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Abstract - We study the sample paths properties of Operator scaling Gaus-
sian random fields. Such fields are anisotropic generalizations of anisotropic
self-similar random fields as anisotropic Fractional Brownian Motion. Some
characteristic properties of the anisotropy are revealed by the regularity of
the sample paths. The sharpest way of measuring smoothness is related to
these anisotropies and thus to the geometry of these fields.
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1. Introduction and motivations

Random fields are now used for modeling in a wide range of scientific areas
including physics, engineering, hydrology, biology, economics and finance
(see [31] and its bibliography). An important requirement is that the data
thus modelled present strong anisotropies which therefore have to be present
in the model. Many anisotropic random fields have therefore been proposed
as natural models in various areas such as image processing, hydrology,
geostatistics and spatial statistics (see, for example, Davies and Hall [15],
Bonami and Estrade [8], Benson et al. [4]). Let us also quote the exam-
ple of Levy random fields, deeply studied by Durand and Jaffard (see [17]),
which is the only known model of anisotropic multifractal random field. In
many cases, Gaussian models have turned to be relevant when investigating
anisotropic problems. For example the stochastic model of surface waves
is usually assumed to be Gaussian and is surprisingly accurate (see [21]).
More generally anisotropic Gaussian random fields are involved in many
others concrete situations and then arise naturally in stochastic partial dif-
ferential equations (see, e.g., Dalang [14], Mueller and Tribe [24], Ôksendal
and Zhang [27], Nualart [26]).

In many situations, the data present invariant features across the scales
(see for example [2]). These two requirements (anisotropy and self–similarity)
may seem contradictory, since the classical notion of self–similarity defined
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for a random field {X(x)}x∈Rd on Rd by

{X(ax)}x∈Rd
(f.d.)
= {aH0X(x)}x∈Rd , (1.1)

for some H0 ∈ R (called the Hurst index) is by construction isotropic and
has then to be changed in order to fit anisotropic situations. To this end,
several extensions of self–similarity property in an anisotropic setting have
been proposed. In [19], Hudson and Mason defined operator self-similar pro-
cesses {X(t)}t∈R with values in Rd. In [20], Kamont introduced Fractional
Brownian Sheets which satisfies different scaling properties according to the
coordinate axes. More recently, in [7] Biermé, Meerschaert and Scheffler
introduced the notion of Operator Scaling Random Fields (OSRF). These
fields satisfy the following anisotropic scaling relation :

{X(aE0x)}x∈Rd
(f.d.)
= {aH0X(x)}x∈Rd , (1.2)

for some matrix E0 (called an exponent or an anisotropy of the field) whose
eigenvalues have a positive real part and some H0 > 0 (called an Hurst index
of the field). The usual notion of self-similarity is extended replacing usual
scaling, (corresponding to the case E0 = Id) by a linear scaling involving
the matrix E0 (see figure 1 below). It allows to define new classes of random
fields with new geometry and structure.
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Figure 1.
Action of a linear scaling x 7→ λEx on the smallest ellipsis.

This new class of random fields have been introduced in order to model
various phenomena such as fracture surfaces (see [27]) or sedimentary aquifers
(see [4]). In [7], the authors construct a large class of Operator Scaling Sta-
ble Random Fields with stationary increments presenting both a moving
average and an harmonizable representation of these fields.
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In order to use such models in practice, the first problem is to recover
the parameters H0 and E0 from the inspection of one sample paths. Note
that this model is overparametriezd, that is for a given OSSRGF, there is
an infinity of couples (E0, H0) satisfying (1.2). We then need an additional
condition, Tr(E0) = d to ensure the uniqueness of the Hurst index. Recently,
in [23], an estimation method for E0, using the different parametrization
with H0 = 1, has been proposed, based on non-linear regression.

Here, we want to propose another approach based on the indentification
of some specific features of exponents and indices which can be recovered
on sample paths. This paper is then a first step to an alternative method of
estimation : we will prove that from the regularity point of view these ex-
ponents and Hurst indices satisfy what we call optimality properties. More
precisely, we prove that (see Theorem 4.1), the Hurst index H0 maximizes
the local critical exponent of the field in specific functional spaces related
with the anisotropy matrix E0 among all possible critical exponents in gen-
eral anisotropic functional spaces.

Therefore, the results of the present paper open the way to the following
strategy to recover the Hurst index. One first have to consider a discretized
version of the set of all possible anisotropies. In each case an estimator of the
critical exponent related with these anisotropies has to be given. Therefore,
one has to locate the maximum of all these estimators–which can be based
on anisotropic quadratic variations–and to identify the corresponding values
of the anisotropy. This method can be turned into an effective algorithm
using hyperbolic wavelet analysis (see [1] and [29] for more details). The
problem can thus be reformulated in terms of finding extreme values of
some multivariate Gaussian series related to the set of discrete anisotropies
(see [34] for some reference about extremes of multivariate series). The study
of these estimators from a statistical point of view will be the purpose of a
forthcoming paper and will be compared to the method introduced in [23].

Our optimality result comes from sample paths properties of the model
under study in an anisotropic setting. This approach is natural : In [20], Ka-
mont studied the regularity of the sample paths of the well-known anisotropic
Fractional Brownian Sheet in anisotropic Hölder spaces related to Fractional
Brownian Sheet. Moreover, some results of regularity in specific anisotropic
Hölder spaces related to matrix E0 have already be established for operator
scaling self-similar random fields (which may be not Gaussian) in [6] or in
the more general setting of strongly non deterministic anisotropic Gaussian
fields in [38]. We then extend already existing results by measuring smooth-
ness in general anisotropic spaces not necessarily related to the exponent
matrix E0 of the field.

This paper is organized as follows. In Section 2, we briefly recall some
facts about Operator Scaling Random Gaussian Fields (OSRGF) and de-
scribe the construction of [7] of the model. In Section 3, we present the
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different concepts used for measuring smoothness in an anisotropic setting
and especially anisotropic Besov spaces. Section 4 is devoted to the state-
ment of our optimality and regularity results. Finally, Section 5 contains
proofs of the results stated in Section 4.

In the sequel, we will use some notations. For any matrix M

λmin(M) = min
λ∈Sp(M)

(|Re(λ)|), λmax(M) = max
λ∈Sp(M)

(|Re(λ)|) ,

where Sp(M) denotes the spectrum of matrix M .
For any real a > 0, aM denotes the matrix

aM = exp(M log(a)) =
∑
k≥0

Mk logk(a)

k!
.

In the following pages, we denote E+ the collection of matrices of Md(R)
whose eigenvalues have positive real part.

2. Presentation of the studied model

The existence of operator scaling stable random fields, that is random fields
satisfying relationship (1.2), is proved in [7]. The following theorem (Theo-
rem 4.1 and Corollary 4.2 of [7]) completes this result by yielding a practical
way to construct a Operator Scaling Stable Random Field (OSRF) with sta-
tionary increments for any E0 ∈ E+ and H0 ∈ (0, λmin(E)). We state it only
in the Gaussian case, having in mind the problem of the estimation of the
Hurst index H0 and the anisotropy E0. In what follows, we are given dŴ a
complex–valued Brownian measure such that all the processes and the fields
we consider are real-valued.

Theorem 2.1. Let E0 be in E+ and ρ a continuous function with positive
values such that for all x 6= 0, ρ(x) 6= 0. Assume that ρ is Et 0–homogeneous,
that is :

∀a > 0, ∀ξ ∈ Rd, ρ(aE
t

0ξ) = aρ(ξ) .

Then the Gaussian field

Xρ(x) =

∫
Rd

(ei<x,ξ> − 1)ρ(ξ)−H0−Tr(E0)
2 dŴ (ξ) , (2.1)

exists and is stochastically continuous if and only if H0 ∈ (0, ρmin(E0)).
Moreover this field has the following properties :

1. Stationary increments :

∀h ∈ Rd, {Xρ(x+ h)−Xρ(h)}x∈Rd
(f.d.)
= {Xρ(x)}x∈Rd .
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2. The operator–scaling relation (1.2) is satisfied.

Remark 2.1. The assumption of homogeneity on the function ρ is neces-
sary to recover linear self-similarity properties of the Gaussian field
{Xρ(x)}x∈Rd . The assumption of continuity on ρ ensures that the con-
structed field is stochastically continuous.

Remark 2.2. In general, the couple (H0, E0) of an OSRF is not unique.
Indeed, if H0 and E0 are respectively an Hurst index and an exponent of
the OSRF {X(x)}x∈Rd , then for any λ > 0 so do λH0 and λE0.
Uniqueness of the Hurst index H0 can be recovered by choosing a normaliza-
tion for E0, for example Tr(E0) = d. However, even under this assumption,
E0 is not necessarily unique. Nevertheless remark that, under the assump-
tion Tr(E0) = d, two anisotropies of an OSRF have necessarily the same real
diagonalizable part (see Section 5.2 for a definition). We refer to Remark
2.10 of [7] for more details on the structure of the set of exponents of an
OSRF.

Remark that Theorem 2.1 relies on the existence of Et 0–homogeneous
functions. Constructions of such functions have been proposed in [7] via an
integral formula (Theorem 2.11). An alternative construction, more fitted
for numerical simulations, can be found in [13].

