (3.1), they are incompatible,

H = He + Hp, curlHe = −curlHp = α 6= 0. (3.2)
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Consequently the elastic and plastic distortions can not be derived from
displacement vectors. Here α is Ney’s dislocation density and it provides
the incompatibility of the elastic and plastic distortions. The continuity
condition yields

divα = 0. (3.3)

Defining the strain tensor ε as the symmetric part of the distortion H and
the rotation tensor Ω as its skew-symmetric part, the following equalities
hold

H = ε+ Ω, Ωw = ω ×w, ∀ w ∈ V, (3.4)

where ω is coaxial vector with the skew-symmetric part Ω, and it is called
the rotation vector.

Similar relationships with (3.2) can be derived for the elastic and plastic
distortions, namely

He = εe + Ωe, εe = {He}S , Ωe = {He}a,

Hp = εp + Ωp, εp = {Hp}S , Ωp = {Hp}a,
(3.5)

and the appropriate associated vectors

Ωew = ωe ×w, Ωpw = ωp ×w, ∀ w ∈ V. (3.6)

Proposition 3.1. The compatibility relationship (3.1) together with (3.4)
becomes

curlε+ divωI−∇Tω = 0. (3.7)

Applying the currl-trace procedure to the elastic and plastic distortions we
find the equations

curlεe + divωeI−∇Tωe = α, curlεp + divωpI−∇Tωp = −α,

divωe = −divωp =
1

2
tr α.

(3.8)

The equivalent relationships to (3.8) can be derived under the form

∇ωe = (curlεe)T + K, ∇ωp = (curlεp)T −K, K =
1

2
tr αI−αT , (3.9)

in terms of K, which is called Ney curvature tensor.
With the definition of the elastic, κe, and plastic, κp, curvature tensors

by

κe = ∇ωe, κp = ∇ωp, (3.10)



Different approaches to model the structural defects... 19

if we take the curl of the relationships (3.6) together with (3.8) we find

curlκe = curl(curlεe)T + curlK = 0

curlκp = curl(curlεp)T − curlK = 0.
(3.11)

Remark 3.1. Thus, in the small elasto-plastic framework of dislocations
the elastic and plastic curvatures (κe,κp) are curl-free, but the plastic and
elastic distortions are incompatible. de Wit in [13] introduced the hypothesis:
the elastic and plastic curvatures (κe,κp) are not curl-free. Consequently
the possibility of a rotational incompatibility is certificated, i.e. a non-zero
tensor θ 6= 0 exists such that

θ = curlκe = −curlκp. (3.12)

Substituting the elastic and plastic curvature, (3.10), in the equation (3.8)
the modified equations are derived

curlεe = α+ (κe)T − tr(κe)I, curlεp = −α+ (κp)T − tr(κp)I, (3.13)

These formulae are attributed in the literature to Arsenlis and Parks [3], but
they go back to de Wit [13]. The equations (3.13) defines the incompatibility
of the plastic strain η, in terms of the dislocation density tensor α and the
curvature tensor K. The incompatibility tensor η is defined as

η = curl (curlεp)T , and η = curlK− θ. (3.14)

Remark 3.2. If the elastic distortion is compatible, then α = curlHe = 0
and the elastic strain is compatible if and only if curl(curlεe)T = 0. We can
prove

Proposition 3.2. The following formula

curlHp = curlεp + tr(∇ωp) I− (∇ωp)T ,

or curl{Hp}a = tr(∇ωp) I− (∇ωp)T ,
(3.15)

is valid and expresses the curlHp in terms of curlεp and ∇ωp.

de Wit (1970) in [13], see also [24], reviewed the compatibility conditions
for the distortion H, the strain ε, the rotation ω, and the bent-twist κ,
within the classical elasticity, with small deformation, and formulated the
proposition, written below.

Proposition 3.3. Suppose that the smooth fields κ and α are known and
satisfy in a simply-connected domain, say V, the conditions

curlκ = 0, α = 0. (3.16)
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Then there exists the rotation vector ω and the displacement vector u, for
the compatible deformation, defined on a simple-connected domain. In order
to find their spatial dependence it is only necessary to know ω and u at some
particular point x0.

