
Annals of the University of Bucharest (mathematical series)

3 (LXI) (2012), 111–122

A note on almost contact metric submersions
whose total space is a Chinea-Gonzalez manifold

Tshikunguila Tshikuna-Matamba

Communicated by Liviu Ornea

Abstract - In this paper, we discuss some geometric properties of Rie-
mannian submersions whose total space is a manifold defined by Chinea
and Gonzalez.

Key words and phrases : Riemannian submersions, almost Hermitian
manifolds, almost contact metric manifolds, almost contact metric submer-
sions.

Mathematics Subject Classification (2010) : 53C15, 53C20, 53C25.

1. Introduction

In their classification scheme of almost contact metric manifolds, Chinea
and Gonzalez (see [2]) have obtained several classes that have not yet been
considered, namely: C7, C8, C9, C10, C11, and C12. Briefly, we call them the
Chinea-Gonzalez manifolds.

This note is intended to describe Riemannian submersions whose total
space is one of the manifolds under consideration. It is organized in the
following way.

Section 2 is devoted to the preliminary background, a revision of almost
Hermitian and almost contact metric manifolds.

In section 3, we determine the structure of the fibres and the base space
according to that of the total space of the fibration. We show that, for an
almost contact metric submersion of type I, if the total space is a C9, C10,
C11 or a C12-manifold, then the fibres are Kählerian while the base space
inherits the structure of the total space.

Section 4 is concerned with the geometry of the fibres. We examine the
minimality and superminimality of the fibres and establish their interrela-
tions. It is shown that the fibres of an almost contact metric submersion of
type I, whose total space is one of the above manifolds are minimal. After
proving that the fibres of a type I almost contact metric submersion whose
total space is a C11 or a C12-manifold are superminimal, it is shown that in
the case of a type II submersion, the fibres cannot be superminimal.
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In section 5, we give some examples of almost contact metric submer-
sions, using the projections of a product manifold.

2. Preliminaries

An almost Hermitian manifold is an even dimensional Riemannian manifold
(M, g) endowed with a tensor field J of type (1, 1) satisfying the following
two conditions:

(i) J2D = −D, and

(ii) g(JD, JE) = g(D,E), for all D,E ∈ χ(M).

We shall denote by Ω the fundamental two-form defined by Ω(D,E) =
g(D,JE).

From the classification of almost Hermitian structures, obtained by Gray
and Hervella [3], we shall be interested in the following particular classes: (a)
the Kähler manifolds, and (b) the W3-manifold, defined by the conditions

(∇DΩ)(E,G)− (∇JDΩ)(JE,G) = 0 and δΩ = 0,

where δ is the codifferential associated to g: δ = −
∑
Eic∇Ei for an or-

thonormal basis {Ei}.
An almost contact structure on a odd-dimensional differentiable mani-

fold, M, is a triple (ϕ, ξ, η) where:

(i) ξ is a vector field (called “characteristic”, or Reeb field),

(ii) η is a differential 1-form such that η(ξ) = 1, and

(iii) ϕ is a tensor field of type (1, 1) satisfying

ϕ2D = −D + η(D)ξ, for all D ∈ χ(M).

If in addition, M admits a Riemannian metric g such that

g(ϕD,ϕE) = g(D,E)− η(D)η(E),

then g is called a compatible metric. In this case, (M, g, ϕ, ξ, η) is an almost
contact metric manifold and η is the metric dual of ξ.

As in the case of almost Hermitian manifolds, the fundamental 2-form,
φ, of an almost contact metric manifold is defined by φ(D,E) = g(D,ϕE).

We now recall the defining relations of the Chinea-Gonzalez manifolds.
An almost contact metric manifold is said to be:

• C7 if (∇Dφ)(E,G) = η(G)(∇Eη)ϕD + η(E)(∇ϕDη)E, and δφ = 0;

• C8 if (∇Dφ)(E,G) = −η(G)(∇Eη)ϕD + η(E)(∇ϕDη)G, and δη = 0;

• C9 if (∇Dφ)(E,G) = η(G)(∇Eη)ϕD − η(E)(∇ϕDη)G;
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• C10 if (∇Dφ)(E,G) = −η(G)(∇Eη)ϕD − η(E)(∇ϕDη)G;

• C11 if (∇Dφ)(E,G) = −η(D)(∇ξφ)(ϕE,ϕG);

• C12 if (∇Dφ)(E,G) = η(D)η(G)(∇ξη)ϕE − η(D)η(E)(∇ξη)ϕG.