3. Anisotropic concepts of smoothness

Our main goal here is to study the sample paths properties of this class of
Gaussian fields in suitable anisotropic functional spaces. This approach is
quite natural (see [20, 6]) since the studied model is anisotropic. To this
end, suitable concepts of anisotropic smoothness are needed. The aim of
this section is to give some background about the appropriate anisotropic
functional spaces : Anisotropic Besov spaces. These spaces generalize clas-
sical (isotropic) Besov spaces and have been studied in parallel with them
(see [9, 10] for a complete account on the results presented in this section).
The definition of anisotropic Besov spaces is based on the concept of pseudo-
norm. We first recall some well–known facts about pseudo-norms which can
be found with more details in [22].

3.1. Preliminary results about pseudo-norms

In order to introduce anisotropic functional spaces, an anisotropic topology
on Rd is needed. We need to introduce a slight variant of the notion of
pseudo–norm introduced in [22], fitted to the case of discrete dilatations.

Definition 3.1. Let E ∈ E+. A function ρ defined on Rd is a (Rd, E)
pseudo-norm if it satisfies the three following properties :
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1. ρ is continuous on Rd,

2. ρ is E-homogeneous, i.e. ρ(aEx) = aρ(x) ∀x ∈ Rd, ∀a > 0,

3. ρ is strictly positive on Rd \ {0} .

For any (Rd, E) pseudo–norm, define the anisotropic sphere SE0 (ρ) as

SE0 (ρ) = {x ∈ Rd; ρ(x) = 1} . (3.1)
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Figure 2.
Examples of anisotropic spheres for different anisotropies.

Proposition 3.1. For all x ∈ Rd\{0}, there exists an unique couple (r, θ) ∈
R∗+ × SE0 (ρ) such that x = rEθ.

Moreover SE0 (ρ) is a compact of Rd and the map

(r, θ)→ x = rEθ ,

is an homeomorphism from R∗+ × SE0 (ρ) to Rd \ {0}.

The term “pseudo-norm” is justified by the following proposition :

Proposition 3.2. Let ρ a (Rd, E) pseudo-norm. There exists a constant
C > 0 such that

ρ(x+ y) ≤ C(ρ(x) + ρ(y)), ∀x, y ∈ Rd . (3.2)

The following key property allows to define an anisotropic topology on Rd
based on pseudo-norms and then anisotropic functional spaces :
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Proposition 3.3. Let ρ1 and ρ2 be two (Rd, E) pseudo-norms. They are
equivalent in the following sense : There exists a constant C > 0 such that

1

C
ρ1(x) ≤ ρ2(x) ≤ Cρ1(x), ∀x ∈ Rd .

In particular, two different (Rd, E) pseudo-norms define the same topology
on Rd.

3.2. Anisotropic Besov spaces

Let E ∈ E+ and ρ Et a fixed (Rd, Et )–pseudo-norm. For x0 ∈ Rd and r > 0,
Bρ Et (x0, r) denotes the anisotropic ball of center x0 and radius r, namely

Bρ Et (x0, r) = {x ∈ Rd, ρ Et (x− x0) ≤ r} .

The definition of anisotropic Besov spaces is based on the following result :

Proposition 3.4. Let ψE0 ∈ S(Rd) be such that{
ψ̂E0 (ξ) = 1 if ρEt (ξ) ≤ 1,

ψ̂E0 (ξ) = 0 if ρEt (ξ) ≥ 2 .

For any positive integer j, set

ψ̂Ej (ξ) = ψ̂E0 (2−j E
t
ξ)− ψ̂E0 (2−(j−1)Et ξ) .

Then
+∞∑
j=0

ψ̂Ej ≡ 1 ,

is an anisotropic partition of the unity satisfying,

supp(ψ̂Ej ) ⊂ Bρ Et (0, 2j+1) \Bρ Et (0, 2j−1) .

One can then deduce the definition of anisotropic Besov spaces Bs
p,q(Rd, E)

as follows :

Definition 3.2. Let 0 < p, q ≤ ∞ and s ∈ R. Define

‖f‖Bsp,q(Rd,E) =

 ∞∑
j=0

2jsq‖f ∗ ψEj ‖
q
Lp(Rd)

1/q

. (3.3)

Then
Bs
p,q(Rd, E) = {f ∈ S ′(Rd), ‖f‖Bsp,q(Rd,E) < +∞} .
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The matrix E is called the anisotropy of the Besov space Bs
p,q(Rd, E).

In a more general way, if β ∈ R, define

‖f‖Bs
p,q,| log |β

(Rd,E) =

 ∞∑
j=0

j−βq2jsq‖f ∗ ψEj ‖
q
Lp(Rd)

1/q

.

Then

Bs
p,q,| log |β (Rd, E) = {f ∈ S ′(Rd), ‖f‖Bs

p,q,| log |β
(Rd,E) < +∞} .

Remark 3.1. One can prove that this definition is independent of the
choice of the function ψE0 involved in the definition of the Besov space
Bs
p,q(Rd, E).

Remark 3.2. Let E ∈ E+ and ρ Et a (Rd, Et ) pseudo-norm. For any λ > 0,

ρ
1/λ
Et is a (Rd, λ Et ) pseudo-norm. Hence for any s > 0, Bλs

p,q(Rd, λE) =

Bs
p,q(Rd, E).

So, as stated in Section 1 without loss of generality, we assume in the
sequel that Tr(E) = d. We then define

E+
d = {E ∈ E+, Tr(E) = d} ,

where E+ is the collection of d× d matrices whose eigenvalues have positive
real part. As it is the case for isotropic spaces, anisotropic Hölder spaces
Cs(Rd, E) can be defined as particular anisotropic Besov spaces.

Definition 3.3. Let s be in R and β ∈ R. The anisotropic Hölder spaces
Cs(Rd, E) and Cs| log |N (Rd, E) are defined by

Cs(Rd, E) = Bs
∞,∞(Rd, E) and Cs| log |β (Rd, E) = Bs

∞,∞,| log |β (Rd, E) .

Proposition 3.5. Let 0 < s < λmin(E) and β ∈ R. Then, for any (Rd, E)
pseudo-norm ρE, the two norms

•
‖f‖L∞(Rd) + sup

ρE(h)≤1
sup
x∈Rd

(
|f(x+ h)− f(x)|
ρE(h)s| log(ρE(h))|β

)
,

• ‖f‖Bs
∞,∞,| log |β

defined by (3.3),

are equivalent in Cs| log |β (Rd, E).
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Remark 3.3. Anisotropic Hölder spaces admit a characterization by finite
differences of order M ≥ 1 under the general assumption s > 0. Here, we
only need to deal with the case 0 < s < λmin(E) and have thus stated
Proposition 3.5 in this special setting.

Let us comment Proposition 3.5. Let 0 < s < λmin(E) and N ∈ R. A
bounded function f belongs to Cs| log |β (Rd, E) if and only if for any r ∈ (0, 1),

Θ ∈ SE0 (ρE) and x ∈ Rd, one has

|f(x+ rEΘ)− f(x)| ≤ C0r
s| log(r)|β ,

for some C0 > 0.
Hence, a function f belongs to the Hölder space Cs| log |β (Rd, E) if and only if

its restriction fΘ along any parametric curve of the form

r > 0 7→ rEΘ ,

with Θ ∈ SE0 (| · |E) is in the usual Hölder space Cs| log |β (R) and ‖fΘ‖Cs
| log |β

(R)

does not depend on Θ. Roughly speaking, the anisotropic “directional”
regularity in any anisotropic “direction” has to be larger than s. In other
words, we replace straight lines of isotropic setting by curves with paramet-
ric equation r > 0 7→ rEΘ adapted to anisotropic setting.

Figure 3.

“Isotropic lines” and “anisotropic lines” in the case E =

(
1 −1
1 1

)
.

To state our optimality results we need a local version of anisotropic
Besov spaces :

Definition 3.4. Let E ∈ E+ be a fixed anisotropy, 0 < p, q ≤ ∞, 0 < s <∞
and f ∈ Lploc(R

d).
The function f belongs to Bs

p,q,loc(Rd, E) if for any ϕ ∈ D(Rd), the function
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ϕf belongs to Bs
p,q(Rd, E).

The spaces Bs
p,q,| log |β ,loc(R

d, E) can be defined in an analogous way for any

0 < p, q ≤ ∞, 0 < s <∞, β ∈ R.

The anisotropic local critical exponent in anisotropic Besov spaces
Bs
p,q(Rd, E) of f ∈ Lploc(R

d) is then defined by

αf,loc(E, p, q) = sup{s, f ∈ Bs
p,q,loc(Rd, E)} .

In the special case p = q = ∞, this exponent is also called the anisotropic
local critical exponent in anisotropic Hölder spaces of f ∈ L∞loc(Rd) and is
denoted by αf,loc(E).

4. Statement of our results

In what follows, we are given E0 ∈ E+ and ρE0 a (Rd, Et 0 ) pseudo-norm.
We denote {XρE0

,H0(x)}x∈Rd the OSRGF with exponent E0 and Hurst index
H0 defined by (2.1) with ρ = ρE0 .

We first state our optimality result and characterize in some sense an
anisotropy E0 and an Hurst index of the field {XρE0

,H0(x)}x∈Rd . These re-
sults come from an accurate study of sample paths properties of the OSRGF
{XρE0

,H0(x)}x∈Rd in anisotropic Besov spaces (see Theorem 4.2 just below).