The statements are direct consequences of the formulae written above, using
also (3.13). For every closed curve C ⊂ V, and a surface S ⊂ V, which is
bounded by C, it follows

u(x) = u(x0) +

∫
C
ε dy +

∫
C
ω × dy =

= u(x0) + ω0 × (x− x0) +

∫
S

curlε n dA

+

∫
S

(y − x)× (curlκ n) dA+

∫
S

((trκ) I− κT ) n dA,

(3.17)

ω(x) = ω(x0) +

∫
C
κ dx = ω(x0) +

∫
S

curlκ ndA, (3.18)

by applying Stokes formulae for any surface S bounded by the curve C, and
which is inside the domain. Here n is the unit normal vector at the surface,
x0 is a fixed point on an arbitrary curve C (not necessarily closed) and x is
a current point on C.

Burgers vector and Frank vector are given by integral along a closed
curve, called circuit, C

b =

∫
C
(ε + x× ω) dy, Ω =

∫
C
κ dx, (3.19)

By applying the Stokes formulae for any surface S bounded by the curve C,
and which is inside the domain, it follows that

b =

∫
S

(
α + x× curlκ

)
n dA,

Ω =

∫
S

curl κn dA,

(3.20)

where α = curlε+(trκ) I−(κ)T . Here the following interpretation can be
given: Ω is the vector associated with the disclination crossing the surface
S, while b is the general Burgers vector associated with the dislocation and
disclination crossing the surface S.

Remark 3.3. If C is irreducible, i.e. the curve can not be deformed contin-
uously into a point without leaving the definition domain, u and ω may not
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return to their original values following the circuit. The changing are given
as a consequence of (3.17) and (3.18), when x is taken to be x0,

[u] =

∫
C
ε dy +

∫
C
(y − x0)× κ dy, [ω] =

∫
C
κ dx (3.21)

The expression has been rewritten by de Wit [13] as follows

[u] = b + x0 ×Ω, [ω] = [Ω] were

Ω =

∫
C
κ dx, b =

∫
C
ε dy +

∫
C

y × κ dy
(3.22)

Moreover, b and Ω remain unchanged if C is deformed continuously into an
other one, without leaving the domain.

Finally let us consider the volume V bounded by the surface S. By ap-
plying the divergence theorem the following conditions hold

b =

∫
V

(divα + x× div θ + 2 < θ >)dV,

Ω =

∫
V

divθ dV, θ = curl κ,

(3.23)

where < θ > is the coaxial vector associated with the skew-symmetric tensor
{θ}a, namely ({θ}a) w =< θ > ×w, ∀ w.

4. Small elastic and plastic distortions derived from the finite
kinematics

In the case of small elastic and plastic distortion we adopt the basic hy-
potheses

F = I +∇u, ‖ ∇u ‖<< 1,

Fe = I + He, Fp = I + Hp, ‖ He ‖<< 1, ‖ Hp ‖<< 1,
(4.1)

lead to

H = He + Hp, with H = ∇u

curlHe = −curlHp 6= 0.
(4.2)

Under the hypothesis of small distortions, the consequences that follow from
the constitutive framework of finite deformations can be summarized as
follows:
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• the connections are expressed by

Γ = ∇H,
(p)

Γ = ∇Hp + Λ× I,
(e)

Γ= ∇He −Λ× I, (4.3)

∇Hp,∇He,Λ having the same order of magnitude;

• Bilby’s connection and plastic Cauchy- Green tensor become

(p)

A:= ∇Hp, Cp = I + 2εp, εp =
1

2
(∇He + (∇He)T ). (4.4)

• the second order torsion N p which is associated with Cartan torsion
Sp by (Spu)v = N p(u× v), is expressed by

N p = curlHp +
(
(tr Λ)I−ΛT

)
, and similarly

N e = curlHe −
(
(tr Λ)I−ΛT

)
.

(4.5)

Using the decomposition of plastic part of the deformation gradient into its
symmetric and skew-symmetric parts and applying the curl-trace procedure
(3.8) we can prove the following result

Theorem 4.1. There exists κp such that the second order torsion N p is
given by

N p = curlεp + (tr κp)I− (κp)T , where κp = Λ︸︷︷︸+∇ωp︸︷︷︸,
or equivalently κp = (curlεp)T +N p − 1

2
(tr N p)I.