Observe that except C11, the formulae defining the other classes contain
∇η. This means that if η is parallel, or equivalently, ξ, is parallel, then the
right hand side vanishes.

3. Almost contact metric submersions

A Riemannian submersion is, [4], a surjective mapping π : M → B between
two Riemannian manifolds such that

(i) π is of maximal rank;

(ii) π∗/(kerπ∗)
⊥ is an isometry.

The tangent bundle T (M), of the total space M, admits an orthogonal
decomposition

T (M) = V (M)⊕H(M),

where V (M) and H(M) denote respectively the vertical and horizontal dis-
tributions. We denote by V and H the vertical and horizontal projections
respectively. A vector field X of the horizontal distribution is called a basic
vector field if it is π-related to a vector field X∗ of the base B (π∗X = X∗.)

On the base space, tensors and other objects will be denoted by a prime ’
while those tangent to the fibres will be specified by a carret .̂ Herein, vector
fields tangent to the fibres will be denoted by U, V and W.

Let (M2m+1, g, ϕ, ξ, η) and (M ′2m
′+1, g′, ϕ′, ξ′, η′) be two almost contact

metric manifolds. By an almost contact metric submersion of type I, in the
sense of Watson (see [8]), one understands a Riemannian submersion

π : M2m+1 →M ′2m
′+1

satisfying

(i) π∗ϕ = ϕ′π∗,

(ii) π∗ξ = ξ′.

It is the natural analogue of a holomorphic submersion.

When the base space is an almost Hermitian manifold, (B2m′ , g′, J ′), the
Riemannian submersion π : M2m+1 → B2m′ is called an almost contact met-
ric submersion of type II, if π∗ϕ = J ′π∗ (see [8]); again this is a generalization
of the holomorphicity. Such maps are also called (ϕ, J ′)-holomorphic).

We recall some of the fundamental properties of these submersions.
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Proposition 3.1. (see [8]) Let π : M2m+1 →M ′2m
′+1 be an almost contact

metric submersion of type I. Then

(i) π∗φ′ = φ;

(ii) π∗η′ = η;

(iii) the horizontal and vertical distributions are ϕ-invariant;

(iv) η(U) = 0 for all U ∈ V (M);

(v) H(∇Xϕ)Y is the basic vector field associated to (∇′X∗ϕ
′)Y∗ if X and

Y are basic.

Proposition 3.2. (see [8]) Let π : M2m+1 → B2m′ be an almost contact
metric submersion of type II. Then

(i) π∗Ω′ = φ;

(ii) the horizontal and vertical distributions are ϕ-invariant;

(iii) η(X) = 0 for all X ∈ H(M);

(iv) H(∇Xϕ)Y is the basic vector field associated to (∇′X∗J
′)Y∗ if X and

Y are basic.

Now, from a given structure of the total space we want to determine the
corresponding structure on the base space and on the fibres.

Proposition 3.3. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I. If the total space is a C9, C10, C11 or a C12-manifold,
then the fibres are Kählerian while the base space inherits the structure of
the total space.

Proof. Consider the case of a C9-manifold. Let U, V and W be tangent
to the fibres. Then, we have (∇Uφ)(V,W ) = 0 because η vanishes on the
vertical vector fields according to Proposition 3.1 (iv).

As (∇̂U φ̂)(V,W ) = g(W, (∇̂U ϕ̂)V ), the relation g(W, (∇̂U ϕ̂)V ) = 0 im-
plies (∇̂U ϕ̂)V = 0. On the other hand, the fibres of an almost contact
metric submersion of type I are almost Hermitian manifolds, and hence
(∇̂U ϕ̂)V = 0 is equivalent to (∇̂UJ)V = 0, and thus the fibres are Kähler.
The remaining cases are similarly proven.