We assume–without loss of generality–that E0 ∈ E+
d , namely that all

the eigenvalues of E0 have a positive real part and that Tr(E0) = d. Our
results will be based on a comparison between the topology related to
the pseudo–norm ρE0 involved in the construction of the Gaussian field
{XρE0

,H0(x)}x∈Rd and this of the analyzing spaces Bs
p,q(Rd, E). To be able

to compare these two topologies, we also assume that E ∈ E+
d .

The main result of this paper is the following one :

Theorem 4.1. Let (p, q) ∈ [1,+∞]2 and E0 ∈ E+
d . Then almost surely

αXρE0
,H0

,loc(E0,p,q) = sup{αXρE0
,H0

,loc(E,p,q),E ∈ E+
d , E commuting with E0}

= H0 ,

that is the value E = E0 maximizes the anisotropic local critical exponent of
the OSRGF {XρE0

,H0(x)}x∈Rd among all possible anisotropic local critical
exponent in anisotropic Besov spaces with an anisotropy E commuting with
E0.

Remark 4.1. Since E and E0 are commuting, these matrices admit the
same spectral decomposition. Hence, in fact we proved that any anisotropy
E0 maximize the critical exponent among matrices having the same spectral
decomposition. Thus, in the general case, we implicitly assumed that the
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spectral decomposition of anisotropy matrix is known. In dimension two,
we have a stronger optimality result about anisotropy E0 and Hurst index
H0, involving matrices of E+

d which do not commute necessilary.

To prove Theorem 4.1, we investigate the local regularity of the sample
paths of {XρE0

,H0(x)}x∈Rd in general anisotropic Besov spaces. But before
any statement, we first need some background about the concept of real
diagonalizable part of a square matrix. This notion is based on real additive
Jordan decomposition of a square matrix (see for e.g. to Lemma 7.1 chap 9
of [18] where a multiplicative version of Proposition 4.1 is given) :

Proposition 4.1. Any matrix M of Md(R) can be decomposed into a sum
of three commuting real matrices

M = D + S +N ,

where D is a diagonalizable matrix in Md(R), S is a diagonalizable matrix
in Md(C) with zero or imaginary complex eigenvalues, and N is a nilpotent
matrix. Matrix D is called the real diagonalizable part of M , S its imaginary
semi-simple part, and N its nilpotent part.

Now we are given two commuting matrices E0, E of E+
d . Let D0 (resp

D) be the real diagonalizable part of matrix E0 (resp E). Since matrices
E0 and E are commuting, so do matrices D0 and D. Furthermore, matrices
D0 and D are diagonalizable in Md(R) then they are simultaneously diago-
nalizable. Up to a change of basis, we may assume that D0 and D are two
diagonal matrices. More precisely, suppose that

D0 =

λ
0
1Idd1 0

. . .

0 λ0
mIddm

 , D =

λ1Idd1 0
. . .

0 λmIddm

 , (4.1)

with
λm
λ0
m

≤ · · · ≤ λ1

λ0
1

. (4.2)

Since Tr(E0) = Tr(E) = d, one has λm/λ
0
m ≤ 1.

The regularity results about sample path of the field {XρE0
,H0(x)}x∈Rd

are summed up in the following theorem.

Theorem 4.2. Let 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞. Almost surely the
anisotropic local critical exponent αXρE0

,H0
,loc(E, p, q) in anisotropic Besov

spaces Bs
p,q(Rd, E) of the OSRGF {XρE0

,H0(x)}x∈Rd satisfies

αXρE0
,H0

,loc(E, p, q) =
λmH0

λ0
m

≤ H0 .
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In particular, in the special case E = E0, one has αXρE0
,H0

,loc(E, p, q) = H0.

In other words Theorem 4.2 asserts that when one measures local regularity
of the sample paths along anisotropic directions different from those asso-
ciated to an anisotropy of the field E0, one loses smoothness. The further
the anisotropic direction of measure from the genuine anisotropic direction
associated to the field are, the smaller the anisotropic local critical exponent
is. This anisotropic local critical exponent can take any value in the range
(0, H0].

The special case p = q = +∞ yields us the following result about
anisotropic Hölderian regularity of the sample paths.

Corollary 4.1. Almost surely the anisotropic local critical exponent of the
sample paths of {XρE0

,H0(x)}x∈Rd in anisotropic Hölder spaces equals

(λmH0)/λ0
m and is always lower than H0. In particular, if E = E0 this

critical exponent equals the Hurst index H0.

Remark 4.2. This estimate on anisotropic local critical exponent was al-
ready known in the case E = E0 (see [6]).

Theorem 4.2 allows us to obtain regularity results which extend those
proved in the case p = q =∞ in the usual isotropic setting. Since matrices
E0 and Id are commuting, we can apply the above result to the case E = Id.
Note that in this case λ0

m = λmax(E0). We obtain the following proposition:

Proposition 4.2. Almost surely the local critical exponent of the sample
paths of {XρE0

,H0(x)}x∈Rd in classical Besov spaces equals H0/λmax(E0).

In particular, for p = q = ∞, almost surely the local critical exponent
of the sample paths of {XρE0

,H0(x)}x∈Rd in classical Hölder spaces equals
H0/λmax(E0).

Remark 4.3. In the special case p = q = ∞, we recover already known
results about classic Hölderian regularity (see Theorem 5.4 of [7]). Re-
call that this theorem is based on directional regularity results about the
Gaussian field {XρE0

,H0} and comes from an estimate of the variogram

vXρE0
,H0

(h) = E(|XρE0
,H0(h)|2) along special directions related to the spec-

tral decomposition of matrix E0. Here our approach is different and based
on wavelet technics.
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5. Complements and proofs

5.1. Role of the real diagonalizable part of the anisotropy E of the
analysing spaces Bs

p,q(Rd, E)

We will first prove that measuring smoothness in the general Besov spaces
Bs
p,q(Rd, E) may be deduced from the special case where the matrix E is

diagonalizable. To this end, we show the following embedding property:

Proposition 5.1. Assume that E1 ∈ E+
d and E2 ∈ E+

d have the same real
diagonalizable part D. Let ρ Et 1

(resp ρ Et 2
)) a (Rd, Et 1 ) (resp (Rd, Et 2 ))

pseudo–norm. Then for any α > 0 and any (p, q) ∈ [1,+∞]2 one has,

Bα

p,q,| log |
− d
ρmin(D)

−1
(Rd, E1) ↪→ Bα

p,q(Rd, E2) ↪→ Bα

p,q,| log |
d

ρmin(D)
+1

(Rd, E1) .

(5.1)

As a direct consequence, we obtain Corollary 5.1.

Corollary 5.1. The anisotropic local critical exponent

αX,loc(E, p, q) = sup{s > 0, X(·) ∈ Bs
p,q,loc(Rd, E)} ,

of any Gaussian field {X(x)}x∈Rd in anisotropic Besov spaces Bs
p,q(Rd, E)

depends only on the real diagonalizable part of E.

Note that this result does not depend on the studied Gaussian field but of
the analyzing functional spaces. Hence, it does not give any information
about the anisotropic properties of the field.

We now show Proposition 5.1. The proof of this result relies on the
following lemma :

Lemma 5.1. Assume that E1 and E2 are two matrices of E+
d having the

same real diagonalizable part D. Then there exists two positive constants c1

and c2 such that, for all x ∈ Rd,

c1ρ Et 2
(x)(1+| log(ρ Et 2

(x)|)−
d

λmin(D) ≤ρ Et 1
(x)≤c2ρ Et 2

(x)(1+| log(ρ Et 2
(x)|)

d
λmin(D)

(5.2)

Proof of Lemma 5.1. Using polar coordinates associated to Et 1, one has,
for x ∈ Rd,

x = r E
t

1Θ, (r,Θ) ∈ R∗+ × S
Et 1

0 (ρ Et 1
) .

Denote F1 = E1 −D, F2 = E2 −D. Then

ρ Et 2
(x) = ρ Et 2

(
r E
t

2 · (r−Dr− Ft 2) · (rDr Ft 1Θ)
)

≤ rρ Et 2
(r− F

t
2r F

t
1Θ) ,
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because F1, F2, D are pairwise commuting matrices. Observe now that F1, F2

have only pure imaginary eigenvalues. Hence, by Lemma 2.1 of [7], one
deduces that for any ε > 0

ρ Et 2
(x) ≤ Crmax(|r− Ft 2r F

t
1Θ|

1
ρmin(D)−ε , |r− Ft 2r F

t
1Θ|

1
ρmax(D)+ε ) ,

where | · | denotes the usual Euclidean norm. Denote ‖ · ‖ an operator norm
on Md(R). Since Θ belongs to the anisotropic sphere S0(ρ Et 1

) which is
compact, one has

ρ Et 2
(x) ≤ Crmax(‖r− Ft 2r F

t
1‖

1
ρmin(D)−ε , ‖r− Ft 2r F

t
1‖

1
ρmax(D)+ε )

≤ Cr (1 + | log(r)|)
d−1

ρmin(D)−ε

≤ Cr (1 + | log(r)|)
d

ρmin(D) ,

for ε > 0 sufficiently small. We then proved Lemma 5.1. We now show
Proposition 5.1.
Proof of Proposition 5.1. Using two anisotropic Littlewood-Paley anal-
ysis associated respectively to matrices E1, E2 and D and the lemma above,
we deduce (5.1). Indeed, for any i ∈ {1, 2}, let (ψEij )j∈N an anisotropic

Littlewood–Paley analysis of Besov spaces Bα
p,q(Rd, Ei). By definition,

supp(ψ̂Ei1 ) ⊂ {ξ ∈ Rd, 1 ≤ ρ Et i
(x) ≤ 4} ,

for i ∈ {1, 2}. Then there exists some j0 ∈ N such that for any j ∈ N, one
has

supp(ψ̂E2
j ) ⊂ {ξ, 2j−1 ≤ ρ Et 2

(ξ) ≤ 2j+1}

⊂
j+j0+

d log2(j)
λmin(D)⋃

`=j−j0− d log2(j)
λmin(D)

{ξ, 2`−1 ≤ ρ Et 1
(ξ) ≤ 2`+1} .