(4.6)

Remark 4.1. We derived that κp contains
Λ︸︷︷︸− an incompatible part and ∇ωp︸︷︷︸− a compatible part.

Thus κ is not a curl-free tensor, since θ = curlκ = curlΛ, where

θ(u× v) · (w × z) = ((Ru)v)w · z. (4.7)

Consequently, under the hypothesis of small elasto-plastic distortions the
formulae which characterize the framework of second order finite elasto-
plasticity allow us to prove the existence of a second order tensor, which
leads to a non-vanishing curl, i.e. curlΛ 6= 0. A similar result follows for
the elastic part.

Proposition 4.1. There exists a second order tensor κe such that the fol-
lowing relationship holds

N e = curlεe − (tr κe)I− (κe)T , where κe = −Λ +∇ωe. (4.8)
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Remark 4.2. As a direct consequence of the formulae (4.5), which char-
acterize the second order torsion tensor in terms of the elastic and plastic
small distortions and the disclination tensor, it result

N p +N e = 0, κe + κp = ∇ω. (4.9)

Remark 4.3. Let us suppose that the plastic connection satisfies the com-
patibility condition (2.2), having the non-zero torsion. In the paper by
Cleja-Ţigoiu et al [11] it is provided an equivalent representation for a such
plastic connection.

The connection Γ with torsion, that can be expressed by

Up
(p)

Γ = Λ̂×Up + ((∇Up), (Up)2 = Cp, Λ̂ ∈ Lin, (4.10)

satisfies the integrability condition (2.2) if and only if Λ̂ is a solution of the
equation (2.17)1 for rΛ = 0, while the second order torsion Np and Λ̂ are
related by the relationship

CpNp = detUp{tr(Λ̂(Up)−1)I− ((Up)−1Λ̂)T }+ Up(curlUp), (4.11)

Let us remark here that in the case of small elatic and plastic distortions if
we compare (4.10) with (2.12), we derive from (4.11) the expression (4.6) for
the second order torsion tensor. Now κp is identified with Λ̂. As a conclusion

(4.10) becomes
(p)

Γ = ∇εp+Λ̂×I, and Λ̂ = Λ+∇ωp, with Λ the disclination
tensor which enters (4.3)2.

5. Modeling structural defects. Different approaches

5.1. Elastic Models of Crystal Defects

• de Wit point of view. The compatibility conditions for the basic fields
written in (3.1) are violated for incompatible elastic materials or for the
elastic materials with defects. The disclinations are defined by de Wit in a
similar way like the dislocations, see de Wit [13], [14].

For an elastic material with discrete defects, like straight dislocations or
straight disclinations, the defect region is cut of the body and the elastic
body is reduced to a multiply-connected domain, where the compatibility
conditions are satisfied. To solve the problem, the body is cut along a certain
surface in such a way that body becomes simply-connected. However on the
two-sided surface the jump conditions are written under the form (3.22) in
terms of the constants, b,Ω, that is Burgers vector and Frank vector given
by integral along an appropriate circuit, C.

In a series of papers [13] - [16] de Wit debated different aspects related
to the theory of disclinations, within small deformation elasto-plastic for-
malism, and developed models for discrete (straight lines and loops) and
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continuous disclinations, in terms of defect densities. When the disclination
densities are vanishing the theory of dislocations is derived as a peculiar
case. Moreover, it is proved in [14] that always it is possible to associate
for every disclination line a dislocation model, which is a wall terminating
on the line. de Wit in [15] developed the theory of structural defects for
a linear elastic, infinitely extended, homogeneous and isotropic body. The
integral expressions are derived for the total displacement, elastic strain εe,
the bent-twist (curvature) κ and the stress.

The plastic problem is solved: for a given plastic strain εp as a function
of the space, find the resulting total displacement field u. The Green function
for the isotropic linear elastic material is essentially used in order to find the
solution.

The incompatibility problem is solved: for a given incompatibility tensor
η = curl (curlεp)

T - see (3.14), as a function of the space, find the resulting
elastic strain εe. The mentioned results are reduced to those for the dislo-
cation theory when the disclinations vanish. In [15] the problems have been
solved without any specification of the nature of the defect involved.