Concerning the structure of the base space, let X, Y and Z be basic
vector fields. We have to show that

(∇′X∗φ
′)(Y∗, Z∗) = η′(Z∗)(∇′Y∗η

′)ϕ′X∗ − η′(Y∗)(∇′ϕ′X∗η
′)Z∗.

Note that H(∇Xϕ)Y is basic associated to (∇′X∗ϕ
′)Y∗. Since π∗ξ = ξ′, it is

clear that ξ is basic so that H(∇Xξ) is basic associated to ∇′X∗ξ
′. Therefore,

g′(Y∗,∇′X∗ξ
′) corresponds to (∇′X∗η

′)Y∗ because π∗η′ = η. It can be shown
that H(∇Y η)ϕX is basic associated to (∇′Y∗η

′)ϕ′X∗ and H(∇ϕXη)Z is basic
associated to (∇′ϕ′X∗η

′)Z∗. Hence, the statement is proved. 2

The analogous of the preceding Proposition 3.3 is the following
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Proposition 3.4. Let π : M2m+1 → B2m′ be an almost contact metric
submersion of type II. If the total space is a C9, C10, C11 or a C12-manifold,
then the fibres inherit the structure of the total space while the base space is
Kählerian.

Recall that, in [4], O’Neill has defined two configuration tensors, T and
A, by setting

TDE = H∇VDVE + V∇VDHE, ADE = V∇HDHE +H∇HDVE.

These tensors play an important role in the study of the fibres and the
horizontal distribution respectively. Using the tensor A, Chinea has defined
(see [1]) an associated tensor A∗ on horizontal vector fields in the following
way

A∗(X,Y ) = AXϕY −AϕXY,

and has established the following structure equations:

δφ(U) = δφ̂(U) +
1

2
g(trA∗, U), (3.1)

δφ(X) = δφ′(X∗) + g(H,ϕX), (3.2)

δη = δη′ ◦ π − g(H, ξ), (3.3)

where H denotes the mean curvature vector field of the fibres while trA∗ is
the trace of A∗.

The above equations lead to the following

Theorem 3.1. (see [5, Theorem 5]) Let π : M2m+1 → M ′2m
′+1 be an al-

most contact metric submersion of type I. If among the defining relations
of the total space there is the codifferential δφ or δη, then the base space
inherits the structure of the total space if and only if the fibres are minimal.

As a consequence of this Theorem 3.1, one has the following

Proposition 3.5. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I. If the total space is a C7 or a C8-manifold, then the
base space inherits the structure of the total space if and only if the fibres
are minimal.

Proposition 3.6. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I. If the total space is a C7-manifold, then the fibres are
W3-manifolds if and only if trA∗ = 0.
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Proof. Let U be a vertical vector field tangent to the fibres. Using equation
(3.1) of Chinea, we have

0 = δφ̂(U) +
1

2
g(trA∗, U).

Thus, δφ̂(U) = 0 if, and only if trA∗ = 0.
On the other hand, since η vanishes on the vertical vector fields, it is

clear that
(∇̂U φ̂)(V,W )− (∇̂ϕ̂U φ̂)(ϕ̂V,W ) = 0.

We then conclude that the fibres are W3-manifolds if and only if it holds
trA∗ = 0. 2

We now examine some properties of the configuration tensors.

Lemma 3.1. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric sub-

mersion of type I. If the total space is a C7, C8, C9, C10, C11 or a C12-
manifold, then TUϕV = ϕTUV.

Proof. On the vertical vector fields, the manifolds under consideration sat-
isfy the relation

(∇Uφ)(V,W ) = 0.

This relation leads to g(W, (∇Uϕ)V ) = 0 for every W , from which we deduce
(∇Uϕ)V = 0. The horizontal projection of this gives rise to TUϕV = ϕTUV.
2

Lemma 3.2. Let π : M2m+1 → B2m′ be an almost contact metric submer-
sion of type II. If the total space is a C7, C8, C9, C10, C11 or a C12-manifold,
then AXϕY = ϕAXY.

Proof. The vanishing of η on the horizontal vector fields leads to the condi-
tion (∇Xφ)(Y,Z) = 0. As in Proposition 3.1, we deduce that (∇Xϕ)Y = 0.
The vertical projection of this relation gives the required statement. 2

4. The geometry of the fibres

Proposition 4.1. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I. If the total space is a C9, C10, C11 or a C12-manifold,
then the fibres are minimal.

