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Linear multifractional multistable motion: LePage
series representation and modulus of continuity
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Abstract - In this paper, we obtain an upper bound of the modulus
of continuity of linear multifractional multistable random motions. Such
processes are generalizations of linear multifractional a-stable motions for
which the stability index « is also allowed to vary in time. In the case
of linear multifractional a-stable motions, we improve the recent result of
[2]. The main idea is to consider some conditionnally sub-Gaussian LePage
series representations to fit the framework of [5].
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1. Introduction

Self-similar random fields are required to model persistent phenomena in
internet traffic, hydrology, geophysics or financial markets, e.g. [1, 22]. The
fractional Brownian motion ([15, 9]) provides the most famous self-similar
model. Nevertheless, in image modeling, in finance or in biology for example,
the phenomena under study are rarely Gaussian. Then, a-stable random
processes have been proposed as an alternative to Gaussian modeling, since
they allow to model data with heavy tails, such as in internet traffic [16].
The linear fractional stable motion, which has been proposed in [21, 14], is
one of the numerous stable extensions of the fractional Brownian motion.
Let us recall how this self-similar random motion can be defined through a
stochastic integral representation. To this way, let us consider H; € (0,1),
ap € (0,2) and M,, a real-valued symmetric a;-stable random measure
with Lebesgue control measure (see [17] p.281 for details on such measures).
Then, a linear fractional stable motion is defined by

Ko, (1) = / filn, H t, €)M, (d€), R (11)
R
where fy is defined by
folan, Hy,t,6) = (¢ — &)t — (—gfimt/m (1.2)
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with for ¢ € R,

e Jox¢ ifx>0
@5 =91 "0 ifz<o.

Since the self-similarity property is a global property which can be too re-
strictive for applications, a multifractional generalization X, 5 of this pro-
cess has also been introduced by [18] to model internet traffic, by replacing
H; by a real function h with values on (0, 1). Some necessary and sufficient
conditions for the stochastic continuity of the linear multifractional stable
motion X, » have been given in [18] and its Holder sample path regularity
has been studied in [19]. The Holder sample path properties have also been
improved in [2] by establishing upper and lower bounds for the modulus of
continuity. In the following, we will improve the upper bound, using the
results we established in [5]. Let us mention that in the case where h = H;
is constant, that is when X, ; is a linear fractional stable motion, sample
path regularity properties have previously been studied in [17, 20, 10].

Moreover, the framework of [5] allows to study X,, n as well as some
multistable generalizations for which the stability index «; is also allowed
to vary with ¢. Multistable processes have been defined in [7] using sums
over Poisson processes or in [6] using a Klass-Ferguson LePage series.

In this paper we consider a random field S, defined using a Lepage series
representation of the linear fractional a;-stable motion and such that

Sm(a(t),h(t),t), teR

is a linear multifractional multistable motion. This auxiliary random field
Sm allows to study the variations due to the functions «, h and to the posi-
tion t separately. Then, to study sample path regularity of linear multistable
motions, our first step is to establish an upper bound for the modulus of
continuity of the field S,, considering a conditionnally sub-Gaussian rep-
resentation and applying [5]. The main property of sub-Gaussian random
variables, which have been introduced by [8], is that their tail distributions
decrease exponentially as the Gaussian ones. This property is one of the
main tool used in [5] to study the sample path regularity property of condi-
tionnally sub-Gaussian random series.

The paper is organized as follows. Section 2 introduces LePage series
random fields under study. An upper bound of their modulus of continuity
and a rate of convergence are stated in Section 3. Section 4 focuses on linear
multifractional multistable motions. Some technical proofs are postponed
to the appendix for reader convenience.

2. LePage series models

In order to define LePage series, let us introduce some notation.
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Hypothesis 2.1. Let (gn),>1; (§n),>; and (T5),>; be three independent
sequences of random variables satisfying the following conditions.

