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1. Introduction and preliminaries

Optimization theory plays an important role in many fields, as mechanics,
physics, economics and engineering sciences (see [2, 3, 21]). After the 60’s,
variational inequalities was intensively studied by many authors (see [2-13,
18-22]) as a branch of optimization. It is well-known that variational inequal-
ities are closely related to optimization problems, who were also investigated
by authors like Preda (see [14-17]).

An important research direction in optimization theory is the stability
of the solutions set for variational inequalities and equilibrium problems
with perturbing parameters. Stability refers to semicontinuity, continuity,
Lipschitz continuity or some kinds of differentiability of the optimal solutions
set of variational inequalities or optimization problems. Many authors have
studied these aspects of stability separately for different types of variational
inequalities (see [5-9, 11,13, 19, 20, 22]). Among them, Lalitha and Bathia
studied in [11] the continuity of a parametric quasivariational inequality of
the Minty type. Also, Stanciu analysed in [19] the continuity of the solutions
set of a Minty type invex quasivariational inequality.

This work extends the papers of Lalitha and Bathia (see [11]) and Stanciu
(see [19]) to the case of an equilibrium problem. Thus, further on we give
the general framework in which we will do the study and the equilibrium
problem considered here; then we recall the basic definitions and results
that will be used. Making certain assumptions on the set A and on the
applications K, T and 1, in Section 2 we will give sufficient conditions for
the upper semicontinuity of the solutions set of the problem (Y MVI (zg)).
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Section 3 focuses on the lower semicontinuity of the solutions set of the
same problem. In Section 4 we analyse the stability of the e-solutions set
of the problem (Y MV (zg)). In the last section the study is extended to
the upper and lower semicontinuity of a nested optimization problem having
equilibrium problem constraints.

Throughout the paper, we consider the following equilibrium problem,
corresponding to a parameter xg € X:

(WMVI (x0)) Find up € K (x,up) N A such that
Y (t,up,v) <0, Vo € K (z9,up), Vt € T (x0,v),

where X C R"™ is a nonempty, closed set, A C Y = R™ is a nonempty,
closed and convex set, K : X xY — 2" is a closed application, T : X xY —
2Y and ¢ : Y x Y xY — Y. Suppose that domK = domT = X x Y, where
domK = {(z,y) € X x Y | K (z,y) # 0}.

We denote the solutions set of (Y MVI (x)) by My (xo), that is

Mw (1‘0) = {Uo S K(l‘o,u[)) N A|
Y (t,uo,v) < 0,Yv € K (z0,u0) ,Vt € T (20,v)} .

For 9 (t,u,v) = (t,n (u,v)), where n : Y x Y — Y we obtain the quasivari-
ational inequality considered by Stanciu in [19]. For ¢ (¢,u,v) = (t,u — v)
we obtain the inequality considered by Lalitha and Bhatia in [11].

Now, let us recall some basic definitions and their properties.

For each ¢ > 0 and xy € Y, denote by B (xg,&) the open ball with
center in xo and radius ¢, that is B (zg,¢) := {x € Y| ||zo — z|| < €}, and
with U (A,e) an open e—neighborhood of a subset of A C Y defined by
U(A,e) :={x € Y| there exists a € A such that |a —z| < e}.

Now let F': X — 2Y be a set-valued map with domF = X, where X is
a nonempty and closed subset of R™ and Y = R™.

Definition 1.1. (see [10]) The application F' is said to be:

(i) Upper semicontinuous in the sense of Berge (in short, B-usc) at xg €
X if for every open set N satisfying F(xo) C N, there exists a 6 > 0, such
that for every x € B (x¢,0), F (z) C N.

(i) Lower semicontinuous in the sense of Berge (in short, B-lsc) at
xo € X if for every open set N satisfying F(xo) N N # 0, there exists a
d > 0, such that for every x € B (z9,0), F (z) NN # (.

The application F' is said to be B-lsc (respectively B-usc) on X if F' is B-
Isc (respectively B-usc) at each point zp € X. F' is said to be B-continuous
on X if it is both B-lsc and B-usc on X.

Aubin and Ekeland gave in [1] the following equivalent definition for a
B-lower semicontinuous function:
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Remark 1.1. (see [1]) F is said to be B-Isc at zyp € X if and only if for any
sequence {x,} C X converging to z¢ and for any yo € F(xg) there exists a
sequence {y,} C F(z,) converging to yp.