Proof. From [5, Proposition 4], it is known that if the configuration tensor
T is ϕ-linear in the second variable on the vertical distribution, then the
fibres are minimal. This is just the case observed in Lemma 3.1. 2

We now examine the superminimality of the fibres. Let (M2m+1, g, ϕ, ξ, η)
be an almost contact metric manifold and M̄ a ϕ-invariant submanifold of
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M. If (∇V ϕ) = 0 for all V tangent to M̄, then M̄ is said to be supermi-
nimal. In order to verify superminimality of the almost Hermitian fibres,
(M̂, Ĵ , ĝ), recall from [6] that there are four components of g((∇V ϕ)E,F )
to be considered on the total space, M (and which all have to vanish). We
easily find:

SM-1) g((∇V ϕ)U,W ) = g(∇̂V (ĴU)− Ĵ∇̂V U,W ),

SM-2) g((∇V ϕ)U,X) = g(TV (ϕU)− ϕ(TV U), X),

SM-3) g((∇V ϕ)X,U) = −g((∇V ϕ)U,X),

SM-4) g((∇V ϕ)X,Y ) = −g(AϕXY +AX(ϕY ), V ).

Let π : (M ,ϕ, ξ, η, g) → (M ′, J ′, g′) be an almost contact metric sub-
mersion of type II. In order to verify superminimality of the almost contact
metric fibres, (M̂ ,ϕ̂, ξ̂, η̂, ĝ) there are four components of g((∇V ϕ)E,F ) to
be considered on the total space, M (and which all have to vanish). We
easily find:

SM-5) g((∇V ϕ)U,W ) = g(∇̂V (ϕ̂U)− ϕ̂∇̂V U,W ),

SM-6) g((∇V ϕ)U,X) = g(TV (ϕU)− ϕ(TV U), X),

SM-7) g((∇V ϕ)X,U) = −g((∇V ϕ)U,X),

SM-8) g((∇V ϕ)X,Y ) = −g(AϕXY +AX(ϕY ), V ).

We note that SM-1) implies that if the fibres of a type I almost contact
metric submersion are superminimal, then they are Kähler.

For an almost contact metric submersion of type I, equation (3.3) of
Chinea shows that the transference of the condition δη = 0 from the total
space to the base space is connected to the minimality or the superminimal-
ity of the fibres.

In fact, one has the following result.

Theorem 4.1. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I whose total and base spaces have codifferentials, δη and
δ′η′, null. If the fibres are superminimal, then they are minimal.

Proof. Let
{
E1, ..., Em′m , ϕE1, ..., ϕEm−m′ , F1, ..., Fm′ , ϕF1, ..., ϕFm′ , ξ

}
be

a basis for the local vector fields on M with the {Ei, ϕEi} vertical and the
{Fj , ϕFj}

⋃
{ξ} horizontal. The mean curvature vector field of the fibres is

given by

H =
m−m′∑
i=1

{TEi(Ei) + TϕEiϕEi} .

The nullity of calculation SM-2) for the superminimal fibres implies that all
of the components of H with respect to the horizontal part of the local basis
vanish, except probably g(H, ξ)ξ. Using equation (3.3), we have

0 = δη = −g(H, ξ) + π∗(δ′η′).
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Therefore, H = 0. 2

The above Theorem 4.1 applies in the case of δφ = 0 = δ′φ′.

Proposition 4.2. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I. If the total space is a C11 or a C12-manifold, then the
fibres are superminimal.

Proof. Consider the case of a C11-manifold. Let V be a vertical vector field
tangent to the fibres. By the vanishing of the contact 1-form, η, on the
vertical vector fields, in virtue of Proposition 3.1, we have

(∇V φ)(E,F ) = 0,

from which (∇V ϕ)F = 0 follows. Thus, the fibres are superminimal.
In the same way, suppose that the total space is a C12-manifold. The

vanishing of η, on the vertical vector fields leads to the same conclusion. 2

When studying the superminimality of the fibres of an almost Hermitian
submersion, B. Watson (see [9]) introduced a criterion in terms of (∇XJ)U
which plays an important role in the transference of structure from the
base to the total space. We have adaptated it to the contact geometry by
replacing J by ϕ.