As a principal result: if the basic plastic fields εp,κp or the defect den-
sities α,θ are given as prescribed function of space, find the elastic field
εe,κe.

• Teodosiu point of view. The elastic model of crystal defects are
elaborated by Teodosiu in [44], when κ = 0, i.e. only dislocations are taken
into account.

• Mura point of view: Burgers vector and Frank vector are given by
integral lines along the circuit C, in an incompatible simply-connected do-
main. The plastic distortion and plastic rotation were defined by Mura [35],
as distribution with support on the surface S, denoted by δ(S), containing
the defects,

β∗(x) ≡ −δ(S)n⊗ {b + (x− x0)×Ω},

Φ∗(x) ≡ δ(S)n⊗Ω.
(5.1)

These quantities have been interpreted by de Wit, see [14], [16] as the dis-
location and disclination loop densities

εp = β∗, κp = curlβ∗ + Φ∗. (5.2)

In Mura [36] a line defect containing both dislocations and disclinations is
described in analytical derivation, by solving appropriate elastic boundary
values problems, with the plastic incompatibilities viewed as sources. In
the other words, Mura investigated the methods of finding the associated
elastic fields (displacements, strains, stresses) and related problems for given
distributions of ε∗, called eigenstrain. Particular attention is payed to the
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case when an uniform ε∗ is placed in an ellipsoidal domain in an infinitely
extended medium, i.e. the ellipsoidal inclusion problem.

The elastic type constitutive equation relates the elastic strain to the
stress σ, say by an anisotropic linear elastic law

σ = C(ε− εp), since εe = ε− εp. (5.3)

The equilibrium equation together with (5.3) is

div σ = 0 ⇐⇒ div C(ε) = div C(εp), (5.4)

in which ε is replaced by the gradient of the displacement vector, u. Mura
solves the following problem
Problem: Given the plastic strain εp,κp find the displacement field u :
B ×R −→ V such that the equilibrium equation be satisfied

div C{∇u} = div C(εp) (5.5)

as well as the appropriate boundary conditions (say stress free)

C(ε)n = C(εp)n. (5.6)

5.2. Small deformations elasto-plastic models

5.2.1. Mayeur, McDowell and Bammann’ model for dislocations

We present some aspects related to the models proposed in the papers by
Mayeur et al. [29], [30], namely a slip gradient-based extended crystal plas-
ticity, within the small deformation framework. The model is used to simu-
late the mechanical response of a single crystal with a single active slip sys-
tem, and two types of dislocation measures. Concerning the micro boundary
conditions two types of null-working conditions are considered for modeling
the interfaces

• the microhard condition, that is intended to represent the case where
dislocations are unobstructed at the interface (free surface)

• microfree condition, which is intended to represent the case where
dislocations are blocked.

In addition to the formulae concerning the incompatibility in classical
elasticity, (3.1)-(3.6), (3.11), some hypotheses are introduced under the form
of axioms.
Ax. 1 A continuum measure of the deformation incompatibility is the
geometrical necessary dislocation (GND) density tensor α, introduced in
(3.10)

α = −curlHe = curlHp. (5.7)
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Ax. 2 The so-called GND density tensor is written in the form which
appears in Arsenlis and Parks [3]

α = b
∑
α

(ραG,⊥sα ⊗ tα + ραG,�sα ⊗ sα), (5.8)

where tα = sα×nα, b is the magnitude of Burgers vector, and the edge, ραG,⊥,
and screw, ραG,⊥, GND densities are defined as gradients of slip projected in
the glide directions for pure edge and screw dislocations, i.e.

ραG,⊥ = −1

b
∇γα · sα, ραG,� =

1

b
∇γα · tα, (5.9)

where γα are plastic shears. The relation incorporate non-local effect into
the slip system hardening description, through the gradient of the plastic
shear. A similar formula is given in Kuroda and Tveergard ([28]), where the
rate or the GND densities are described directely in terms of the gradient
of plastic shear rates.
Ax. 3 The balance equation for Cauchy stress divT+b = 0, T symmetric.
Ax. 4 The dissipation inequality, which states that the deformation power
T · ε̇ must be grater than or equal to the rate of change in the free energy
of the system, ψ̇, namely T · ε̇− ψ̇ ≥ 0. In the model the free energy density
ψ = ψ(εe, ζα), is a function of elastic strain as well as of the scalar strain-like
internal state variables ζαl , l.., with the particular case