Definition 1.2. (see [1]) F is said to be closed at xy € X, if for each of
the sequences {x,} C X converging to xo and {y,} C Y converging to yo
such that y, € F(xy,), we have yo € F(xo). F is said to be closed on X if it
1s closed at each xg € X.

Remark 1.2. (see [1]) It is well-known that, if F' is B-usc at g € X and
F (z9) is closed, then F is closed at xo.

Definition 1.3. Let F : X — 2Y be a set-valued map with domF = X and
V:Y XY xY =Y. We say that the application F 1is:

(i) ¥ —pseudomonotone on X iff for any x, g € X,

Y (&, x,x0) > 0, for some & € F (xyg) = ¢ (u,x,x0) > 0, for any p €
F (z);

(i1) ¥ -quasimonotone on X iff for any x, xo € X, x # x,

Y (&, z,20) > 0, for some & € F (xg) = ¢ (u,x,209) > 0, for any p €

2. Upper semicontinuity of the solutions set

In this section we derive sufficient conditions that ensure the upper semicon-
tinuity of the application M, : X — 2Y, where My (z) is the solutions set
of problem (¢ MVI (z)), making certain assumptions on the applications T’
and K.

Theorem 2.1. Suppose that for xg € X, the following conditions are sat-
isfied:

(i) K is closed and B-lsc on {xo} x Y;

(11) T is B-lsc on {xo} x Y;

(iii) A is a compact subset of Y ;

(v) ¥ (-, +,-) is continuous in all the arguments.

Then My, is B-usc at xo. Moreover, My (zo) is compact and My, is closed
at xg.

Proof. Suppose, on the contrary, that M, be not B-usc at xo. Then
there exists an open set N containing My, (o), such that for every sequence
T, — o, there exists u, € My(xy), u, ¢ N, for every n. Using the line
of [11], is sufficient to show that ug € My(xo). If ug ¢ My(xo), then there
exist vg € K(zg,up) and tg € T(x0,v0), such that

¥ (to, uo, vo) > 0. (2.1)
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Since K is B-lsc at (zg,up), vo € K(xo,up) and (zpn,u,) — (zo,up),
there exists v, € K(xy,uy), such that v, — vg. Similarly, since T" is B-Isc
at (xo,v0), to € T'(xg,v0) and (zy, vy) — (x0,v0), it follows that there exists
tn € T(xp,vy), such that ¢, — to.

From u, € My(xy,) we have

U (t,up,v) <0, Yo € K(xp,up), ¥t € T(xn,v). (2.2)

Taking v = v, and t = ¢, in (2.2) and taking limits as n — oo, we have
¥ (to, uo,vo) < 0, which contradicts relation (2.1). Therefore My, is B-usc at
Zo-

Proceeding like in [11], we can show that My (zo) is a closed set. More-
over, as My (zg) C A and A is compact, it follows that My (zo) is compact.
It is well-known that, if M, is B-usc at x9 € X and My, (x¢) is closed, then
My is closed at g (see [1]). O

Example 2.1. Let X = [-1,1], Y =R and A =[0,2]. Define ¢ : ¥ x Y x
Y = Yas(t,u,v) = t? (u2 — 112) and the set-valued maps K : X xY — 2Y
and T: X x Y — 2 as follows o) i
. 0},ifx=0
K(w,u)—{[gﬂ]’iugg, T (z,u) = [0,1],ifx <0
(2, 0], if u > 0,z +ul], if >0

We have My (z) = [0,2], Vo € X. Here there are satisfied all the as-
sumptions of the above theorems. Therefore My, is B-usc at xg, My (z0) is
compact and My, is closed at zg.

The following two examples illustrate the fact that the conditions of
closedness on the map K and of compactness on the set A, respectively,
cannot be relaxed in Theorem 2.1.

Example 2.2. Let X = [-2,2], Y = R and A = [0,2]. Define ¢ : ¥ x
Y xY =Y as ¢ (t,u,v) = (£?+1) (u—v) and the set-valued maps K :
XXYH2Yand?:}Xf><YT2Yasfollows o). i ,
0f,ifz= yifu <

K (w,u) = { [0,4] itz #£1 T(2,u) = { 0], ifu>1"
For 29 = 1, My (z0) = {0} and for  # xo, My, (z) = [0, 3]. We can see that
the maps K and T are B-lsc on {zp} x Y but K is not closed on {zg} x Y.
It can be observed that My is neither B-usc at g or closed at zg.