Proposition 4.3. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I. Assume that the base space is a C7, C8, C9, or a C10-
manifold and the fibres are superminimal. If V(∇Xϕ)U = 0, then the total
space inherits the structure of the base space.

Proof. Let us consider the case where the base space is a C7-manifold. In
order to prove that the total space is a C7-manifold, there are six expressions
that must vanish.

C7 -1) (∇Uφ)(V,W )− η(W )(∇V η)ϕU − η(V )(∇ϕUη)W ;

C7 -2) (∇Uφ)(V,X)− η(X)(∇V η)ϕU − η(V )(∇ϕUη)X;

C7 -3) (∇Uφ)(Y,X)− η(X)(∇Y η)ϕU − η(Y )(∇ϕUη)X;

C7 -4) (∇Xφ)(U, V )− η(V )(∇Uη)ϕX − η(U)(∇ϕXη)V ;

C7 -5) (∇Xφ)(Y, V )− η(V )(∇Y η)ϕX − η(Y )(∇ϕXη)V ;

C7 -6) (∇Xφ)(Y,Z)− η(Z)(∇Y η)ϕX − η(Y )(∇ϕXη)Z.

Since the fibres are superminimal, the first two expressions vanish.
Regarding C7 -3), it is known that (∇Uφ)(Y,X) = g(Y, (∇Uϕ)X) from

which (∇Uϕ)X = 0, because of the superminimality of the fibres. Note that

(∇Y η)ϕU = (∇Y φ)(ξ, ϕ2U) = g(ξ, (∇Y ϕ)ϕ2U).

Applying the condition V(∇Xϕ)U = 0 we deduce that (∇Y η)ϕU = 0.
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In C7 -4), we have to examine only (∇Xφ)(U, V ); the others terms van-
ish, because η vanishes on vertical vector fields. By using the condition
V(∇Xϕ)V = 0, one gets (∇Xφ)(U, V ) = g(U, (∇Xϕ)V ) = 0.

Concerning C7 -5), we have to examine (∇Xφ)(Y, V ) and η(Y )(∇ϕXη)V.
Recall that (∇Xφ)(Y, V ) = g(Y, (∇Xϕ)V ). Since V(∇Xϕ)V = 0, we get
(∇Xφ)(Y, V ) = 0. Considering (∇ϕXη)V, we have

(∇ϕXη)V = (∇ϕXφ)(ξ, V ) = g(ξ, (∇ϕXϕ)V ).

Using the condition V(∇Xϕ)U = 0, we conclude that C7 -5) vanishes.

The last expression C7 -6) vanishes on basic horizontal vector fields be-
cause the projected tensors by the submersion down to the base space vanish.
Therefore (M, g, ϕ, ξ, η) is a C7-manifold. Other calculations are treated as
in the case of C7-manifold. 2

The significance of this criterion is that, when the fibres are supermini-
mal, it ensures the transference of the structure from the base to the total
space. For instance, by Proposition 4.2, it is proven that submersions whose
total space is a C11 or a C12-manifold have superminimal fibres; but it can
be shown that, in this case, the structure of the base space does not transfers
to the total space unless this criterion is fulfilled. We can state the following
result.

Proposition 4.4. Let π : M2m+1 → M ′2m
′+1 be an almost contact metric

submersion of type I with superminimal fibres. If the base space is a C11

or a C12-manifold, then these structures do not transfer to the total space
unless V(∇Xϕ)U = 0.

Proof. Let us consider the case where the base space is a C11-manifold.
As in the case of the preceding Proposition 4.2, the following six expressions
must vanish

C11-1) (∇Uφ)(V,W ) + η(U)(∇ξφ)(ϕV, ϕW );

C11-2) (∇Uφ)(V,X) + η(U)(∇ξφ)(ϕV, ϕX);

C11-3) (∇Uφ)(Y,X) + η(U)(∇ξφ)(ϕY, ϕX);

C11-4) (∇Xφ)(U, V ) + η(X)(∇ξφ)(ϕU,ϕV );

C11-5) (∇Xφ)(Y, V ) + η(X)(∇ξφ)(ϕY, ϕV );

C11-6) (∇Xφ)(Y,Z) + η(X)(∇ξφ)(ϕY, ϕZ).