ψ =
1

2
εe · Cεe +

1

2
µ
∑
α

(ζα)2. (5.10)

Then the constitutive restriction are given by

T = ρ
∂ψ

∂εe
, ξαl = ρ

∂ψ

∂ζαl
, (5.11)

ξαl are the thermodynamic forces work-conjugate to the thermodynamic dis-
placements, ζαl .
Ax. 5 The evolution equations for the plastic strain

ε̇p =
∑
α

γ̇αNα, Nα = {sα ⊗ nα}S , (5.12)

where the yield function Fα with the resolved shear stress τα are defined by
Fα = =| τα − τb | −rα, τα = sα ·Tnα, and for

γ̇α = γ̇0(<
Fα

gα
>)m. (5.13)

In these equation gα is the drag stress, τb is the back stress, rα is the
threshold stress which is given by the Taylor relation

rα = µc1b

√∑
β

hαβρβ, ζα = c1b

√∑
β

hβρβ, (5.14)
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c1 is a material constant related to the dislocation configuration, ρβ is the
total dislocation density on the slip system β.

The microstructural evolution is related to the change in the dislocated
state of the crystal, and the total dislocation density on each system is
assumed to be additively decomposed into statistically stored dislocation
(SSD) and GND densities, namely ρα = ραS + ραG. The SSD evolves as it is
described by Kocks and Mecking in [34]

ρ̇αS = (c2

√∑
β

aαβρβ − c3ρ
α
S) | γ̇α | . (5.15)

The total GND density on the slip system is taken to be given as in Arsenlis
and Parks [3]

ραG =
√

(ραG,⊥)2 + (ραG,�)2, (5.16)

together with (5.9).
We remark that it would be necessary to study the compatibility between

the evolution equations for the dislocation densities, namely the rates of
stored energy due to local (SSD) (69) and nonlocal (GND) micro structure
evolution generated by (70), respectively, and the postulated form for the
evolution of the plastic strain (5.12).

5.2.2. Model proposed by Fressengeas, Taupin, Capolungo [19]

In [19], Fressengeas et al. proposed a complex model accounting for the
dislocations and disclinations, that is for structural defects, in the case of
small deformations. The aim of the paper was to present both the transla-
tional and rotational aspects of lattice incompatibilities. The non-symmetric
Cauchy stress and couple stresses have been considered in the problem.

The following notation has been introduced in the paper - the cross
product of a second order tensor A and a vector u is a tensor, denoted by
A× u, and defined by: (A× u)Tw = (ATu)×w, for all vectors w.

They supposed that the non-symmetric Cauchy stress tensor, T, and
the couple stress tensor m (i.e. a second order field) satisfy macro balance
equations given in Fleck et al. [18]

div T = 0, div m + 2 < Ta >= 0,
(5.17)

where < Ta > is the coaxial vector associated with the skew-symmetric part
of T. The constitutive relationship are considered to be written under the
form

T = E(ε− εp) +D(∇ω − κp),

m = A(ε− εp) + B(∇ω − κp),
(5.18)
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where {∇u}av = ω×v,∀ v. The system to define the principal fields εp,κp,
and the incompatibilities α,θ, is given by

α = −curlεp + κpT − tr(κp) I, θ = −curl(κp),

κ̇p = θ × 1

Bθ
< mTθ >,

ε̇p =
1

2
(α× 1

Bα
< {T}aα > +(α× 1

Bα
< {T}aα >)T ).

(5.19)

We denoted by < mTθ > and < {T}aα > the coaxial vectors associated
with the skew-symmetric part of the written tensors into the brackets. Bα
and Bθ are positive material parameters.

In order to formulate the initial and boundary value problem, the macro-
scopic boundary conditions have to be introduced in terms of the given values
for the vector stress and couple stress vector, or for the given displacement.
The initial values for the basic fields εp,κp are necessary in connection with
the evolution equations, (5.19), which are introduced in the model.