Example 2.3. Let X =[-2,2]and Y = A=R. Define ¢ : Y xY xY =Y
as ¢ (t,u,v) = t(u+v+t) and the applications K : X x Y — 2¥ and
T:X xY —2Y as follows

f 0], ifu<0 [ {o},ifzx=1
K(x’“)_{ 0.0, ifus>0" TEU=V 100 a1

For zo = 1, My, (x9) = R and for « # o, My () = (—00,0]. In this example
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the first two conditions and fourth are satisfied, but A is not compact. It
can be observed that My, is B-usc at x¢ and closed at xo, but My, (x0) is not
compact.

Theorem 2.2. Suppose that for xqg € X, the following conditions are sat-
isfied:

(i) K is closed on {xo} x Y;

(ii) A is a compact subset of Y;

(iii) Yug € K(x9,up) N A, Y(zp, un) — (20, up) and

W (to, wo,v9) > 0, for some vy € K(xo,up), to € T'(xo,v0) (2.3)

implies that there exists a positive integer n, such that ¥ (t,un,v) > 0, for
some v € K(xp,up), t € T(xp,v);

() ¥ (-, -,-) is continuous in all the arguments.

Then My, is B-usc at xg. Moreover, My (zo) is compact and My is closed
at xg.

Proof. Suppose, on the contrary, that M, be not B-usc at xg. Then
there exists an open set N containing My, (o), such that for every sequence
xn, — o, there exists u, € My(zy,), un ¢ N, for every n. As in [11], we
arrive to a contradiction and hence My, is B-usc at xo. The fact that My (o)
be compact and M, be closed at x, follows as in Theorem 2.1. O

It can be observed that in the above theorem the conditions of B-lower
semicontinuity of K and T' from Theorem 2.1 are replaced with a weaker
one. The advantage of assumption (iii) can be illustrated by means of the
following example, wherein the solutions set is B-usc and compact at xg,
even though the map T is not B-Isc on {zg} x Y, where zo = 0.

Example 2.4. Let X =[-1,1], Y =R and A =[0,2]. Define ¢ : ¥ x Y x
Y =Y as ¢ (t,u,v) = u (v —t) and the set-valued maps K : X x Y — 2V
and T: X x Y — 2 as follows
[ {01}, ifu=0 (1,2, i =0
K@””_{Umm+m,ﬁu¢o’ T@w =3 "3 ite£0
We have M, (z) = {0}, Vo € X.

Example 2.5. Let X = [-1,1], Y =R and A =[0,2]. Define ¢ : ¥ x Y x
Y =Y as ¢ (t,u,v) = u+v — 2t and the set-valued maps K : X x Y — 2V
andT: X xY — 2Y1 as follows: K (x,u) = {0,1},
0,4 ifz=0
7%%“):{ Hlﬂifx#o

For xg = 0, My (o) = {0} and for x # o, My () = {0,1}. We can see
that for zg = 0 and (zy,u,) = (£, 1), condition (iii) of Theorem 2.2 fails to
hold and My, is not B-usc at xg. So, wherein the conclusion of Theorem 2.2
fails to hold in the absence of condition (iii).
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3. Lower semicontinuity of the solutions set

Since continuity implies both upper as well as lower semicontinuity, in this
section we establish conditions ensuring the lower semicontinuity of the ap-
plication My, defined as in Section 2.

Theorem 3.1. Suppose that for xg € X, the following conditions are sat-
isfied:

(i) K is B-lsc at xg, where K (z) ={u € A:u € K (z,u)};

(i) Yup € K(xo,up) N A, Y(xn, un) = (x0,u9) and

Y (t,up,v) <0, Yo € K(xg,up), Yt € T(xg,v) (3.1)

implies that there exists a positive integer n, such that ¥ (t,un,v) <0, Vv €
K(xp,up), Vt € T(xy,v);

(iii) w (-, -, -) is continuous in all the arguments.

Then M,y is B-lsc at xg.