1. (gn),>1 is a sequence of independent identically distributed (i.i.d.)
real-valued symmetric sub-Gaussian random variables, that is such
that there exists s € [0, 400) for which

5222

VAER, E(eMr) <e 3 . (2.1)

2. (&n),,>1 is a sequence of i.i.d. random variables with common law

p(dg) = m(&)dg

equivalent to the Lebesgue measure (that is such that m(§) > 0 for
almost every &).

3. T, is the nth arrival time of a Poisson process with intensity 1.
Let us now introduce the random field (Sm (e, H,1)) (o, mt)c(0.2)x(0,1)xR W€
study in this paper.

Proposition 2.1 (LePage series representation) Assume that Hypoth-
esis 2.1 is fulfilled and let fi be defined by (1.2). Then, for any (a, H,t) €
(0,2) x (0,1) x R, the sequence

N
S (o Hot) =Y TV (o, Hot, &)m(&) g, N>1 (22)

n=1

converges almost surely and its limit is denoted by
00 .
Smlon H,t) =Y T f (o, Hot, &n)mi(En) ™ “gn. (2.3)
n=1

Proof. Let (o, H,t) € (0,2) x (0,1) x R. Then, since Hypothesis 2.1 holds,
the variables

Wy = f—i—(aa H, tagn)m(fn)il/agm n2>1,
are i.i.d., symmetric and such that
BWAI) = B(anl*) [ 1fsla Ht, € d < o
since g; and & are independent (see e.g. [17]). Therefore, by Theorem 5.1

of [13], the sequence
N
(Z T “Wn)
n=1

N>1
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converges almost surely as N — +oo0, that is (S, n(a, H,t)) -, converges
almost surely. a O

Let us conclude this section by some remarks.

Remark 2.1. According to Proposition 5.1 of [5], the finite dimensional
distributions of S,, do not depend on m as soon as Condition 2 of Hypoth-
esis 2.1 holds. Moreover, when studying the sample path regularity of S,,,
Proposition 5.1 of [5] allows us to change m by a more convenient function
m if necessary.

Remark 2.2. When o = ay € (0,2) is fixed, (Sm(a1, H, 1)) (g pe(0,1)xr 18
an ai-stable symmetric random field, which can also be represented as an
integral under an «aj-stable random measure M,, with Lebesgue control
measure. More precisely, for every ay € (0,2),

fdd

(Sm(ah H, t))(H,t)e(O,l)xR = do, (Yal (H’ t))(H,t)e(O,l)xR (2'4)

dd . . . . .
where [ means equality of finite distributions and

Voolf) = [ frlon B M (dS), ()€ (01) xR, (25)

for M,, a real-valued symmetric aq-stable random measure with Lebesgue
control measure and

+00 2 1/051
o =BV ([T s} (2.6)

xH

One can check Equation (2.4) following the proof of Proposition 5.1 of [5]
or Proposition 4.2 of [4], which is a consequence of Lemma 4.1 of [11].

3. Sample path properties

Several papers [20, 10, 18, 19, 2] have already investigated sample path prop-
erties of the linear fractional stable motion X, g, defined by Equation (1.1)
or of its multifractional generalization X,, j defined on R by

Xayn(t) == Yo, (h(),1), tER (3.1)

where ay € (0,2), Y,, is given by (2.5) and h is a function with values in
(0,1). In the following, we improve the upper bound of the global modulus
of continuity of X, j stated in [2]. Our first step is to establish an upper
bound for the global modulus of continuity of the field S,, defined by (2.3)
on a compact set K of (0,2) x (0,1) x R. To obtain our upper bound, we use
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the results we established in [5] on conditionally sub-Gaussian random series.

Let us first recall (see [17] for example) that the a;-stable random process
Xoy,my = (Yo, (H1,t)),cp is unbounded almost surely on each compact set
with non-empty interior when Hy < 1/c;. A similar result holds for S,, as
stated in the following proposition.