Hence

ψ̂E2
j (ξ) f̂(ξ) = ψ̂E2

j (ξ)


j+j0+

d log2(j)
λmin(D)∑

`=j−j0− d log2(j)
λmin(D)

ψ̂E1
` (ξ) f̂(ξ)

 .

Define q′ the conjugate of q, that is the positive real satisfying 1/q+1/q′ = 1.
The last inequality and Cauchy–Schwartz inequality imply that for some
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C > 0,

‖f ∗ ψE2
j ‖

q
Lp ≤ C(log2 j)

q/q′


j+j0+

d log2(j)
λmin(D)∑

`=j−j0− d log2(j)
λmin(D)

‖ψE2
j ∗ (ψE1

` ∗ f)‖qLp



≤ C (log2 j)
q/q′‖ψE2

0 ‖
q
L1


j+j0+

d log2(j)
λmin(D)∑

`=j−j0− d log2(j)
λmin(D)

‖ψE1
` ∗ f‖

q
Lp

 .

Then we can give the following upper bound of
J∑
j=1

2jsq‖f ∗ ψE2
j ‖

q
Lp :

J∑
j=1

2jsq‖f ∗ ψE2
j ‖

q
Lp ≤ C

J∑
j=1

(log2 j)
q/q′2jsq

 j+j0+
d log2(j)

λmin(D)∑
`=j−j0− d log2(j)

λmin(D)

‖(f ∗ ψE1

` )‖qLp



≤ C

J+j0+
d log2(J)

λmin(D)∑
`=1

‖f ∗ ψE1

` ‖
q
Lp

 `+j0+
d log2(`)

λmin(D)∑
j=`−j0− d log2(`)

λmin(D)

(log2 j)
q/q′2jsq



≤ C

J+j0+
d log2(J)

λmin(D)∑
`=1

‖f ∗ ψE1

` ‖
q
Lp2`sq`d/λmin(D)+1 .

Let now J tends to ∞. It yields the embedding

Bα

p,q,| log |
− d
λmin(D)

−1
(Rd, E1) ↪→ Bα

p,q(Rd, E2) .

Permuting E1 and E2 yields the other inclusion.

5.2. Local regularity in anisotropic Besov spaces of the studied
field

In the previous section, we proved that we can restrict our study to di-
agonal Besov spaces. This point is crucial for the proof of the regularity
results stated in Section 4. Indeed it allows us to use tools that are only
defined in the diagonal case, as anisotropic multi-resolution analysis and
anisotropic wavelet bases. The aim of the following subsection is to recall
the constructions of these wavelet bases.
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5.2.1. Orthonormal Wavelet bases of (diagonal) anisotropic spaces

In this section, we assume that the anisotropy D of the analyzing space is
diagonal (with positive eigenvalues), namely that

D =

λ1 0
. . .

0 λd

 .

In addition we also assume that Tr(D) = d. Our main tool will be anisotropic
multi–resolution analyses defined by Triebel in [37].

Let {Vj , j ≥ 0} be a one–dimensional multi–resolution analysis of L2(R).
Denote by ψF (resp. ψM ) the corresponding scaling function (resp. wavelet
function).

Notation 5.1. We denote by {F,M}d∗ the set

{F,M}d∗ = {F,M}d \ {(F, · · · , F )} .

For j ∈ N, we define the set Ij(D) of {F,M}d × Nd in the following way.

• If j = 0, I0(D) = {((F, · · · , F ), (0, · · · , 0))}.

• If j ≥ 1, Ij(D) is the set of all the elements (G, γ) with G ∈ {F,M}d∗

and γ ∈ Nd such that for any r ∈ {1, · · · , d} :

If Gr = F, γr = [(j − 1)λr],
If Gr = M, [(j − 1)λr] ≤ γr < [jλr] .

Finally, for j ∈ N and (G, γ) ∈ Ij(D), we will denote by Dj,G,γ the
matrix defined by

Dj,G,γ =

γ1 0
. . .

0 γd

 .

Finally, let us define the family of wavelets as follows. For j ∈ N, (G, γ) ∈
Ij(D) and k ∈ Zd, we set

Ψk
j,G,γ(x) = (ψ(G))(2Dj,G,γx− k) ,

with
ψ(G) = ψG1 ⊗ · · · ⊗ ψGd .

The anisotropic wavelet bases yield a wavelet characterisation of anisotropic
Besov spaces (see [36] and [37], Theorem 5.23).
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Theorem 5.1.

1. The family

{
2

Tr(Dj,G,γ )

2 Ψk
j,G,γ , j ∈ N, (G, γ) ∈ Ij(D), k ∈ Zd

}
is an or-

thonormal basis of L2(Rd).

2. Let (Ψj,G,γ
k )j∈N,(G,γ)∈Ij(D),k∈Zd be the family constructed from ψF and

ψM Daubechies wavelets with, for some u ∈ N,

ψF ∈ Cu(R), ψM ∈ Cu(R) .

Let 0 < p, q ≤ ∞ and s,N ∈ R. There exists an integer u(s, p,D)
such that if u > u(s, p,D), for any tempered distribution f the two
following assertions are equivalent

(a) f ∈ Bs
p,q,| log |β (Rd, D).

(b) f =
∑
ckj,G,γΨk

j,G,γ with

∑
j,G,γ

j−βq2
j(s− d

p
)q

(∑
k

|ckj,G,γ |p
) q

p

< +∞ ,

the convergence being in S ′(Rd).

The above expansion is then unique and

ckj,G,γ =< f, 2Tr(Dj,G,γ)Ψk
j,G,γ > . (5.3)

Remark 5.1. An analogous result is stated (see [37], Theorem 5.24) replac-
ing Daubechies wavelets by Meyer wavelets. In that case, u = +∞.

We now prove our regularity results about the sample path of {XρE0
,H0(x)}x∈Rd

based on wavelet characterization of Besov spaces.

5.2.2. Local regularity of the field {XE0,H0(x)}x∈Rd in anisotropic
Besov spaces Bs

p,q(Rd, D0)

Assume that we are given a Gaussian field {XE0,H0(x)}x∈Rd of the form (2.1)
where E0 ∈ E+

d and H0 ∈ (0, λmin(E0)). The aim of this section is to prove :

Proposition 5.2. Let 1 ≤ p, q ≤ +∞. Define δ on (0,+∞] as follows :

δ(p) =

{
3/2 if p = +∞,
1 otherwise.

Then one has
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1. For any β > 1/q + d/λmin(E0) + δ(p), almost surely, the sample path
of {XρE0

,H0(x)}x∈Rd belongs to BH0

p,q,| log |β ,loc(R
d, D0),

2. For β = 1/q + d/λmin(E0) + δ(p), almost surely, the sample path of
{XρE0

,H0(x)}x∈Rd does not belong to BH0

p,q,| log |−β ,loc(R
d, D0).

Adapting to our setting a result of [22], we first remark that there exists
C∞(Rd \ {0}) (Rd, E0) pseudo–norms

Lemma 5.2. Let E0 ∈ E+ and ϕ be a C∞ non–negative function compactly
supported in Rd \ {0}. The function ρ defined on Rd, by

ρ(x) =

∫ ∞
0

ϕ(a−E0x)da ,

is a (Rd, E0) pseudo-norm belonging to C∞(Rd \ {0}).

We now prove that the belongness of the sample paths to anisotropic Besov
spaces of any OSRGF of the form {Xρ,H0}x∈Rd do not depend on the (Rd, Et 0 )
pseudo-norm ρ involved in the construction of the field.

Lemma 5.3. Let E0 ∈ E+
d and ρ1, ρ2 two ( Et 0,Rd) pseudo–norms. Denote

respectively {X1(x)}x∈Rd and {X2(x)}x∈Rd the two OSSRGF defined from
ρ1 and ρ2. Then, for any s > 0, β ∈ R, (p, q) ∈ (0,∞]2, a.s. X1 belongs to
Bs
p,q,| log |β (Rd, D0) iff a.s. X2 belongs to Bs

p,q,| log |β (Rd, D0).