Proof. Suppose, on the contrary, that My, be not B-Isc at xy. From Remark
2.1, there exists a sequence {x,} in X converging to zy and ug € My/(zo),
such that for every sequence vy, € My(zy), yn = uo. Since z, — z and
ug € K(z0), from assumption (i) it follows that there exists a sequence
up, € K(x,) such that u, — ug. It follows that u,, ¢ My(z,) and then

Y (tn, Un, vyn) > 0, for some vy, € K(p,up), tn € T(xn,vp). (3.2)

Since ug € My(xp), it follows that relation (3.1) holds and hence by
condition (ii) of the hypothesis, there exists n € N, such that

U (t, up,v) <0, Vv € K(xn,up), Yt € T(xy,v),

which contradicts (3.2). Therefore M, is B-Isc at zy. O
Now we give an example where there are satisfied all the conditions of
the above theorem and, therefore, the conclusion is valid.

Example 3.1. Let X =[-2,2], Y =R and A = [0,+00). Define ¢ : Y x
Y xY =Y as ¢ (t,u,v) = tv —u and the set-valued maps K : X xY — 2V
and T: X x Y — 2V as follows:
C Ru—-1,14z]],iffu<1 [ [0,1},ifz=0
K@”O_{ 1,4, ifu>1 » T@w = 0y, itz £0
For zg = 0, My (z9) = [1,+00) and for x # zg, My (x) = [0, 4+00).

. (0,1, if @ #£0 o
If in Example 3.1 we take T' (z,u) = { (0}, ifz=0 " condition (ii) of
Theorem 3.1 fails to hold for ug = 0, zg = 0 and (2, us) = (£, 1) (we take

t = 0). It can be easily verified that My (z¢) = [0,400) and for = # o,
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My () = [1,400); hence x # o, My is not B-lsc at zg. So, if the condition
(ii) is not satisfied, then the conclusion of Theorem 3.1 fails to hold.

As lower semicontinuity is stronger than upper semicontinuity, the fol-
lowing two results give sufficient conditions ensuring the lower semicontinu-
ity, by imposing additional conditions to those of Theorem 2.1 regarding the
upper semicontinuity.

Theorem 3.2. Suppose that conditions of Theorem 2.1 are satisfied and
that for xg € X, we have:

(i) for every ug € My(zo), ¥ (t,uo,v) < 0, Yo € My(zo)\{uo} and for
some t € T'(zg,v);

(11) =T is 1-quasimonotone on {xo} X Y .

Then M,y is B-lsc at xg.

Proof. Suppose, on the contrary, that M, be not B-Isc at 9. From Remark
1.2, there exists a sequence {x,} in X with =, = 9 and ug € My(xo),
such that for every sequence y, € My(xy), yn - uo. As u, € A and A
is a compact subset of Y, without loss of generality, we can assume that
yn — u' € A, u' # ug. By Theorem 2.1, it follows that v’ € My(zo). As
ug, u' € My(zo), from (i) it follows that

W (t',uo,u') > 0, for some t' € —T (Jro,u')

and
P (to,uo,u') > 0, for some ty € =T (xg,up),
which contradicts the i-quasimonotony of —T. O
If in Example 3.1 we take T (z,u) = 0,1], if @ #0 there are satis-
L T Aoy, itz =0

fied the conditions of Theorem 2.1, —T is ¢-quasimonotone on {zp} X Y ,
but for ug = 0 and v = 1 € My(xp) it can be seen that v (¢,ug,v) = 0 for
any t € T'(zg,v) = {0} and hence condition (i) of the above theorem is not
satisfied. Since My, (x¢) = [0,400) and for x # xo, My (x) = [1,400), My,
is not B-lsc at xp. So, if the condition (i) is not satisfied, then the conclusion
of Theorem 3.2 fails to hold.

By using the same technique as above, we can establish the following
result:

Theorem 3.3. Suppose that conditions of Theorem 2.1 are satisfied and
that for xg € X, we have:

(i) for every ug € My(zo), ¢ (t,up,v) <0, Vo € My(zo) and for some
t € T(xo,v);

(ii) =T is -pseudomonotone on {xo} XY ;

(113) ¢ (t,u,v) =0, fort € T'(zo,u) UT (xg,v) = u=v;

() Y (t,u,v) == (t,v,u), Vt,u,v € K.