Proposition 3.1. Assume that K = [a1, 2] x [Hy, Ha| X [a,b] C (0,2) x
(0,1) x Rwith0<a; <ay<2,0<H; <Hy<1anda<b.

1. If Hy < 1/ay, then the random field Sy, is almost surely unbounded
on K.

2. If Hy = 1/ay, then Sy, does not have almost surely continuous sample
paths on the compact set K.

Proof. By Equation (2.4)

(Sim1, H, ) ™= doy (X 1, () (3.2
where d,, is defined by Equation (2.6) and X4, g, is the linear fractional
stable motion given by (1.1).

Let us first assume that Hy < 1/a;. Then, since a < b, by Corollary 10.2.4
of [17], (Sm (a1, Hi,t)),cp is unbounded almost surely on the compact set
[a,b]. It follows that

sup  |Sm(a, H,t)] = 400 a.s.
(a,Ht)eK

since sup o, g p)ex [Sm(a, Hyt)| > supsefq ) [Sm(an, Hi,t)|.

Let us now assume that H; = 1/c; (which implies that oy > 1). Then,

Xa1,H1:<MOé1 ([07 t))1t>0 + Mo, ((t7 0])1t<0)teR

is a Lévy ap-stable motion and by Equation (3.2), so is the process
(Sm(a1, Hi,t)),cp- Since o < 2, the stable motion (Sp,(a1,1/a1,t))cr
is not a Brownian motion and then does not have almost surely continuous
sample paths (see Exercice 2.7 p.64 of [12] for instance). This concludes the
proof. |

Therefore, it remains to study the sample paths on a compact set
K = [a1, az] x [Hy, Ho] x [-A,A] C (0,2) x (0,1) xR

such that H; > 1/aq, which implies that oy € (1,2) and H; > 1/2.

The main result of this paper is the following theorem, which states an
upper bound for the modulus of continuity of S, on K, and for some m a
rate of uniform convergence on K for the series Sy, n defined by (2.2).
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Theorem 3.1. Assume that Hypothesis 2.1 is fulfilled. Let S,, n and Sy,
be defined by (2.2) and (2.3) and let us consider the compact set

K = [aq,a9] X [Hy, Ho] x [-A, A] C (1,2) x (1/2,1) xR
with A >0 and Hy > 1/a;.

1. As N — +o0, the series (Sm,N) s converges uniformly on K to Sp,
and almost surely -

sup S () = Sm(2)]

z,2’' €K T(x - x/)\/uog (T(‘r - 1"/))’ +1
c#x!

< +00

with 7(2) = |o + [H| + [t|7Y for 2 = (a, H,t) € R3.

2. Forn >0, let us consider m = my, defined by

my(€) = eyl€ 7" (14 [log(IE) ™", (3.3)
with ¢y > 0 such that [ my(€)dé = 1. Then, almost surely

sup N sup | Sp, n(x) — Sm, ()| < 400
N>1 zeK

for any e € (0,1/ap — 1/2).

Proof. For all z = (o, H,t) € (0,2) x (0,1) x R and all integer n > 1, we
consider

Vm,”(x> = f+(a7H7t7§’n>m(§n)_1/a7 (34)
so that

N +oo
Sm,n(T) = Z TV n(2)gn  and Sy, (z) = Z T Y V() g
n=1 n=1
Let us also remark that for all z = (o, H,t) € (0,2) x (0,1) x R,

BVinn()") = [ 14 Ht. )7 < o0,

Note that if in Equation (2.1) the sub-Gaussian parameter s of g, is less than
1, Equation (2.1) also holds for s = 1. Moreover, if s is greater than 1 we
may write Vi, n(2)gn = (sVin(2)) gn/s so that g,/s is sub-Gaussian with
parameter 1. Hence without loss of generality we may and will assume that
s = 1. It follows that (gn),~, (Tn),>; and (Vinn),~, are three independent
sequences that satisfy Assumption 4 in [5] on (0,2) x (0,1) x R. Then, by
Theorem 4.2 of [5], the result follows once we prove E (|V;n,1(z0)[?) < 400
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for some zp € K and Equation (15) of [5] for p = 1, namely (in our setting)
if there exists r > 0 such that
2
ol sy W@ = Vs

/
zx' €K T(.%' -z )
o<||lz—a’||<r

< 400. (3.5)

The following proposition, whose proof is postponed to the appendix, allows
to find some m satisfying such conditions.

