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On Dümbgen’s exponentially modified Laplace
continued fraction for Mill’s ratio

Florin Avram

Abstract - The approximation of the Gaussian cumulative distribution
Φ(x) or of the related Mills ratio

R(x) :=
1 − Φ(x)

φ(x)
:= h(x)−1 (0.1)

where φ(x) is the standard Gaussian density, and h(x) is its hazard rate,
have a long history starting with Gauss and Laplace and continuing nowa-
days [6, 12, 1, 2, 16, 10]. Below, we improve an important family of bounds
provided recently by Dümbgen [5].
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1. Introduction

A convenient starting point for the study of the Gaussian Mill’s ratio (0.1)
is the first order ODE

R′(x) = x R(x)− 1, R(0) =
√
π/2. (1.1)

The equation (1.1) allows building a Taylor expansion around 0, and a
formal Laurent expansion in negative powers at ∞, due to Laplace:

R(x) =
1

x

(
1− 1

x2
+

3!!

x4
− 5!!

x6
+ ...

)
.

The latter is divergent (though asymptotic in the sense of Poincaré); how-
ever, this problem may be remedied by considering continued fractions,
whose domain of convergence typically is larger than that of the series. The
passage from series to a continued fraction with denominators 1 [14, pg. 21]
may be achieved by using recursively the formula

1+

∞∑
i=1

(−1)iaix
i ≈

(
1+a1x+(a21−a2)x2+(a31−2a1a2+a3)x3+(a41−3a21a2+a22+2a1a3−a4)x4...

)−1
275
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yielding

R(x) =
1

x

(
1− 1

x2
+

3!!

x4
− 5!!

x6
+ ...

)
=

1

x

1

1 + 1
x2
− 2

x4
+ 10

x6
− 74

x8
...

=
1

x

1

1 + 1
x2

(1− 2
x2

+ 10
x4
− 74

x6
...)

=
1

x

1

1 + x−2

1+2x−2(1− 3
x2

+ 21
x4
...)

=
1

x

1

1 + x−2

1+ 2x−2

1+ 3
x2

(1− 4
x2
...)

=
1

x

1

1 + x−2

1+ 2x−2

1+ 3x−2

1+4x−2
1+...

=
1

1 + v
1+ 2v

1+ 3v
1+...

, v =
1

x2
. (1.2)

This equation is related to the famous Laplace’s continued fraction (2.2),
which yields alternating upper and lower bounds for Mill’s ratio. Tighter
alternating bounds were derived recently by [5], by judicious modifications
of the last denominators. We propose further modifications which improve
numerically on Dümbgen’s, and seem (but are not yet proved) to provide
alternating bounds as well.

Contents. A brief review of continued fractions is given in Section 2.
Lee’s and Dümbgen’s approaches to the Gaussian Mill’s ratio are reviewed
in Section 3. The new family of bounds is introduced and illustrated nu-
merically in Section 4. In Section 5 we discuss briefly the possibility of
extending this approach for providing continued fraction bounds for other
Pearson densities, like the Gamma density, which is of interest in queue-
ing, for example in asymptotic studies of retrial queues in the Halfin-Whitt
regime.

2. A brief review of continued fractions

Definitions. Recall that a continued fraction

b0 + K1

(
ak
bk

)
= b0 +

a1

b1 + a2
b2+...

= b0 +
a1

b1 + a2

b2+K3

(
ak
bk

)

where Kn(akbk ) := an
bn+Kn+1(

ak
bk

)
is defined, when convergent, as the limit of

the convergents Rn(x) = An(x)
Bn(x) obtained by replacing Kn

(
ak
bk

)
with 0.