Then M,y is B-lsc at xq.
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Proof. Suppose, on the contrary, that M, be not B-Isc at 9. From Remark
2.1, there exists a sequence {z,} in X with x, — z¢ and ug € My/(zo),
such that for every sequence y, € My(xy), yn - ug. As u, € A and A
is a compact subset of Y, without loss of generality, we can assume that
yn — v € A, u' # up. By Theorem 2.1, it follows that v’ € My(zg). As
ug, u' € My(z), from (i) it follows that

P (t',uo, u') > 0, for somet’ € —T (xg,u') (3.3)

and
) (to,u’,uo) > 0, for some tyg € =T (xg,up) - (3.4)

Since —T is 1-pseudomonotone, it follows from (3.3) that 1 (tg, ug,u’) > 0
and, together with (3.4), we obtain v (tg,up,u’) = 0. By (iii) we have
u’ = ug, which is a contradiction. O

If the hypothesis of Theorem 3.2 or Theorem 3.3 hold, the application
My : X — 2Y is B-continuous at zg.

4. Continuity of the e-solutions set

In this section we extend the study of upper and lower semicontinuity to
e-solutions set and to modified e-solutions set of problem (Y MV I (x()). For
a fixed ¢ > 0, we define an e-solution of problem (YMVI (z9)) to be an
ug € K (x9,ug) N A such that Vv € K (xg,up), Vt € T (29, v), ¥ (t,up,v) < €.
The set of all e-solutions of (yMV'I (z9)) is denoted by My (zp). We can
easily see that if ¢ = 0, we have My (z9) = My (zo). Motivated by [13] we
introduce the set of modified e-solutions of (Y MV (xy)) as

~ My (z0) , if x = xo
M (z) = g "
v () { My (x), if x # 2o
The proofs of the following two theorems are analogous to those of The-
orems 2.1, 2.2 respectively.

Theorem 4.1. Suppose that for xo € X the conditions of Theorem 2.1 hold.
Then Mi is B-usc at xg, for any € > 0. Moreover, Mi (z0) is compact and
M;} is closed at xq, for any € > 0.

Theorem 4.2. Suppose that for xo € X the conditions (i)-(ii) and (iv) of
Theorem 2.1 hold and, in addition, Yug € K (zg,up)NA, V(zy, un) — (20, uo)
and

Y (to, ug,v9) > €, for some vy € K(xo,up),to € T(x0,v0)

implies that there exists a positive integer n, such that ¥ (t,un,v) > €, for
some v € K(xp,un), t € T'(zp,v).

Then My, is B-usc at xg. Moreover, My, (o) is compact and My, is closed
at xg.
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Next we show that if problem (¢ MV (xg)) is well-posed, then My, is
B-upper semicontinuous.

Definition 4.1. A sequence {u,} is said to be an approrimating sequence
for the problem (YMVI (xg)) iff there exists a sequence {x,} in X, such
that x,, — xo and there exists a sequence {e,} in R, &, > 0 with &, — 0,
such that u, € My" (x,), Vn € N.

Definition 4.2. We say that the equilibrium problem (YMVI (z)) is well-
posed iff

(i) the solution set My(xo) of (WMVI (x)) is nonempty;

(ii) every approximating sequence for (WMVI (xg)) has a subsequence,
which converges to some point of My(xo).

Remark 4.1. Well-posedness of (M VI (xg)) implies that the solution set
My (z0) is a nonempty compact set.

Theorem 4.3. If (WMVI (x)) is well-posed, then My is B-usc at g.

Proof. Suppose, on the contrary, that My, be not B-usc at xo. Then there
exists an open set N containing My, (zg), such that for every sequence x,, —
xo, there exists u, € My/(z,) but u, ¢ N. As x, = xo and u, € My(z,),
it follows that {u,} is an approximating sequence for (¢ MVI (x()). Since
up ¢ N and My, (x9) C N, none of its subsequences converge to a point of
My (x0), thereby leading to a contradiction to the fact that (¢ MVI (x0)) is
well-posed. So, M, is B-usc at zg. O

The converse of the above result may fail to hold. For the problem
(YMVI (x0)) considered in Example 2.3, if we choose the sequences {z,}
and {u,} as x, =1+ % and u, = —n for every n, then it can be observed
that {u,} is an approximating sequence for the problem (Y MVI (zg)), but
it possesses no convergent subsequence, thereby implying that (¢ M VT (xg))
is not well-posed.

Regarding semicontinuity of the modified e-solutions set of problem
(YMVI(x0)), we have the following result:

Theorem 4.4. Suppose that for xqg € X, the following conditions are sat-
isfied:

(i) K is B-usc with compact values on {xo} X Y;

(ii) K is B-lsc at xg, where K(x) ={u € A:u € K(z,u)};

(i1i) T is B-usc with compact values on {xo} X Y;

() ¥ (-, -,-) is continuous in all the arguments.