Proposition 3.2. There ezists a finite deterministic constant cz1(K) > 0
such that a.s. for all x,2' € K = [aq, ag] x [Hy, Ha] x [—A, A],

Vi1 () = Vin 1 (2)] < ea 1 (K)7(x — ") him 5 (1),
with, for almost every € € R,
P ic(€) = max (m(€) /1, m(€) /) (1+ logm(©)])  (3.6)

x (Ve + €77 og el 1yg1, )

Let us first consider m = m,, given by (3.3) for some n > 0. In view of
Proposition 3.2, since V;,, 1(a, H,0) = 0 for all (a, H,0) € K, up to use a
finite covering of K, it is enough to prove that there exists r > 0 with

E( 1 (E1) ) < oo, (3.7)

for K = oy, o] X [Hy, Ha| x [—A, A] with g — oy < 7. One has

E(h, k(61)2) = / o 1 (€) 2y (€)dE

= / +/ =11+ .
lgl<e  Jl¢>e

I = /5 g (€) max(my (€)™ my (€) /%) (1 -+ log(my (€))))?de

|<e

On the one hand,

< es2n.K) /|5|< €]~ 12792 (14 [log (€))7 (1 4+ | log(my, (€)) ) 2de,

with ¢z 2(n, K) a positive finite constant. It follows that I; < 400 since
ag > 0. On the other hand,

T = J m(€)man (g (€)1 g (€)1%%) (1t log(my (€))7 log €)%

< 0373(77,K) /£| |§|2<H2+1/“1_1/°‘2)_310g(\§|)(1+’7)(2/0‘1_1)+2(1+\log(mn(f))|)2d§,
>e
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with ¢33(n, K) a positive finite constant. Since oy > 1, note that ag — g <
1— Hj implies that Ho+1/a1 —1/ae < Hy+ag—ag < 1 and thus I < +oo.
Therefore choosing r € (0,1 — H3), Equation (3.7) and then (3.5) hold for
m = my,. By Theorem 4.2 of [5], (Sy,, n)n>1 and Sy, satisfy 1. and 2. of
the theorem.
Since for almost every ¢ € R the map (o, H,t) — fi(a, H,t,§) is continuous
on K, by Assertion 2. of Proposition 5.1 of [5], S, satisfies Assertion 1.
whatever m is.

O

Remark 3.1. Assertion 2. in Theorem 3.1 holds for any m satisfying Equa-
tion (3.7) instead of my,.

4. Linear multifractional multistable and stable motions

From now on let us consider a : R — (0,2) and h : R — (0, 1) two continuous
functions. Under Hypothesis 2.1, by Proposition 2.1, we may consider the
linear multifractional multistable motion defined on R by

Sy (t) := S (eu(t), h(t), 1), (4.1)

with S, given by (2.3).

4.1. Regularity and rate of convergence
We may also define S, n(t) := Spm.n(a(t),h(t),t), for all N > 1. The

following theorem is a direct consequence of Theorem 3.1.

Theorem 4.1. Let us consider a : R +— (0,2) and h : R — (0,1) two
continuous functions and two real numbers a < b. Then let us set

a1 = min a(t), e = max «(t) and Hy = min h(t).
te(a,b] tela,b] te[a,b]

Assume that Hy > 1/aq and that o and h are (Hy—1/aq)-Hélder continuous
functions on [a,b].

1. Then, as N — +oo, the series (Sm,N)N>1 converges uniformly on

[a,b] to Sy and almost surely

() = S(®)

sup
teelap) |t —t/|Hi—1/ea/llog|t — /]| + 1

t#t!