An and Bn satisfy both the forward Wallis-Euler recursion xn = bnxn−1+
anxn−2, n ≥ 2, with respective initial conditions A0 = b0, A1 = a1+b0b1, and
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B0 = 1, B1 = b1, and may also be written as ”continuant” determinants:

An = det



b0 −1
a1 b1 −1

a2 b2 −1
...

an−1 bn−1 −1
an bn



Bn = det



b1 −1
a2 b2 −1

a3 b3 −1
...

an−1 bn−1 −1
an bn


Transformations. For any sequence pk 6= 0, p0 = 1, the two fractions

b0 + K1

(
ak
bk

)
, b0 + K1

(
pk−1pkak
pkbk

)
(2.1)

are equivalent (have the same convergents). Thus, appropriate choices of pk
will simplify either the numerators or denominators, as desired.

Laplace’s continued fraction. Applying the transformation (2.1) to
(1.2) with pk = x and putting ak = k + δ0(k), one arrives to Laplace’s
continued fraction

K1

(ak
x

)
=

1

x+ 1
x+ 2

x+ 3
x+...

, x > 0, (2.2)

which converges to R(x) on (0,∞). Another continued fraction associated
to the Taylor expansion around 0 was provided by Shenton.

Remark 2.1. Note that due to the repetition of the numerator 1, it is more
natural here to start indexing Rn by n = 0, so that the terminating fraction
with numerator n is denoted by Rn. Thus,

R0 =
1

x
,R1 =

1

x+ 1
x

, R2 =
1

x+ 1
x+ 2

x

, ...

Remark 2.2. Another derivation of Laplace’s continued fraction may be
obtained, following Euler, by differentiating (1.1), which yields

R(n)(x) = Bn(x) R(x)−An(x)⇔ R(x) =
An(x)

Bn(x)
+
R(n)(x)

Bn(x)
, (2.3)

An+1(x) = xAn(x) + nAn−1(x), (A0(x), A1(x)) = (0, 1),

Bn+1(x) = xBn(x) + nBn−1(x), (B0(x), B1(x)) = (1, x),
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see [10].

Modified continued fractions. The computation of continued frac-
tions is often achieved by the backward recurrence

Rm,n = bm +
am

Rm+1,n
,m = n− 1, n− 2, ..., 0

where Rm,n = Kn
m

(
ak
bk

)
= bm + am+1

bm+1+
am+2

bm+2+...
an
bn

.

The classic starting point is Rn,n = bn, but the result may often be
improved by starting with modified last denominators Rn,n = βn = bn + γ,
i.e. by using

Rn(x) = b0 +
a1

b1+

a2

b2+
...+

an−1

bn−1+
+

an
bn + γ

=
(bn + γ)An−1 + anAn−2

(bn + γ)Bn−1 + anBn−2
=
An + γAn−1

Bn + γBn−1
,

[14, Ch. 5.5]. Note that we have switched here to the one line convention of
writing continued fractions (in which the subcontinued fractions following
a + or − are realigned on the first line), and that parametrizing the last
modified denominator by βn = bn + γ (developping around the ”usual”
continued fraction coefficient bn) simplifies some expressions.

The idea is to replace bn by an ”ansatz” βn approximating more closely
the exact value Rn,n [16]. We will call this unknown value the ”correct
ansatz”.

The limit ansatz. Assuming n is big enough so that Rn,k varies slowly
in n, one such approximation is the limit ansatz obtained by solving

Rn,∞ = bn +
an
Rn,∞

. (2.4)

Alternating bounds. As noticed already by Brouncker and Euler [4, 9],
the positivity of the continued fraction numerators and denominators implies
that the convergents yield upper and lower bounds

R2 ≤ R4 ≤ ...R2n... ≤ R... ≤ R2n+1 ≤ ... ≤ R3 ≤ R1, (2.5)

valid on the domain of convergence of the continued fraction.

In particular, the convergents of the Laplace continued fraction yield
bounds valid on (0,∞) (see also [10, Prop. 7]).

General error estimates

|R− Rn| <
n!