As peculiar aspects related to the proposed models we remark that,
- the free energy density has been proposed as a function of elastic strain

and elastic curvature, ψ = ψ(εe,κe);
- the derived constitutive relationships (5.18) are linearly with respect

to elastic strain, εe = ε− εp, and elastic curvature tensor, κe = ∇ω−κp, if
the free energy density is anisotropic and quadratic in their arguments. The
constitutive equations involve the characteristic lengths and have non-local
character;

- the incompatibility tensors are considered to be the dislocation and
disclination densities, α,θ, and are described by appropriate transport equa-
tions. The velocities for the dislocations and disclinations with respect to
the lattice have been eliminated using the energetic arguments;

- the influence of the coupling between the dislocation and disclinations
have been numerically analysed in an suggestive example, which will be
briefly presented.

• Within the model described by the set of equations (5.17)- (5.19), a
plane edge dislocation, i.e. α = α13e1⊗ e3 +α23e2⊗ e3, coupled with
wedge disclination, which is characterized by the disclination tensor
θ = θ33e3 ⊗ e3, has been considered. Here α13, α23, θ33 are functions
of (x1, x2) only;

• the boundary of the body is free from the applied stresses and couple
stresses, namely Tn = 0, mn = 0;

• the initial condition is designed for the curvature κp, i.e. κp(t0) =
θ = θ33(t0)e3 ⊗ e3 is chosen so that to assure the compatibility with
(3.23)2, and no dislocations exist at the initial moment t0;
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• no yield condition has been involved in the model.

The authors mentioned that the comparison of the theoretical predic-
tions with the experimental data and results from atomistic simulations is
desirable.

5.3. Finite deformations elasto-plastic model

The following notation and definition will be used:
- the gradient of the tensorial field, say A with respect to the configura-

tion with torsion is defined in term of the gradient in the reference configu-
ration by ∇KA = (∇A)(Fp)−1, ∀A;

-ρ0 and ρ̃ are mass densities in the reference and plastically deformed
configurations;

- the disclination tensor pushed away to the configuration with torsion
Λ̃ is defined through

Λ̃ =
1

detFp
FpΛ(Fp)−1, ρ̃detFp = ρ0, (5.20)

in term of the disclination tensor in the reference configuration Λ;
- the rate of disclination in the reference configuration, Λ̇, pushed away

to the configuration with torsion, is considered in the model to be a measure
of the variation in time of the disclination with respect to the configuration
with torsion,

D

Dt
Λ̃ :=

1

detFp
FpΛ̇(Fp)−1; (5.21)

- three types of second order tensors will be associated with any pair A,B
of third order tensors, following the rules written for all L ∈ Lin

(A� B) · L = A[I,L] · B = AiskLsnBink,

(A r � B) · L = A · (LB) = AijkLinBnjk,

(A�l B) · L = A · (BL) = AijkBijnLkn.

(5.22)

We mention that: micro force Υp is power conjugate with Lp; micro momen-
tum µ̃p is power conjugate with ∇KLp; micro force Υλ is related with the
disclination mechanism, being power conjugate with the appropriate rate of

Λ̃, say
D

Dt
Λ̃; µ̃λ is the micro stress momentum, which is power conjugated

with the gradient of appropriate rate of disclination tensor, namely with

∇K
D

Dt
Λ̃.

The postulate of the free energy imbalance in the configuration with
torsion expresses the restriction on the elasto-plastic material to be satisfied
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in K as an imbalanced free energy condition, see Cleja-Ţigoiu [8], [9], as well
as Gurtin et al. [22], for the initial original ideas related to the free energy
imbalance. That is: the internal power has to be grater or equal to the rate
of the free density energy

−ψ̇K + (Pint)K ≥ 0, (5.23)

for an appropriate definition for the internal power (Pint)K and for any
virtual (isothermic) processes, when free energy density, ψK, is given.

The internal power with respect to the configuration with torsion has
been postulated by Cleja-Ţigoiu in [8]

(Pint)K =
1

ρ
(T) · Le +

1

ρ̃
µK · LLp [

(e)

AK]+

+
1

ρ̃
Υp · Lp +

1

ρ̃
µ̃p · ∇KLp +

1

ρ̃
Υλ · ( D

Dt
Λ̃) +

1

ρ̃
µ̃λ · ∇K

D

Dt
Λ̃.