< 400
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2. Moreover if m = my, is defined by (3.3) with n > 0, then, almost surely

sup NE sup S’mmN(t) — Smn (t’)
N>1 t€la,b]

< +00

for any e € (0,1/ay —1/2).

Note that one can use gmm ~ to simulate S’mn. The error of approximation
is then given by N°¢.

4.2. Stochastic integral and series representation

Assuming that « is a constant function equal to a1, we have already seen that

dd . . . . .
S, 1 doy Xoy,n Where X, j, is the linear multifractional aq-stable motion

defined by (3.1) and d,, is given by (2.6). Using the previous theorem we
will prove the following one.

Theorem 4.2. Let oy € (0,2) and h: R+ (0,1) be a continuous function.
Let us also consider X, j the linear multifractional o1 -stable motion defined
by (3.1) and two real numbers a < b. If Hy := minyc(qp) M(t) > 1/ca1 and if
his (Hy — 1/ay)-Hélder continuous on [a,b], then there exists a continuous
modification X7 of Xa,pn such that almost surely

Xarn®) = X5, ()

sup < 400
tread) [t — ¢ /loglt — ]| + 1

t£t!

Proof. Let o : R — (0,2) be the constant function equal to a; and let S,,

be defined by (4.1). Since Sy "% dy, X, 1, with da, # 0 defined by (2.6),

by Theorem 4.1, we already know that a.s.

| Xy m(t) = Xag n(t)]

sup < 400,
taelabinp [t — ¢/ /llog|t — V]| +1

t#t!

where D is the dense set of dyadic real numbers. Moreover, since h is
continuous with values in (0, 1), the stochastic continuity of the linear mul-
tifractional cj-stable motion X, j, has been established in [19]. This implies
that there exists a modification X;“q,h of Xy, » such that

o n () = X5, (1)

sup < 400,
terefad] [t — ' [Fim1/er/Tlog [t — ¢/]] + 1

t#t!
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see e.g. Section D.2 of [5] for the construction of X ;. Then, the proof is
complete. O

In [2], using a wavelet series expansion, under our assumptions of Propo-
sition 3.1, the authors obtained a continuous modification X:q,h satisfying
a.s. for all n > 0,

sup Xaa p(8) = Xy n () < 400
twelad] [t — t'|Hi=1/a1 (|log |t — /|| + 1)2/a1+n :

t#£t!

Since 1/2 < 2/ay, our result is sharper. Moreover it is quasi-optimal since,
for n > 0, one can find h such that a.s.
X*

ahh(t) B X:él,h(t/) n
sup — — T,
tela] [t —t|F171 ([log [t — /|| +1)7"
t#t!

by Theorem 6.1 of [2]. Let us also quote that following our method based
on [5], one may obtain an upper bound for the global modulus of continuity
of linear fractional stable sheets, which is sharper than the one given in [3].

A. Proof of Proposition 3.2

Let us consider K = [a1, 0] x [Hy, Ho] x [-A,A] C (1,2) x (1/2,1) x R
such that 1/ay < Hy < Hy < 1. Let us note that it is enough to prove
Proposition 3.2 for A large enough. Then, in this proof, we assume, without
loss of generality that A > e (so that log& > 1 for £ > A).

For all z = (o, H,t) € K, we set

B(x)=H —1/a € (0,1)
and remark that 3(x) € [f1, B2] C (0,1) with
B1=Hy —1/aq and P = Hy — 1/an.
Moreover, for all x = («, H,t) € K and all £ € R, let us note that
fi(a, Ht,8) = g(B(x), 1,€)
with ¢ defined on (0,1) x R x R by
9(8.1,€) = (t = &) — (-O)].

Let us now consider x = (o, H,t) € K and 2/ = (o/,H',t') € K. Then,
by (3.4),

Vm’n($)_vmv”(x,) = (g(ﬁ(x)7ta£n)m(£n)_l/a - g(ﬁ(m’),t’,gn)m(gn)—l/a’)‘

Proposition 3.2 follows from the following lemma, which proof is given at
the end of this section.
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Lemma A.1. Let 0 < f1 < B2 <1 and A > e.