BnBn+1
(2.6)
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are also available § .
Uniform bounds on [0,∞). The Laplace and Shenton continued frac-

tions are quite efficient in their ”natural domains”, and this allows con-
structing efficient approximations based on both. However, if one entertains
the somewhat academic wish to use a single approximation valid on [0,∞),
one must improve the quality of approximation at 0 if the continued fraction
is based on the series at ∞, and viceversa.

Following [12, 5] in their tribute to Laplace, we will consider here the
continued fraction based on the series at ∞. Two strategies suggest them-
selves:

1. use rational two-point Padé approximants [k0, k∞] fitting k0 deri-
vatives at 0 and k∞ derivatives at ∞ (these seem to have been intro-
duced by Murphy and McCabe [15]).

Reasonable uniform approximations are already obtained with k∞ =
2, k0 = 1, 2, ... [1], the simplest one with k0 = 1 being R2(x) =

(π−2)
√

2π+x(4−π)

2(π−2)+x
√

2π+x2(4−π)
= 1

x+ 1
β1(x)

, where β1(x) = (π−2)
√

2π+x(4−π)

2(π−2)+x(3−π)
√

2π
. The

fit at 0 is due here to β1(0) =
√

2π
2 .

2. use cleverly chosen modified continued fractions, which, besides fit-
ting at 0, achieve possibly also a good approximation of the ”correct
ansatz”.

Applying the limit ansatz (2.4) to Laplace’s continued fraction amounts
to replacing the denominator x below the numerator n by the ”termi-
nating denominator”

βn(x) =
x

2
+

√(x
2

)2
+ n. (2.8)

An even better starting point βn(x) = x
2 +

√
(x2 )2 + γn, with γn =

β2
n(0) defined in (3.6) has been proposed by [5], by exploiting both the

functional form of the limit ansatz, and the correct behavior at 0.

The simplest choice is chosing linear modifications

βn(x) = λnx+ βn(0).

§The relations (2.5), (2.6) are consequences of the Euler identities

Rn − Rn+1 =

∏n+1
i=1 (−ai)
BnBn+1

(2.7)

R2n+1 − R2n−1 = −
b2n+1

∏2n
i=1 ai

B2n−1B2n+1

R2n − R2n−2 =
b2n

∏2n−1
i=1 ai

B2n−2B2n
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Dümbgen’s best results, confirmed here, are finally obtained with ex-
ponential type modifications. Since there is no clear reason for
that, we might call this an ”inspiration ansatz”.

3. Lee’s and Dümbgen’s modified Laplace continued fractions

One possible approach, taken by [12], is to consider doubly modified con-
vergents

Rn(x) = b0 +
a1

b1+

a2

b2+
...+

an−1

bn−1+
+

α

bn + γ

=
(bn + γ)An−1 + αAn−2

(bn + γ)Bn−1 + αBn−2
=
An + γAn−1 + (α− an)An−2

Bn + γBn−1 + (α− an)Bn−2
,

with both the last numerator and denominator modified, and where bn =
bn(x), γ = γ(x) may depend on x.

Consider the sign of the approximation error, supposing, more generally,
that R(x) is the Mill’s ratio of a density f(x) satisfying

f ′(x) = −q(x) f(x), (3.1)

where q(x) is rational. Then, R(x) satisfies the first order differential equa-
tion

R′(x) = q(x) R(x)− 1, (3.2)

generalizing (1.1). Then, if limu→∞ φ(u)Rn(u) = 0, the approximation error

∆n(x) =

∫ ∞
x

φ(u)du− φ(x)Rn(x)

may be expressed as

∆n(x) =

∫ ∞
x

φ(u)du+

∫ ∞
x

(φ(u)Rn(u))′du

=

∫ ∞
x

φ(u)(1 +Rn(u)′ − q(u)Rn(u))du.