Proof. Remark first that using the same approach than in Lemma 2 of [8]
and an anisotropic version of Kolmogorov Centsov Theorem we can prove
that a.s.

x 7→
∫
|ξ|≤R

(ei<x,ξ>−1)ρ
−H0−d/2
1 (ξ)dŴ (ξ), x 7→

∫
|ξ|≤R

(ei<x,ξ>−1)ρ
−H0−d/2
2 (ξ)dŴ (ξ)

both belong to Cr(K,D0) ↪→ Bs
p,q(Rd, D0) for any compact subset K of

Rd and any r > minλ∈Sp(∆) λ. Since any ( Et 0,Rd) pseudo–norms ρ1, ρ2 are
equivalent, Lemma 5.3 is then a straightforward consequence of Theorem 1.1
of [12] applied with B = Bs

p,q(Rd, D0) which is either a separable Banach

space either the dual of the separable space B = B−sp′,q′(R
d, D0) with p′, q′

the respective conjugates of p, q and to

fX = ρ−2H0−d
1 1|ξ|≥R and fY = ρ−H0−d

2 1|ξ|≥R ,

and
fX = ρ−2H0−d

2 1|ξ|≥R and fY = ρ−H0−d
1 1|ξ|≥R ,

successively.
Thus, using Lemmas 5.2 and 5.3, we assume without loss of general-

ity from now that the (Rd, E0) pseudo–norm ρE0 , used to define the field
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{XρE0
,H0(x)}x∈Rd belongs to C∞(Rd \ {0}). We shall use this assumption

when proving that the wavelet coefficients of the field are weakly dependent
(see Section 6).

From now, we are given a (Rd, D0) pseudo–norm, ρD0 . Observe that, to
prove our local regularity results, we have to investigate the sample paths
properties of ϕX for any function ϕ ∈ D(Rd), that is for any ϕ ∈ D(Rd)
satisfying supp(ϕ) ⊂ BρD0

(k0, r0) = {x ∈ Rd, ρD0(x − k0) ≤ r0} where

k0 ∈ Zd, r0 > 0. Since the Besov spaces are invariant by translations and
dilatations, we may assume that k0 = 0 and r0 = 1. We have then to study
the sample paths properties of the field ϕX for any function ϕ ∈ D(Rd) such
that supp(ϕ) ⊂ BρD0

(0, 1).
Our results come from the series expansion of XρE0

,H0 in a Daubechies
anisotropic wavelet basis (see Section 5.2.1 just above). Recall that for any
j ∈ N, (G, γ) ∈ Ij(D), the wavelet coefficients of XρE0

,H0 are defined as

ckj,G,γ =< XρE0
,H0 , 2

Tr(Dj,G,γ)Ψk
j,G,γ > .

Define Γ0(D0) = ∅ for j = 0 and for any j ≥ 1

Γj(D0) = {k ∈ Zd, ρD0(k) < j2j} . (5.4)

Thereafter set

X
(1)
ρE0

,H0
(x) =

∑
j,G,γ

∑
k∈Γj(D0)

ckj,G,γ(ω)Ψk
j,G,γ(x), (5.5)

and
X

(2)
ρE0

,H0
(x) =

∑
j,G,γ

∑
k 6∈Γj(D0)

ckj,G,γ(ω)Ψk
j,G,γ(x) . (5.6)

We will investigate separately the local sample path properties in anisotropic

Besov spaces of the two Gaussian fields X
(1)
ρE0

,H0
and X

(2)
ρE0

,H0
. We first prove

that

Proposition 5.3. Let 1 ≤ p, q ≤ ∞.

1. Almost surely, for any β > 1/q + d/λmin(E0) + δ(p), the sample path

of the field {X(1)
ρE0

,H0
(x)}x∈Rd belongs to BH0

p,q,| log |β (Rd, D0).

2. Let ϕ such that supp(ϕ) ⊂ BρD0
(0, 1) and satisfying

ϕ ≡ 1 on BρD0
(0, 1/2) .

Then almost surely, for β = 1/q + d/λmin(E0) + δ(p) the sample path

of the field {ϕX(1)
ρE0

,H0
(x)}x∈Rd does not belong to BH0

p,q,| log |−β (Rd, D0).
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Proof. The proof uses several technics introduced in [11]. The result comes

from a comparison between
[∑

k∈Γj(D0) |ckj,G,γ |p
]1/p

and
[
E(|ckj,G,γ |2)

]1/2
and

from Lemma 6.1 which gives an estimate of
[
E(|ckj,G,γ |2)

]1/2
. Set

gkj,G,γ =
ckj,G,γ[

E(|ckj,G,γ |2)
]1/2

. (5.7)

for any j ∈ N, (G, γ) ∈ Ij and k ∈ Γj(D0). We need to distinguish two
cases : p 6= ∞ and p = ∞. In each case, we prove successively points (i)
and (ii).

Assume first that p 6= ∞ and let us prove point (i) in this case. The
definition of the sequence (gkj,G,γ) and the stationarity for any (j,G, γ) of

the sequence (ckj,G,γ , k ∈ Zd) implies that for any j,G, γ

 ∑
k∈Γj(D0)

|ckj,G,γ |p
1/p

=
[
E(|c0

j,G,γ |2)
]1/2 ·

 ∑
k∈Γj(D0)

|gkj,G,γ |p
1/p

.

Use now the weak correlation of the wavelet coefficients and the two esti-

mates of
[
E(|c0

j,G,γ |2)
]1/2

and of nj = card(Γj(D0)) respectively proved in

Lemmas 6.1 and 6.2. One deduces that the following inequality holds for
any j ≥ 0 :

 ∑
k∈Γj(D0)

|ckj,G,γ |p
 1

p

≤ C2
j( d
p
−H0)

jd
∗

 1

nj

∑
k∈Γj(D0)

|gkj,G,γ |p
 1

p

, (5.8)

where

d∗ =
d

2λmin(E0)
+
d

p
.

Lemma 6.3 stating a central limit theorem for the sequence (gkj,G,γ) and
inequality (5.8) then prove point (i) of the proposition for the case p <∞.

We now prove point (ii) for p 6=∞. Set now

Γ′j(D0) = {k ∈ Zd, ρD0(k) ≤ 2j/j} .

Using the assumptions on the support of ϕ, remark that for j sufficiently
large and for any k ∈ Γ′j(D0), one has

ckj,G,γ(ϕX) = ckj,G,γ(X) .
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Use the same arguments as in the proof of Lemma 6.2 and deduce that
n′j = Card(Γ′j(D0)) ∼ j−d2jd. Since Γ′j(D0) ⊂ Γj(D0), a similar approach
to above then yields that for some C > 0 and for any j ≥ 1 ∑

k∈Γj(D0)

|ckj,G,γ |p
 1

p

≥

 ∑
k∈Γ′j(D0)

|ckj,G,γ |p
 1

p

≥ C2
j( d
p
−H0)

j−d
∗

 1

n′j

∑
k∈Γ′j(D0)

|gkj,G,γ |p
 1

p

.

which directly implies point (ii) of the proposition.

If p =∞, a similar approach implies that almost surely there exists some
C1, C2 > 0 such that for any j,G, γ

C12−jH0j−d
∗

(
1√

log(nj)
sup
k∈Γj

|gkj,G,γ |

)
≤

∑
k∈Γj

|ckj,G,γ |p
 1

p

,

and ∑
k∈Γj

|ckj,G,γ |p
 1

p

≤ C22−jH0jd
∗

(
1√

log(nj)
sup
k∈Γj

|gkj,G,γ |

)
,

with

d∗ =
d

2λmin(E0)
.

Lemma 6.4 and the inequality just above then implies the result stated
in point (i) for the case p = ∞. The proof of point (ii) for p = ∞ also
follows from the above inequality replacing Γj(D0) with Γ′j(D0) as in the
case p 6=∞.

We now investigate the sample paths properties of {X(2)
ρE0

,H0
(x)}x∈Rd .

Proposition 5.4. Almost surely, the sample path of the field

{X(2)
ρE0

,H0
(x)}x∈Rd belong to BH′

p,q,loc(Rd, E0) for any

0 < H0 < H ′ < λmin(D0) = λmin(E0) ,

and any 1 ≤ p, q ≤ ∞.

Proof. Using the transference results of [37] (see Theorem 5.28) and the
usual embedding of isotropic Besov spaces defined on bounded domains one
remarks that

Cs+εloc (Rd, D0) ⊂ Bs
p,q,loc(Rd, D0) ,
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for any 1 ≤ p, q ≤ ∞ and any s, ε > 0. It then suffices to prove the result
for p = q =∞.

Let now consider H ′ ∈ (H0, λmin(E0)), ε > 0 and ϕ ∈ D(Rd). Recall
that we assumed that

supp(ϕ) ⊂ BρD0
(0, 1) = {x ∈ Rd, ρD0(x) ≤ 1} ,

and 0 ≤ ϕ ≤ 1 on Rd. We denote by Y the random field ϕX
(2)
ρE0

,H0
.

We will give an upper bound of |Y (x + h) − Y (x)| for any given x in
BD0(0, 1) and h sufficiently small. Observe that

Y (x+ h)− Y (x) = Y1(x, h) + Y2(x, h) ,

with

Y1(x, h) =
∑
j,G,γ

∑
k 6∈Γj(D0)

ckj,G,γ(ϕ(x+ h)− ϕ(x))Ψk
j,G,γ(x) ,

Y2(x, h) =
∑
j,G,γ

∑
k 6∈Γj(D0)

ckj,G,γϕ(x+ h)(Ψk
j,G,γ(x+ h)−Ψk

j,G,γ(x)) .

We first bound Y1(x, h). Let ε = 1 − H ′/λmin(E0). We now use that
ϕ ∈ B1−ε

∞,∞,loc(R
d), h sufficiently small and x belongs to the compact set

BρD0
(0, 1). Hence , by Lemma 6.4 and the fast decay of the wavelets, almost

surely for any M > 0 and for some C > 0 one has

|Y1(x, h)| ≤ C|h|1−ε
∑
j,G,γ

jd
∗
2−jH0

 ∑
k 6∈Γj(D0)

1

(1 + |k − 2Dj,G,γx|)M

 .