1. There exists a finite positive constant ci(A, 1, B2) such that for all
B,5" € [p1,B2], all t,t' € [-A, A] and all £ € R,

l9(8,t,6) — g (8, t',&)| < 01(A751,52)<‘t - t/‘ﬁl +|8- 5/|>h,4,1(5,52)

with
hai(€¢) = Lig<on + 1€ og €] 1ig>2a-

2. Moreover, there exists a finite positive constant co(A, p1) such that for
all B € [B1,P2) and t € [—A, A],

|g(5’ ta §)| < CQ(A7 ﬂl)hAQ(g, 52)
with
hag(€,¢) = Ligeon + €1 Lignaa.
Setting for almost every £ € R

Fi(w,2',€) = lg(B),t,€) = g(B("), ¥, lm(&) ",
Fofa,a',€) = |g(B@).t&)l|m(&) ™" —m()~"/"

9

we then have
Vi1 (x) = Vi1 (2')| < Fu(z, 2/, &) + Fa(z, 2/, &1).

Before we apply Lemma A.1 to bound Fi and F3, let us remark that for all
£eR,

P26, B2) < haa (6, B2) < ea(A, B2) (Lgre + 11 log lelLepse) (A1)

with c3(A, 52) a finite positive constant, which does not depend on . Then,
combining this remark with Lemma A.1, for almost every £ € R,

Fi(z,a',¢) < 01(A7ﬁ1,52)03(f1732)<\t )"+ |B(x) — B(w’)\)hm,K(f)

with hy, x defined by Equation (3.6). Since oy > 1, by definition of the
function g, it follows that for almost every & € R,

Fy (.f, $l, g) < (A7 617 62)63(‘47 BQ)T(x - x/)hm,K(g)v

with 7(z — 2') = [t —¢/|”" + |H — H'| + |a — o/|.
Moreover, applying Assertion 2 of Lemma A.1, Equation (A.1) and the mean
value theorem, for almost every £ € R,

F2 (:L’,l’/,f) S CQ(A, 61)03(A,/6’2)}a — O/‘hmjg(f).
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In view of the previous computations, we have: almost surely,
Vi1 (@) = Vin1 (2')| < es1(K)7 (2 — @) b i (§1)

with e31(K) = ¢3(A4, B2)(c1(A4, B1,B2) + c2(A, f1)). This concludes the
proof of Proposition 3.2. U

We conclude this section by the proof of Lemma A.1.
Proof. [Proof of Lemma A.1] Let 0 < 81 < f2 < 1 and A > e. Let
B, 8" € [B1,B2] C (0,1) and t,t' € [-A, A]. Let us write for all £ € R,

‘g(ﬂatag) - g(ﬁl7t/7£)‘ < 9 (Blatat/7§) + g2 (ﬁ?ﬂlatvé.)

with

{91(/3/7t7t/,§) = [g(8,¢,&) —g(B,t,8)|
g2(5>ﬁl7ta£) |g(6/7t7§)_g(ﬁ’ta£)|

Step 1: Control of g;. Let us note that if t =/, g1(8',¢,t',£) = 0 for all
& € R. Then, in this step, we assume now, without loss of generality that
t < t'. This implies that

0 ife> ¢
(Bt e ={ (=97’ ifr<g<t
- @ - ie<t

Let £ € R with |¢] > 2A. If £ < 0 it follows that £ <t < t'. Since 5’ > 0,
applying the mean value theorem,

B'—1
a(B ) < plt—t

C{,t,t’ - 5

with ¢, , € (t,t') C [-A, A]. Moreover, since |£| > 2A

&,t,t!
O I O S UV e
and then /
gi(B,t,¢,6) <277 [t —¢|1g)” !
since 8’ € (0,1). Therefore, for [£| > 24,
a (B, < aalt—¢|7 g (A.2)

since [t —t'| < 2A, ' € [p1,P2] € (0,1) and 24 > 1.
Now let £ € R with |£] < 2A. Since 0 < 8’ < 1, we have