While the sign of the last integral is hard to analyze, it is easier to control
the sign of the integrand

δn(u) = −∆′n(u)

φ(u)
= 1 +R′n(u)− q(u)Rn(u) := (GRn)(u) (3.3)

where we note that G is precisely the operator defining our function of inter-
est (3.2). Providing upper/lower bounds may thus be achieved by ensuring
that δn(u) is negative/positive for all u in the domain of convergence.
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Remark 3.1. Let us note also an expression for the second derivative:

δ(2)
n (u) = −∆′′n(u)

φ(u)

= R′′n(u)− 2q(u)R′n(u) + (q2(u)− q′(u))Rn(u)− q(u)

:= (G(2)Rn)(u). (3.4)

We turn now to Dümbgen’s impressive ”creative denominator modifica-
tions”, whose numerical results suggest that Lee’s double modifications are
not necessary. The basis is again an analysis of the sign of the derivative
of the approximation error δn(u) defined in (3.3), this times in terms of the
modification βn(x) [5, Lem. 1].

Lemma 3.1. Let β(u) = βn(u) denote differentiable terminating modified
denominators for Laplace’s continued fraction

1

x+ 1
x+ 2

x+ 3

x+... n−1
x+ n

βn(x)

of the Gaussian Mills ratio. Then:

δn(u) =
(−1)n−1(n)!

Bn−1(u)2
G̃nβ(u), G̃nβ(u) = uβ(u) + β′(u) + n− β2(u). (3.5)

Proof. The equation may be established by induction. The operator
G̃nβ(u), which provides the sign of δn(u), is also given on [5, pg. 7].

The next step towards producing uniform bounds valid on [0,∞) is to
find conditions on the modified denominators βn(x) which give rise to a zero
of the error at 0.

Lemma 3.2. The equations for ensuring ∆n(0) = 0,∆′n(0) = 0,∆′′n(0) = 0
are linear in βn(0), β′n(0), rn := β′′n(0)/βn(0), with solutions:

∆n(0) = 0⇔ βn(0) =
√

2
Γ(n/2 + 1)

Γ(n/2 + 1/2)
(3.6)

δn(0) = 0⇔ β′n(0) = β2
n(0)− n (3.7)

δ(2)
n (0) = 0⇔ rn = 2(β2

n(0)− n− 1

2
). (3.8)

The constants β′n(0) and rn are positive.

Remark 3.2. These formulas will produce two-point Padé approximants,
when applied to rational modifications β(x).



282 Florin Avram

Proof. The first formula is obtained in [5, (13),(14)], by imposing recur-
sively the condition ∆n(0) = 0⇔ Rn(0) =

√
π
2 on the successive errors

∆0 = 1− Φ(x)− φ(x)

β0(x)
,∆1 = 1− Φ(x)− φ(x)

x+ 1
β1(x)

,

yielding β0(0) =
√

2
π , β1(0) =

√
π
2 , .... In general, we may note that one has

Rn(βn, x) = Rn−1(x+ n
βn
, x), yielding βk(0) = k

βk−1(0) , k = 1, 2, ....

The second formula follows from (3.5). In [5, Thm 2], it is presented
as a favorite choice among several possible linear modifications βn(x) =
λnx + βn(0), and a proof that it yields alternating bounds is offered, but
without mention of the two-point Padé connection.

For the third formula, which does not appear in [5], it is enough to con-

sider the case βn(x) = β(0)+x(β2(0)−n)+x2 β
′′(0)
2 . A tedious computation

yields that

δ(2)(0) = 0⇔ R′′(0) = R(0) =⇒ β′′(0)

β(0)
= 2(β2(0)− n− 1

2
).

Intriguingly, the same expression appears in a different context on the bot-
tom of [5, pg. 9]. This topic deserves further attention, and we are inves-
tigating currently whether the second order two-point Padé condition leads
to alternating bounds, as suggested by our numerical results.

The positivity follows from [5, Lem. 3].