Here we denoted d∗ = 1/2 + d/λmin(E0). Further, by assumption on k and
x

ρD0(k) ≥ j2j ≥ jρD0(2Dj,G,γx) .

Since ρD0 is a (Rd, D0) pseudo–norm, by the triangular inequality (3.2), one
deduces that for j sufficiently large

ρD0(k − 2Dj,G,γx) ≥ CρD0(k) .

for some C ∈ (0, 1). Then by comparison between ρD0 and the usual Eu-
clidean norm, one deduces that there exists some α > 0 such that for j
sufficiently large and any x in BρD0

(0, 1)

|k − 2Dj,G,γx| ≥ (|k|/2)α .
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Then

|Y1(x, h)| ≤ C|h|1−ε
∑
j,G,γ

jd
∗
2−jH0

∑
k 6∈Γj(D0)

1

(1 + |k|α)M

 .

Since, for M sufficiently large∑
j,G,γ

jd
∗
2−jH0

∑
k 6∈Γj(D0)

1

(1 + |k|α)M
<∞ ,

one has almost surely |Y1(x, h)| ≤ C ′ρD0(h)H
′
.

By the same approach, we can bound Y2(x, h). Indeed, using the fact
that ϕ is bounded and the mean value theorem for Ψk

j,G,γ , we then prove
that almost surely for some C > 0

|Y2(x, h)|≤C
∑
j,G,γ

jd
∗
2−jH0 |2Dj,G,γh|

 sup
y∈[x,x+h]

∑
k 6∈Γj(D0)

1

(1 + |k − 2Dj,G,γy|)M

.
The end of the proof is exactly the same as above remarking that

|2Dj,G,γh| ≤ jδ2jρD0(h)λmin(E0) ,

for some δ > 0. Proposition 5.2 then follows directly from Propositions 5.3
and 5.4.

5.3. Proof of regularity results in anisotropic Besov spaces with
an anisotropy commuting with this of the field

The following proposition extends the results of Proposition 5.2 in anisotropic
Besov spaces Bs

p,q(Rd, E) with E ∈ E+
d commuting with E0.

Proposition 5.5. Let 1 ≤ p, q ≤ +∞, ε > 0 and E ∈ E+
d commuting with

E0. Then

1. Almost surely the sample path of {XρE0
,H0(x)}x∈Rd belongs to

B
H0

λm
λ0
m
−ε

p,q,loc (Rd, E).

2. Almost surely the sample path of {XρE0
,H0(x)}x∈Rd does not belong to

B
H0

λm
λ0
m

+ε

p,q,loc (Rd, E).

The proof is made in several steps. First we need to compare Besov spaces
with different commuting anisotropies.
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5.3.1. A comparison result between Besov spaces with different
commuting anisotropies

Since E and E0 are commuting, we can then assume (up to a change of
basis) that D0 and D are two diagonal matrices of the form :

D0 =

λ
0
1Idd1 0

. . .

0 λ0
mIddm

 , D =

λ1Idd1 0
. . .

0 λmIddm

 , (5.9)

with
λm
λ0
m

≤ · · · ≤ λ1

λ0
1

. (5.10)

Proposition 5.6. The notations and assumptions are as above. For any
α > 0, β ∈ R and p, q ∈ (0,+∞], one has the following embedding

Bα
p,q,| log |β (Rd, D0) ↪→ B

αλm
λ0
m

p,q,| log |β (Rd, D) .

The proof is straightforward and based on finite differences characterization
of Besov spaces given in Theorem 5.8 (ii) of [37].

5.3.2. Proof of Proposition 5.5

We only prove the second point of Proposition 5.5 since the first one is a
straigthforward consequence of Propositions 5.1 and 5.6. To this end we use
the following characterization of anisotropic Besov spaces Bs(Rd,∆) with
diagonal anisotropy ∆ (see Theorem 5.8 of [37]) :

Proposition 5.7. Let ∆ a matrix belonging to E+ of the form

∆ =


α1 0 · · · 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αd

 .

and s ∈ (0, λmin(∆)), M` = [s/α`] + 1 for any ` = 1, · · · , d. Then f ∈
Bs
p,p(Rd,∆) if and only if

‖f‖Lp +

d∑
`=1

(∫ 1

0
‖(∆M`

te`
f)(x)‖pLpt

−sp/α`−1dt

)1/p

<∞ ,

where (e`) is the canonical basis of Rd and where as usual, for any x, h ∈ Rd

(∆1
hf)(x) = f(x+ h)− f(x), · · · , (∆M`

h f)(x) = (∆1
h∆M`−1f)(x) .
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Remark 5.2. If for ` = 1, · · · , d,s ∈ (0, α`) then M` = 1.

Proof. This statement is proved in Theorem 5.8 in [37].
We now prove Proposition 5.5. We first remark that we have only to

consider the case where E0 = D0. Indeed, let ρE0 (resp ρD0) be a (Rd, E0)
(resp a (Rd, D0)) pseudo–norm. Lemma 5.1 then implies that for any ε > 0
and any |ξ| sufficiently large

ρD0(ξ)1−ε ≤ ρE0(ξ) ≤ ρD0(ξ)1+ε .

Hence Theorem 1.1 of [12] applied successively with

fX = 1|ξ|≤RρE0(·)−2H0−d, fY = 1|ξ|≤RρD0(·)−(1−ε)(2H0+d) ,

and

fX = 1|ξ|≤RρD0(·)−(1+ε)(2H0+d), fY = 1|ξ|≤RρE0(·)−2H0−d ,

as above and Proposition 5.5 proved in the case E0 = D0 yield the result in
the general case E0 ∈ E+

d .
From now, we then assume that E0 = D0 and that the (Rd, D0) pseudo–

norm involved in the construction of the studied field belongs to C∞(Rd\{0})
which ensures the weak correlation of the wavelet coefficients.

As in the proof of Proposition 5.2, we use an expansion of the Gaussian
field XρD0

,H0 in a Daubechies wavelet basis and we define,

X̃(1)(x) =
∑
j,G,γ

∑
k∈Γ̃j(D0)

ckj,G,γ(ω)Ψk
j,G,γ(x), (5.11)

and

X̃(2)(x) =
∑
j,G,γ

∑
k 6∈Γ̃j(D0)

ckj,G,γ(ω)Ψk
j,G,γ(x) . (5.12)

where Γ̃j(D0) = {k ∈ Zd, ρD0(k) ≤ C12j}.
As in the proof of Proposition 5.2, we see that, for C1 sufficiently large,

almost surely X̃(2) belongs to B
H0λm/λ0

m+ε
p,q,loc (Rd, D) for any 1 ≤ p, q ≤ ∞ and

ε > 0 sufficiently small.
We then have to prove our a.s. non local regularity results for the Gaus-

sian field X̃(1). Remark now that since the multiresolution analysis is com-
pactly supported so is X̃(1). To show point (ii) of Proposition 5.5, it is then
sufficient to prove that a.s. the sample paths of X̃(1) does not belong to
BλmH0/λ0

m+ε(Rd, D) for any ε > 0.
Set M = [s/λm] + 1 which may be greater than one. In view of Propo-

sition 5.7, we shall then give an almost sure lower bound of

‖(∆M
ted
X̃(1))(x)‖pLp =

∫
Rd
|(∆M

ted
X̃(1))(x)|pdx ,
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for any p ≥ 1 and any t of the form t = 2−[j0λ0
m] where j0 is a fixed non–

negative integer.
Set

∆j0 =

[j0λ
0
1] 0

. . .

0 [j0λ
0
m]

 .

Observe that if t = 2−[j0λ0
m], one has ted = 2−∆j0ed. Remark also that

X̃(1) can be written as the sum of its low frequency component and its high
frequency component, namely that

X̃(1) = X̃
(1)
LF + X̃

(1)
HF

with
X̃

(1)
LF (x) =

∑
j≤j0

∑
G,γ

∑
k∈Γ̃j(D0)

ckj,G,γΨk
j,G,γ(x) and

X̃
(1)
HF (x) =

∑
j≥j0+1

∑
G,γ

∑
k∈Γ̃j(D0)

ckj,G,γΨk
j,G,γ(x) .

Using the triangular inequality, one has

‖(∆M
ted
X̃(1))(x)‖Lp ≥ ‖(∆M

ted
X̃

(1)
HF )(x)‖Lp − ‖(∆M

ted
X̃

(1)
LF )(x)‖Lp (5.13)

To give a lower bound of ‖(∆M
ted
X̃(1))(x)‖pLp , we shall then give a lower bound

of ‖(∆M
ted
X̃

(1)
HF )(x)‖pLp and an upper bound of ‖(∆M

ted
X̃

(1)
LF )(x)‖pLp .