‘aﬁl - b’B/‘ <la— b|ﬁl
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for all a,b > 0. By definition of g, it follows that

an(8,t.t.¢) < \(t’ &), —(t- §)+\ﬁ < |t =" < 24] — ¢

since —A <t <t <A 0< B <pB <1and A > 1. From this last
inequality and Equation (A.2), we deduce that for all £ € R,

9 (6/7t7t/7§) < 4A‘t_t,|ﬁlhA72(§a62) (A3)
with ha2(€, B2) = Ligj<aa + \§|ﬂ2_11|§|>2A-
Step 2: Control of g;. Let us recall that for all £ € R,

9(8.6.4.8) = |t =9 =t -9 + (-0 - (-] |

Then, applying the mean value theorem, for all £ € R,

g2 (576/>t7§) < }/8 - B/‘ 3 sup ’(t - é.)j- 10g(t - £)+ - (_g)j- 10g(-€)+‘

1<c< B2
where for ¢ > 0,

. | zlogz  ifx>0
()3 log(w)+ = { 0 if 2 < 0.

Let us first consider { € [~2A4,2A]. Then, (=), € [0,24] and (t - &), €
[0,3A] since t € [—A, A]. Therefore,

92 (B>B/>ta§) < El(Av ﬁ1762)|/3 - 6/‘ (A4)

with

1
~ o c _ B2
¢1(A, By, P2)=2 B1m§<?sxﬁz 0<mu%)§,4 u|log u| =2 max (eﬁl , (3A) 10g(3A)> < 4o00.

Let us now assume that £ < —2A. Then, £ <t and

92(8,8',1,6) < |B—p'| sup [(t &) log(t — &) — (—€)“log(~¢)]

B1<c<p2

with t —& > 0 and —¢ > 0. Let us remark that —§ € (—£/2,—3¢/2) since
—& > 0 and that

—E/2< —A—E<t—E<A—E< =3¢/

since t € [—A, A] and £ < —2A. Then, for each ¢ € [f1, 32] C (0,1), by the
mean value theorem,

|(t — &) log(t — &) — (=€) log(—€)| < |ureel ' (cllogupee| + 1)
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with ug e . € (—£/2,—3£/2). Since u ¢ . € (—€/2,—3£/2) and —=£/2 > A > e,
we get

|(t =€) log(t — &) — (—€) log(—€)| < 4[¢|” " log ¢]
for all ¢ € [B1, B2] C (0,1). Hence, for £ < —2A4,
92(8,8',t,€) < 4|8 8| [¢]> " log I¢].

Note that this last inequality still holds for & > 2A since in this case,

92(6, 5/7 ta 5) = 0.
Then, we have proved that for all £ € R,

92(B,8,t,€) < &(A, B1,B2)|B— B'|hai (€, Ba) (A.5)
with 62(‘47 61752) = max (61(‘4751’62)74) and
hai(§,B2) = Ligj<on + €72 log €11 ¢>24-

Step 3: Proof of Assertion 1. It follows from Equations (A.3) and (A.5)
choosing ¢ (A, f1, B2) = ¢2(A, f1, B2) +4A € (0,+00) and using the fact that
ha2(§,B2) < hai(§, B2) since A > e.

Step 4: Proof of Assertion 2. Let us remark that
9(6,7 t/> 6) = g(ﬁla t,7 5) - g(ﬁlv 07 5)

since g(f',0,&) = (—f)f_/ - (—5)5 = 0. Hence, applying Equation (A.3) with
t=0and 3 = 3,

lg(B,t,€)| < 4A|t/’61h,4,2(§752) < 4AP T Ry 5 (€, B),

which concludes the proof. O
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