Question 3.1. These results suggest the interesting problem of obtaining
minimal solutions to the Riccatti inequations G̃nβ(u) ≥ (≤)0,∀u ≥ 0,, with

constraints β(0) =
√

2 Γ(n/2+1)
Γ(n/2+1/2) , which would provide an optimal modifica-

tion of Laplace’s continued fraction.

Next, [5, Lem. 2] offers a simplified method of establishing alternating
bounds, by replacing the requirement of strictly negative/positive derivatives
∆′n(x) by the weaker requirement of strictly negative/positive and unimodal
derivatives, which is easier to impose. This idea is not exploited in our paper.

Finally, [5] raises the dilemma of choosing between several possible func-
tional forms for βn(x).

1. The approximations βn(x) = x + βn(0) are not far from Lee’s
bound βn(x) = x +

√
n+ 1, since it may be shown that

βn(0) ∈ (
√
n+ 1/2,

√
n+ 1). However, both Lee’s and Dümbgen’s lin-

ear approximations fare not so well numerically.

2. [5, Thm.1] considers square root modifications, in which n in the ansatz
(2.8) is replaced by the constants β2

n(0) of (3.6).
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3. [5, Thm.2] considers more general linear modifications βn(x) = λnx+
βn(0), where λn = β′n(0) is choosen to make also the first derivative
∆′n(0) equal to 0. By Lemma 3.1, this requires solving β′n(0) + n −
β2
n(0) = 0, yieding λn = β2

n(0)− n [5, Sec 5].

4. Finally, [5, Thm.3] shows that the rational bounds may be consider-
ably improved by using exponential-type modifications of the last
denominators.

4. Improved Dümbgen’s exponentially modified continued frac-
tions

We have implemented one step further Dümbgen’s idea of considering expo-
nentially modified continued fractions, by looking for exponential + linear
modifications:

βn(x) = cnx+ βn(0)e−
√
rnx = (λn + rnβn(0))x+ βn(0)e−

√
rnx, (4.1)

where the new constants rn are chosen to make the second derivative ∆′′n(0)
equal to 0, which requires, cf. Lemma 3.2,

rn =
β′′n(0)

βn(0)
= 2(β2

n(0)− n− 1

2
). (4.2)

The figures below compare the exponential, our improved exponential
(practically indistinguishable from 0), and the linear and square root modi-
fications. As expected, the square root (who does not fit any derivatives at
0) loses always near 0, but catches up with the linear later. The exponential
modifications are always better, especially the new one proposed here. The
maximum errors of the first four terms are .00021, .000048, .000030, .000016.

5. Bounds for the Gamma density Mills ratio/Prym’s function

Besides the normal, bounds for Mill’s ratio of other ”Pearson distributions”
(with connections to orthogonal polynomials, etc...) are also of great interest
to probabilists.

The Gamma density for example γ(s, x) is of special interest due to its
appearance in many classic problems: the birthday paradox, Ramanujan’s
Q function, Erlang loss probability, reliability, etc. For the convenience
of the reader interested in this problem, we summarize here some relevant
information.

The Mills ratio R(x) = Rs(x) for the Gamma density γs(x) satisfies the
equation

R′(x)=q(x) R(x)−1, q(x)=1+
1− s
x

, R(∞)=1 (R(0)=0, for s < 1)(5.1)
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0.5 1.0 1.5 2.0

-0.015

-0.010

-0.005

Figure 1: Errors for Dümbgen’s bounds for ∆0(x); blue, dashed: Dümbgen’s
expo, red:second order expo, yellow, dotted: linear, green, dotdashed:
square root

0.5 1.0 1.5 2.0

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

Figure 2: Errors for Dümbgen’s bounds ∆1(x); blue, dashed: Dümbgen’s
expo, red:second order expo, yellow, dotted: linear, green, dotdashed:
square root

and a continued fraction for it was already developped in [13]. Note the
integral representation:

Rs(λ) = λ

∫ ∞
0

(1 + t)se−λtdt =

∫ ∞
0

(1 +
u

λ
)se−udu. (5.2)

For integer s, this may be easily derived by noting that the normaliza-
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0.5 1.0 1.5 2.0

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

Figure 3: Errors for Dümbgen’s bounds ∆4(x); blue, dashed: Dümbgen’s
expo, red:second order expo, yellow, dotted: linear, green, dotdashed:
square root

tion of the Gamma density γk+1(x) may be written as s(s−1)...(s−k+1)
λk

=

λ
(
s
k

) ∫∞
0 tke−λtdt and summing for k = 0, 1, ...s. For noninteger s, see [7].