Let us first give an upper bound of ‖(∆M
ted
X̃

(1)
LF )(x)‖pLp . We suppose that

the multiresolution analysis is s smooth for some s ∈ (H0, λmin(D0)). By
the finite differences definition of the spaces Ḃs

p,∞(Rd, D0) and the fact that

for any M ≥ 1 |∆M
h f(x)| ≤

∑M
`=1 |f(x+ `h)− f(x+ (`− 1)h)|, one has∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j≤j0

∑
G,γ

∑
k∈Γ̃j(D0)

ckj,G,γ

(
∆M

2
−∆j0 ed

Ψk
j,G,γ

)
(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

≤ C
∑
j≤j0

|2−∆j0ed|sD0

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
G,γ

∑
k∈Γ̃j(D0)

ckj,G,γΨk
j,G,γ

∣∣∣∣∣∣
∣∣∣∣∣∣
Ḃsp,∞(Rd,D0)

Use now the wavelet characterization of the homogeneous Besov spaces
Ḃs
p,∞(Rd, D0). Then for some C > 0∣∣∣∣∣∣
∣∣∣∣∣∣
∑
G,γ

∑
k∈Γ̃j(D0)

ckj,G,γΨk
j,G,γ

∣∣∣∣∣∣
∣∣∣∣∣∣
Ḃsp,∞(Rd,D0)

≤C2j(s−d/p)

∑
G,γ

∑
k∈Γ̃j(D0)

|ckj,G,γ |p
1/p

.
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As the proof of Proposition 5.2, we can estimate a.s.
∑

k∈Γ̃j(D0)
|ckj,G,γ |p.

Hence, we deduce that there exists an a.s. positive constant C ′ such that∣∣∣∣∣∣(∆M
ted
X̃

(1)
LF

)
(x)
∣∣∣∣∣∣p
Lp(Rd)

≤ C2−j0s
∑
j≤j0

2
j(s− d

p
) ·
(

2
j d
p j

d
2ρmin(E0) 2−jH0

)
≤ C ′ ,

(5.14)
where C ′ is not depending on j0 nor s.

We now give a lower bound of ‖(∆M
ted
X̃

(1)
HF )(x)‖pLp . To this end perform

the change of variable x = 2−∆j0y and deduce that

‖(∆M
ted
X̃

(1)
HF )(x)‖pLp = 2−Tr(∆j0

)‖(∆M
ted
X̃

(1)
HF )(2−∆j0y)‖pLp (5.15)

By definition of X̃
(1)
HF one has

(∆M
ted
X̃

(1)
HF )(2−∆j0y) =

∑
j≥j0+1

∑
G,γ

∑
k∈Γ̃j(D0)

ckj,G,γ

(
∆M
ted

Ψk
j,G,γ

)
(2−∆j0y) .

Define now for any j′ ≥ 1, any G ∈ {F,M}d∗ and any γ′ ∈ Nd such that

[(j′ − 1)λr]− 2 ≤ γ′r ≤ [j′λr] + 2

the family of functions

hkj′,G,γ′(y) = (∆M
ed

Ψ(G))(2Dj′,G,γ′y − k) ,

where

Dj′,G,γ′ =


γ′1 0 . . . 0

0
. . .

...
...

. . . γ′m−1 0
0 . . . 0 γ′m

 ,

and for j′ = 0 and any k ∈ Zd hkj′,(F,··· ,F ),(0,··· ,0)(x) = Ψ(F,··· ,F )(x − k).
Observe that this is a family of inhomogeneous smooth analysis molecules
in the sense of Definition 5.3 in [9]. Further, if j′ = j − j0 and γ̃ = ([j0λ

0
r ])r

one has

X̃
(1)
HF (2−∆j0 (y + ed))− X̃

(1)
HF (2−∆j0y) =

∑
j′≥1

∑
G,γ′

∑
k∈Γ̃j(D0)

c̃kj′,G,γ′h
k
j′,G,γ′(y) ,

with c̃kj′,G,γ′ = ckj′+j0,G,γ′+γ̃ if (G, γ′ + γ̃) ∈ Ij′+j0(D0) and c̃kj′,G,γ = 0 other-
wise. Hence

‖(∆M

2
−∆j0 ed

X̃
(1)
HF )(2−∆j0 y)‖Lp ≥ ‖(∆M

2
−∆j0 ed

X̃
(1)
HF )(2−∆j0 y)‖B0

p,p,| log |(Rd,D0)

≥

∑
j′≥1

∑
(G,γ)∈Ij′+j0

j′2−j
′d

∑
k∈Γ̃j′+j0 (D0)

|ckj′+j0,G,γ |
p


1/p

.
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We use once more an a.s. estimate of
∑

k |ckj,G,γ |p as in the proof of Propo-

sition 5.2. Since as in Lemma 6.2, we can prove that Card(Γ̃j′+j0(D0) ≥
2(j′+j0)d. Hence there exists an a.s. positive constant C such that∑

k∈Γ̃j′+j0
(D0)

|ckj′+j0,G,γ |
p ≥ 2−(j′+j0)(H0p−d) .

Hence

‖(∆M

2
−∆j0 ed

X̃
(1)
HF )(2−∆j0y)‖pLp ≥ C

∑
j′,G,γ

j′2−j
′d2−(j′+j0)(H0p−d) .

Use now the last inequality and relation (5.15). Then a.s.

‖(∆M

2
−∆j0 ed

X̃
(1)
HF )(2−∆j0y)‖pLp ≥ C2−j0dj−d0

∑
j′≥0

j′2−j
′d2−(j′+j0)(H0p−d)


≥ C2−j0H0p .

We deduce that a.s.∫ 1

0
‖(∆M

2−[j0λ
0
m]e`

X̃
(1)
HF )(x)‖pLpt

−s/λmp−1dt

≥
+∞∑
j0=0

∫ 2−[j0λ
0
m]

2−[(j0+1)λ0
m]
‖(∆M

2−[j0λ
0
m]e`

ϕX̃
(1)
ρD0

,H0
)(x)‖pLp(Rm)t

−s/λmp−1dt

≥ C
+∞∑
j0=0

j−d0 2−j0H0p
(

2−[j0λ0
m]
)−sp/λm−1

2−[j0λ0
m]

= C

+∞∑
j0=0

2−j0H0pj−d0

(
2−[j0λ0

m]
)−sp/λm

.

Since
+∞∑
j0=0

jd02−j0H0p
(

2−[j0λ0
m]
)−sp/λm

= +∞ ,

if sλ0
m/λm −H0p > 0, we deduce that a.s.∫ 1

0
‖X̃(1)

HF (x+ 2−[j0λ0
m]e`)− X̃

(1)
HF (x)‖pLpt

−s/λmp−1dt = +∞

for s > H0λm/λ
0
m. Using (5.14) and the triangular inequality (5.13), it ends

the proof of Proposition 5.5. It also implies directly Theorem 4.1.
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6. Technical lemmas

Our results about smoothness of the sample path are based on the following
lemma

Lemma 6.1. Assume that the anisotropic multi–resolution analysis consid-
ered is C1 and admits at least one vanishing moment.

Let {XρE0
,H0(x)}x∈Rd the Gaussian field defined by (2.1) with ρ = ρE0.

Assume also that the pseudo–norm ρE0 involved in the construction of this
field is at least C1(Rd \ {0}). Then the wavelet coefficients of the random
field {XρE0

,H0(x)}x∈Rd are weakly dependent in the following sense

1. There exists some C0 > 0 such for any j ≥ 1, (G, γ) ∈ Ij and (k, k′) ∈
(Zd)2

|E(ckj,G,γc
k′
j,G,γ)| ≤ C0

j2d/λmin2−2jH0

1 + |k − k′|
. (6.1)

2. There exists some C1, C2 > 0 such that for any j ≥ 1, (G, γ) ∈ Ij and
any k ∈ (Zd)

C1j
−d/λmin(E0)2−2jH0 ≤ E(|ckj,G,γ |2) ≤ C2j

d/λmin(E0)2−2jH0 . (6.2)

Remark 6.1. Theorem 1.1 of [12] imply that, studying the sample paths
properties of OSSRGF, we can always assume that the pseudo–norm ρE0 in-
volved in the construction of this field is C∞(Rd\{0}). Then the assumptions
of Lemma 6.1 are satisfied.

Proof. Since the anisotropic multiresolution analysis admits at least one
vanishing moment, one has ψ̂M (0) = 0. Further, for any j ≥ 1, (G, γ) ∈ Ij
and for all k ∈ Zd

ckj,G,γ =

∫
Rd

ei2
− Dt j,G,γ k ξψ̂(G)(2− D

t
j,G,γ ξ)ρ Et 0

(ξ)−H0−d/2dŴ (ξ) .

This formula implies that (set ζ = 2− D
t
j,G,γ ξ)

E(|ckj,G,γ |2) = 2jTr(Dj,G,γ)

∫
Rd
|ψ̂(G)(ζ)|2ρ Et 0

(2 Dt j,G,γ ζ)−2H0−ddζ .

Since 2(j−2)d ≤ Tr(Dj,G,γ) ≤ 2jd, using Lemma 5.1 and the inequalities

C12j ≤ ρD0(2 Dt j,G,γ ζ) ≤ C22j imply that

E(|ckj,G,γ |2) ≥

C12−2j(H0+d)2jd
∫
Rd
|ψ̂(G)(ζ)|2ρ−2H0−d

Dt 0
(ζ) (1+log(ρ−2H0−d

Dt 0
(ζ))+j)−d/λmin(E0) dζ,
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and

E(|ckj,G,γ |2) ≤

C22−2j(H0+d)2jd
∫
Rd
|ψ̂(G)(ζ)|2ρ−2H0−d

Dt 0
(ζ) (1 + log(ρ Dt 0

(ζ) ) + j)d/λmin(E0)dζ.