(5.24)

The linear operator with respect to the elastic connection
(e)

AK, dependent
on the rate of plastic distortion has been introduced by Cleja-Ţigoiu [8], and
can be also expressed as follows

(LLp [
(e)

AK]) = (Fe)−1(∇χL)[Fe,Fe]−∇KLp. (5.25)

This formula emphasizes that the difference between the gradient of the
velocity gradient, ∇χL, pushed back to the configuration with torsion, and
the gradient of the plastic rate calculated with respect to the configuration
with torsion K, is a measure for the rate elastic distortion.
Ax.1 There exists a free energy density function ψ, represented in K by

ψ = ψK(Ce,
(e)

AK, (Fp)−1,
(p)

AK, Λ̃,∇KΛ̃). (5.26)

The axiom asserts that the free energy density function is dependent on:

- the second order elastic deformation (Ce,
(e)

AK), were Ce = (Fe)TFe

and AK = (Fe)−1∇KFe;

- the plastic measure of deformation ((Fp)−1,
(p)

AK), where the expression

of the Bilby type plastic connection
(p)

AK is related to
(p)

A by

(p)

AK= −Fp
(p)

A [(Fp)−1, (Fp)−1]; (5.27)

- the disclination variable Λ̃ and its gradient in K.
Based on the above introduced definitions it can be proved the following

proposition.
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Proposition 5.1. The equivalent expression of the free energy density (5.26)
can be written in terms of the appropriate fields with respect to the reference
configuration

ψ = ψ(C,Γ,Fp,
(p)

A ,Λ,∇Λ). (5.28)

Ax.2 The micro balance equation for micro forces associated with the discli-
nation are postulated to satisfy their own balance equations

Υλ = divK µ
λ + ρ̃Bλ ⇐⇒ Jp Υλ = div

(
Jp µλ(Fp)−T

)
+ ρ̃Bλ,

Jp =| detFp | .

Ax.3 The micro balance equation for micro forces associated with the irre-
versible behaviour is expressed through

Υp = divK (µp) + ρ̃Bλ ⇐⇒

Jp Υp = div
(
Jp (µp)(Fp)−T

)
+ ρ̃Bp.

Thermomechanical restrictions can be derived from the imbalance free en-
ergy postulate, when we suppose that the plastic and disclination mechanism
is frozen. These restrictions can be summarized as follows:
1. the free energy density is potential for the symmetric part of the Cauchy
stress tensor and for the macro momentum, written in the reference config-
uration

1

ρ̂
{T}s = 2F(∂Cψ)FT ,

1

ρ0
µ0 = ∂Γψ; (5.29)

2. the free energy density is potential for the micro stress momenta,

1

ρ0
µ0

p = ∂(p)

A
ψ,

1

ρ0
µλ0 = ∂∇Λψ

d(∇Λ), (5.30)

where µp0,µ
λ
0 represent the plastic micro momentum and the micro momen-

tum related with the disclination mechanism;
3. the viscoplastic type equations which establish the relationships for the
variation in time of plastic distortion and of the disclination tensor have
been expressed (that is the appropriate evolution equations)

ξ1 lp =
1

ρ0
(Σ0 −Σ0

p) + (Fp)T∂Fpψ, lp = −(Fp)−1Ḟp,

ξ3 Λ̇ =
( 1

ρ0
Σ0

λ − ∂Λ ψ
)

+
( (p)

A �
1

ρ0
µλ0
)
−

−
( 1

ρ0
µλ0 r�

(p)

A
)
− 1

ρ0
µλ0
(
tr(2)(

(p)

A )
)
;

(5.31)
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4. the expression of the resulting reduced dissipation inequality can be
finally written ξ1 lp · lp + ξ3 Λ̇ · Λ̇ ≥ 0.

Here Σ0,Σ0
p,Σ0

λ are Mandel’s type stress measures, written in the
reference configuration, defined in terms of the Cauchy stress T, micro forces
Υp and Υλ, respectively, as it follows

1

ρ0
Σ0 = FT 1

ρ
TFT , Σp

0 =
1

ρ̃
(Fp)TΥp(Fp)−T ,

Σλ
0 =

1

ρ̃
(Fp)TΥλ(Fp)−T .