Some changes of variables [8, pg 143] put (5.1) in the form of a homoge-
neous Riccati equation:

t2z′(t)− (1 + (1− s)t)z(x) + z2(t) = 0, (5.3)

from which the continuous fraction

R(x) =
x

x+ 1−s
1+ 1

x+ 2−s
1+...

=
x

x+

1− s
1 +

1

x+
+

2− s
1

+...+
n

x+

n+ 1− s
1 +...

(5.4)

may be obtained via a classic method of Lagrange [3]. Cf [8, (11.6)], con-
tracting the continuous fraction yields

ex
∫ ∞
x

us−1e−udu = xs−1R(x)

=
xs

x+ 1− s+
s− 1

x+ 3− s+
2(s− 2)

x+ 5− s+...+

n(s− n)

x+ 2n+ 1− s−...
, (5.5)

a result which goes back to Laguerre [11]. A similar continued fraction
expansion holds for the cumulative Gamma distribution:

x−s+1ex
∫ x

0
us−1e−udu =

x

s−
sx

1 + s+ x−
(1 + s)x

2 + s+ x−
...

(n− 1 + s)x

n+ s+ x−
... (5.6)

An equivalent continued fraction used by [16] is:

x1−sex
∫ ∞
x

us−1e−udu =
1

1+

(1− s)v
1+

v

1+

(2− s)v
1+

2v

1+
..., v =

1

x
. (5.7)
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This generalizes Laplace’s continued fraction. Indeed, putting s = 1
2 , u = v

2

yields 1
1+

u
1+

2u
1+

(3u
1+ ..., which is equivalent to Laplace’s Continued Fraction

after substituting u = ( 1
2x)2.

The problem of providing bounds for the Gamma Mills ratio based on
the continued fractions (5.4), (5.6) has been considered by [6]. Several cases
need to be distinguished, according to their difficulty:

1. for s ∈ (0, 1], the continued fraction approximations continue to have
positive coefficients, like in the Gaussian case (which corresponds in
fact to s = 2, via a simple transformation). This case is thus straight-
forward [6, (3.5)].

2. for s > 1, fixed, the computation may be reduced to the case s ∈ (0, 1]
by induction on the integer part of s [6, (3.7)].

3. the case s ≈ x → ∞ is more subtle, and it is precisely this case that
is of interest in queueing, for example in asymptotic studies of retrial
queues in the Halfin-Whitt regime.
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[4] R.M. Dudley, Some inequalities for continued fractions, Math. Comp, 49 (1987),
585-593.

[5] L. Duembgen, Bounding Standard Gaussian Tail Probabilities, arXiv preprint
arXiv:1012.2063, 2010.

[6] S.S. Gupta and M.N. Waknis, A system of inequalities for the incomplete gamma
function and the normal integral, The Annals of Mathematical Statistics, 36, 1 (1965),
139-149.

[7] A.A. Jagers and E.A Van Doorn, On the continued Erlang loss function, Opera-
tions Research Letters, 5, 1 (1986), 43-46.

[8] A.N. Khovanskii, The application of continued fractions and their generalizations
to problems in approximation theory, P. Noordhoff, 1963.

[9] S.V. Khrushchev, Orthogonal polynomials and continued fractions: from Euler’s
point of view, 2008.

[10] O. Kouba, Inequalities related to the error function, arXiv preprint math/0607694,
2006.
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