We then proved inequalities (6.2).
To prove inequality (6.1) remark that for any ` ∈ {1, · · · , d}

(k` − k′`)E(ckj,G,γc
k′
j,G,γ)

=

∫
Rd

(k` − k′`)ei2
− Dt j,G,γ (k−k′)ξ|ψ̂(G)(2− D

t
j,G,γ ξ)|2ρE0(ξ)−2H0−ddξ .

Set ζ = 2− D
t
j,G,γ ξ and integrate by parts with respect to ζ`. Hence

(k` − k′`)E(ckj,G,γc
k′
j,G,γ)

= 2jTr(Dj,G,γ)

∫
Rd

(k` − k′`)ei(k−k′)ζ |ψ̂(G)(ζ)|2ρE0(2 Dt j,G,γ ζ)−2H0−ddζ.

Recall that the pseudo–norm may be assumed to be C∞(Rd \ {0}). Since
the multi resolution analysis is C1

(k` − k′`)E(ckj,G,γc
k′
j,G,γ)

= −2jTr(Dj,G,γ)
∫
Rd ei(k−k′)ζ ∂

∂ζ`

(
|ψ̂(G)(ζ)|2ρE0(2 Dt j,G,γ ζ)−2H0−d

)
dζ

= −2jTr(Dj,G,γ)
∫
Rd ei(k−k′)ζ

(
∂
∂ζ`
|ψ̂(G)(ζ)|2

)
ρE0(2 Dt j,G,γ ζ)−2H0−ddζ

= −2jTr(Dj,G,γ)
∫
Rd

ei(k−k′)ζ |ψ̂(G)(ζ)|2

ρE0
(2
Dt
j,G,γ ζ)2H0+d+1

(
2γ` ∂

∂ζ`
(ρE0)(2 Dt j,G,γ ζ)

)
dζ.

An approach similar to the proof of inequalities (6.2) yields

2jTr(Dj,G,γ)

∣∣∣∣∫
Rd
ei(k−k

′)ζ

(
∂

∂ζ`
|ψ̂(G)(ζ)|2

)
ρE0(2 Dt j,G,γ ζ)−2H0−ddζ

∣∣∣∣
≤ Cjd/λmin(E0)2−2jH0 . (6.3)

Further, differentiate the homogeneity relationship satisfied by ρ Et 0
and

deduce that for any a > 0 and z ∈ Rd

a E
t

0 (
−−→
grad(ρ Et 0

))(a E
t

0 z) = a(
−−→
grad(ρ Et 0

))(z) . (6.4)

For any y ∈ Rd \ {0}, let r = ρ Et 0
(y) . Then set j = [log2(r)] and remark

that ρ Et 0
(Θ) = ρ Et 0

(2−j E
t

0 y) ∈ [1/2, 2] and hence that Θ belongs to the

compact set C(1/2, 2, Et 0) = {θ, ρ Et 0
(θ) ∈ [1/2, 2]}. Relationship (6.4)

applied with a = 2j and z = Θ then implies

2 Dt j,G,γ
−−→
grad(ρ Et 0

)(2j E
t

0 Θ) = 2−j E
t

0 + Dt j,G,γ2j(
−−−−−−−→
grad(ρ Et 0

) (Θ))
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Take the norm of each member of the equality and deduce that for any
y ∈ Rd \ {0} satisfying j = [log2(ρ Et 0

(y) )]

|2 Dt j,G,γ
−−→
grad(ρ Et 0

)(y)| ≤ C2j |2−j E
t

0 + Dt j,G,γ | ,

where C = supΘ∈C(1/2,2, Et 0) |
−−→
grad(ρ Et 0

) (Θ)|.
Lemma 2.1 of [6] and the definition of j imply that

|2 Dt j,G,γ
−−→
grad(ρ Et 0

)(y)| ≤ C2j |j|d/λmin ≤ Cρ Et 0
(y) | log(ρ Et 0

(y) )|d/λmin(E0) .

Set now y = 2 Dt j,G,γ ζ. One has

|2 Dt j,G,γ (
−−→
grad(ρ Et 0

))(2 Dt j,G,γ ζ)|

≤ Cρ Et 0
(2 Dt j,G,γ ζ) | log(ρ Et 0

(2 Dt j,G,γ ζ) )|d/λmin(E0)

≤ C2j(j + | log(ρ Et 0
(ζ) |)|)2d/λmin(E0) ρ Et 0

(ζ) .

Since for any ` ∈ {1, · · · , d}

2γ`
∣∣∣∣( ∂

∂ζ`
(ρE∗0 )

)
(2 Dt j,G,γ ζ)

∣∣∣∣ ≤ ∣∣∣2 Dt j,G,γ (
−−→
grad(ρE0))(2 Dt j,G,γ ζ)

∣∣∣ ,
it yields the following inequality∣∣∣∣∣2jTr(Dj,G,γ)

∫
Rd

ei(k−k′)ζ |ψ̂(G)(ζ)|2

ρE0(2 Dt j,G,γ ζ)2H0+d+1

(
2γ`

∂

∂ζ`
(ρE0)(2 Dt j,G,γ ζ)

)
dζ

∣∣∣∣∣
≤ 2−2jH0 |j|2d/λmin(E0) . (6.5)

Combining inequalities (6.3) and (6.5) then yields inequality (6.1).
Remark now that

Lemma 6.2. Let D0 an admissible diagonal anisotropy satisfying Tr(D0) =
d. Recall that Γj(D0) is defined by (5.4). There exists some C1, C2 > 0 such
that

C1j
d2jd ≤ card(Γj(D0)) ≤ jd2jd .

Proof. Indeed, since the norms | · |`1 and | · |`∞ on Rd are equivalent, there
exists some C1, C2 > 0 such that

C1 max
`
|k`|1/λ` ≤ ρD0(k) ≤ C2 max

`
|k`|1/λ` .

The conclusion follows since it is quite clear since that

card{k,max
`
|k`|1/λ`≤j2j}=card{k,max

`
|k`|≤jλ`2jλ`}=

∏
`

(
jλ`2jλ`

)
=jd2d,
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using the fact that λ1 + · · ·+ λ` = d.

The proof of Proposition 5.3 is then based on the two following results
which are a slight modification of Theorem II.1 and II.7 of [11]. We recall
the proofs for completeness.
We denote

cp = E(|g0
j,G,γ |p) .

where (gkj,G,γ) is the stationary Gaussian sequence of the normalized wavelet
coefficients defined by (5.7). Since, by Lemma 6.1, the wavelet coefficients
are weakly dependent, we can state a central limit theorem for the sequence
(gkj,G,γ)j∈N,(G,γ)∈Ij ,k∈Γj which is a slight modified version of Lemma II.4 of
[11]

Lemma 6.3. Let p ∈ (1,+∞) and (gkj,G,γ) the Gaussian sequence defined
by (5.7). Set nj = Card(Γj(D0)). Then almost surely when j →∞

n−1
j

 ∑
k∈Γj(D0)

|gj,G,γ |p
→ cp .

Proof. By Lemma 6.1 the sequence (gkj,G,γ) is weakly correlated in the sense
of [11]–that is satisfies the assumption (H) of [11]. We follow the main line
of [11] and first give an upper bound of

E

∣∣∣∣∣∣
∑
k∈Γj

(|gj,G,γ |p − cp)

∣∣∣∣∣∣
2

.

Using the same approach that in [11] (see Lemma II.3) we get that

E

∣∣∣∣∣∣
∑
k∈Γj

(|gj,G,γ |p − cp)

∣∣∣∣∣∣
2

≤ Cjc2p

∑
(k,k′)∈Γ2

j

1

(1 + |k − k′|)2
,

with Cj = j2d/ρmin(E0) by weak correlation of the wavelet coefficients. Set
` = k − k′. Hence∑

(k,k′)∈Γ2
j

1

(1 + |k − k′|)2
≤
∑
k∈Γj

∑
`∈2.Γj

1

(1 + |`|)2
≤ Cjj2j

∑
`∈2.Γj

1

(1 + |`|)2
.

Remark now that∑
`∈2.Γj

1

(1 + |`|)2
≤
∑
`∈2.Γj

1

(1 + |`|D0)2/ρmax
≤ jd−δ2j(d−δ) ,
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with δ = 2/λmax(E0) > 0 by comparison with an integral and Proposi-
tion 2.3 in [7].
Thereafter the end of the proof is exactly the same that in Theorem II.1
in [11].

In an analogous way, one can give a result on the asymptotic behavior
of

1√
| log(nj)|

(
max
k∈Γj
|gj,G,γ |

)
.

Lemma 6.4. Almost surely

0< lim inf
j→∞

1√
| log(nj)|

(
max
k∈Γj
|gj,G,γ |

)
≤ lim sup

j→∞

1√
| log(nj)|

(
max
k∈Γj
|gj,G,γ |

)
<∞.

Proof. The proof is exactly the same than these of Lemmas II.8 and II.10
in [11].
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1983.

[36] H. Triebel, Wavelets basis in anisotropic function spaces Proc. Function spaces,
Differential operators and non linear analysis, FSDONA-04, Milovy,Czech Republic
2004. Math. Inst. Aca. Sci. Czech. Republic Praha 370-385.

[37] H. Triebel, Theory of functions spaces III, Birkhaüser Verlag 2006.
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