(5.32)

The plastic micro momentum, the micro momentum related with the discli-
nation mechanism, and the macro momentum relative to the reference con-
figuration are defined by

1

ρ0
µp0 := (Fp)T

1

ρ̃
µ̃p[(Fp)−T , (Fp)−T ],

1

ρ0
µλ0 := (Fp)T

1

ρ̃
µ̃λ[(Fp)−T , (Fp)−T ],

1

ρ0
µ0 := FT 1

ρ̃
µK[F−T ,F−T ].

(5.33)

6. Conclusions

The plastic deformability of metals, which are crystalline materials, is pro-
duced due to the existence of lattice defects inside the micro structure. The
dislocations, disclinations and point defects are viewed as defects and were
mathematically modeled by the differential geometry concepts as torsion,
curvature and measure of non-metricity, in the case of continuously dis-
tributed defects. The linear approximation of the continuum theory of lat-
tice defects within the non-Euclidean geometry has been proposed by de
Wit [17]. There are different, independent ways from the geometrical point
of view in defining the two types of defects, dislocations and disclinations,
which may or may not be related to each other, and which lead to completely
different mathematical descriptions or theories.

The presence of the Burgers and Frank vectors is the starting point in
constructing the dislocations and disclinations models and make the differ-
ences between them.

As for instance, the elastic models for defects are built
- by solving the elasticity problem in multiply-connected domain, where

the compatibility conditions (see section3) are satisfied;
- by solving the elastic problems in simply connected domain, which

contains the cut surface on which the jump conditions (see section3) are
written in terms of constants, which means Burgers’ and Frank’s vectors;

The appropriate elastic type problems are solved without any specifica-
tion of the nature of the defects involved in the models.
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The elasto-plastic model with small strains, shortly presented in sections
5.2, 5.3, stipulate evolution equations for plastic fields and for incompati-
bilies (identified with the measure for the defects), while the balance equa-
tions for macro forces (say stress and couple stresses) are satisfied by the
elastic type constitutive equations. The solutions have no singularities, al-
thought the elastic and plastic strains (and curvatures) are incompatible,
the displacement vectors and the rotation vectors follow to be well defined.

We described the behaviour of an elasto-plastic material with structural
defects, undergoing finite deformations, based on the existence of time de-
pendent configurations with torsion. The configuration with torsion is viewed
like a second order deformation, namely a pair of a second order tensor,
called plastic distortion and plastic connection with torsion. The presence
of the (physical) defects means from the mathematical point of view the non-
zero torsion and non-zero curvature of the plastic connection. The energetic
arguments, like the macro and micro balance equations and the energy im-
balance principle, are extended to incorporate the dissipated power during
the irreversible behaviour cumulated by the developed defect mechanism as
well as by the plastic mechanism. The thermomechanical restrictions on the
constitutive functions have been obtained under the form of the elastic type
constitutive equations, which satisfy the balance equations for macro forces
(stress and couple stresses). Through the appropriate (non-local) evolution
equations which are compatible with the redused dissipation inequality, the
microstructural defects are related with macroscopic and microscopic forces,
which satisfy the appropriate balance equations. The tinitial and boundary
value problems are formulated to complete the models. In this paper we
presented a possible approach to finite elasto-plastic model for crystalline
materials with microstructural defects.

We can associate the model, which describes the behaviour of an elasto-
plastic material with structural defects undergoing finite deformations, with
a model involving small elastic and plastic distortions. In such a way we
could validate the finite deformation model by making comparison between
the already known results obtained within small deformations models and
those derived for the associated model. As for instance, the formulae which
characterize the framework of second order finite elasto-plasticity with the
plastic connection having metric property, allow us to introduce the measure
of the dislocation and to prove the existence of a second order tensor, the
disclination tensor Λ, which leads to a non-vanishing curvature, namely to
a non-zero Frank vector, under the hypothesis of small elasto-plastic distor-
tions. We obtain appropiate evolution equations for the plastic distortion
and for the disclination tensor. To describe the influence of the coupling be-
tween the dislocation and disclinations on the behaviour of an elasto-plastic
material with structural defects, first the initial and boundary value prob-
lem must be formulated Second the particular cases of wedge disclination
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and edge dislocation must be analysed, following physical description of the
model given in [19].

The comparison of the theoretical predictions with the experimental data
and results from atomistic simulations ought to be desirable.
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