Considering expressions C11-4) and C11-5), we encounter (∇Xϕ)V and
(∇ξϕ)ϕV , which must vanish in order to conclude that the total space is a
C11-manifold. 2

5. Some examples

Product of manifolds provide trivial examples of submersions.
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Let (M ′, g′, J ′) be a 2m′-dimensional almost Hermitian manifold and let
further (M, g, ϕ, ξ, η) be an almost contact metric manifold of dimension
2m+1. Let M̃ = M ′×M and set n = m′+m so that the dim(M̃) = 2n+1.
On the product M̃ , one defines an almost contact metric structure (g̃, ϕ̃, ξ̃, η̃)
by setting:

ϕ̃
(
D′, D

)
=
(
J ′D′, ϕD

)
, (5.1)

η̃
(
D′, D

)
=
m

n
η (D) , (5.2)

g̃
((
D′, D

)
,
(
E′, E

))
= g′

(
D′, E′

)
+
n2

m2
g (D,E) , (5.3)

ξ̃ =
n

m
(0, ξ) . (5.4)

Examples are given in [2]. Similarly to [7, Proposition 4.1], we have:

Proposition 5.1. Let (M ′, g′, J ′) be an almost Hermitian manifold and let
(M, g, ϕ, ξ, η) be an almost contact metric manifold. If (M ′ ×M, g̃, ϕ̃, ξ̃, η̃)
is an almost contact metric manifold obtained as above, then it is:

(i) C9 if and only if M ′ is Kähler and M is C9;

(ii) C10 if and only if M ′ is Kähler and M is C10;

(iii) C11 if and only if M ′ is Kähler and M is C11;

(iv) C12 if and only if M ′ is Kähler and M is C12;

(v) C7 if and only if M ′ is a W3-manifold and M is C7.

Examples of almost contact metric submersions

Theorem 5.1. Let (M ′2m
′
, g′, J ′) be an almost Hermitian manifold and

(M2m+1, g, ϕ, ξ, η) an almost contact metric one. If M̃ = M ′ × M is the
product almost contact metric manifold defined above, then:

(i) the projection p : M ′×M →M is an almost contact metric submer-
sion of type I;

(ii) the projection q : M ′ ×M → M ′ is an almost contact metric sub-
mersion of type II.

Proof. It is known that these two projections are Riemannian submersions.
We have to show that they are (ϕ̃, ϕ)-holomorphic for the first type and
(ϕ̃, J ′)-holomorphic for the second type.

Since ϕ̃(D′, D) = (J ′D′, ϕD), then

p∗ϕ̃(D′, D) = p∗(J
′D′, ϕD) = ϕD = ϕp∗(D

′, D),

from which p∗ϕ̃ = ϕp∗. On the other hand, p∗ξ̃ = p∗(0, ξ) = ξ, which
achieves the proof of (i).
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Likewise,

q∗ϕ̃(D′, D) = q∗(J
′D′, ϕD) = J ′D′ = J ′q∗(D

′, D),

which shows that q∗ϕ̃ = J ′q∗ and establishes (ii).
We note that, in the first case, the fibres are isomorphic with M ′ and in

the second case with M. Since ϕ̃(D′, 0) = (J ′D′, 0) and ϕ̃(0, D) = (0, ϕD),
then M ′ and M are invariant submanifolds of M̃ = M ′ ×M. 2

More concretely, Chinea and Gonzalez have shown that
M3 =

{
(x, y, z) ∈ R3 |x > 0

}
can be endowed with a C12-structure. Using

the Kählerian structure of R2, it is clear that the product R2 × M3 is a
C12-manifold as proved in Proposition 5.1.

According to the preceding Theorem 5.1, we have:
(i) The projection p : R2 × M3 → M3 is an almost contact metric

submersion of type I whose fibres are the Kählerian manifold R2 where the
total and the base space are C12-manifolds.

(ii) The projection q : R2 × M3 → R2 is an almost contact metric
submersion of type II whose total space is C12-manifold, the base space
is the Kählerian manifold R2, while the fibres are C12-manifold, M3.
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