Then M;Z is B-lsc at xg, for each € > 0.
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Proof. Suppose, on the contrary, that ]\7@ be not B-lsc at zg. Using
the line of [11], there exists a sequence {z,} in X converging to zy and
ug € M{Z(“TO)’ such that for every sequence v, € pr (zn,), we have y,, - ug.

Since K is B-lsc at xg, x,, — zp and ug € K(xg), there exists a sequence
{un} C K(z,) converging to ug. It follows that u, ¢ Mi(azn), that is

Y (tn, Up,vy) > €, for some vy, € K(xp,uy), tn € T(xn,vy). (4.1)

As K is B-usc and compact valued at (xo,up) and v, € K(zy,u,), there
exists vy € K (xg,up), such that v,, — vg. Also, since T is B-usc and compact
valued at (xo,v0) and ¢, € T'(xy, vy), there exists some ty € T'(zg, vp), such
that t,, — to. Taking limit as n — oo in relation (4.1) we have ¥ (to, ug, vo) >
g, a contradiction to ug € Mi(mo) O

5. The case of a nested optimization problem

Consider the following nested optimization problem:
(P) min f (z,u) + maxj<ij< ¢; (x), with u € My, (), z € X,

where f: X xY — R, My, (x) is the solutions set of the equilibrium problem

(y MV (z)) defined in Section 1, X := {z € X |a (z) < 0}, with ¢; : R" —

R for 1 <i <k and a : R" — RP being convex and continuous functions.
This problem is equivalent with

(P’) min g (z,u), with u € My, (z), x € X,

where the function g : X x Y — R is defined such that for every (z,u) €
X x Y, we have g (z,u) = f (z,u) + maxj<;<j ¢; ().
We denote by  the set of solutions of problem (P), that is
Q= {(m,u) eXxY|ue K (z,u)yNA, g(z,u) < infye)?,veMw(y)g(y,v)
and ¢ (t,u,v) <0,Yv € K (z,u),Vt € T (z,v)}.

For € > 0, we define a parametric form (P(e)) of the optimization problem
(P), as follows:

(P(e)) min f (2, u) + maxi<i<k ¢; (), with u € My (z), x € X,

where My () is the e-solutions set of problem (Y MV (z)). For e = 0, the
problem reduces to problem (P).
For §,e > 0, define the e-solutions set for the problem (P(¢)) as

O () == {(x,u) eX xY|ueK (z,u)N A,

g(z,u) < inf % venry ) 9 (y,v) + 0
and ¢ (t,u,v) <e, Yo € K (z,u),Vt €T (x,v)}.
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This section gives sufficient conditions for continuity of e-solutions set of
problem (P(e)), that is of the application Q9 : Ry — 2X*Y with Q9 (¢)
being the e-solutions set of problem (P(g)).

We see that if § = 0, then Q° (0) = Q. Also for any § > 0, Q° (0) € Q° (¢),
Ve > 0, from which we deduce that €9 is B-lsc at ¢ = 0. Hence, to obtain
the continuity of the application Q° at ¢ = 0, it is enough to establish
conditions for the upper semicontinuity. The conditions that ensure the
upper semicontinuity of Q% at & = 0 are similar to those given by Lalitha in
[11] for the special case where ¢ (t,u,v) = (t,u — v), for any u,v € Y.

Theorem 5.1. Suppose that the conditions of Theorem 2.1 hold and
(i) X is a bounded subset of R™;
(ii) f is lower semicontinuous.
Then for every § >0, Q0 is B-usc at e = 0.

Corollary 5.1. Suppose that conditions (i), (ii) and (iv) of Theorem 2.1
hold and

(i) there exist €',8' > 0 such that Q° (¢') is bounded;

(ii) f is lower semicontinuous.

Then for every § < &', Q° is B-usc at € = 0.

Theorem 5.2. Suppose that the conditions of Theorem 2.2 hold and
(i) X is a bounded subset of R™;
(i) f is lower semicontinuous.
Then for every § > 0, Q° is B-usc at € = 0.

Remark 5.1. Since Q° is B-usc at ¢ = 0, if the conditions of one of Theo-
rems 5.1 or 5.2 hold, then Q° is B-continuous at ¢ = 0.

The following optimization problem satisfies the conditions of Theorem
5.1.

Example 5.1. Let X =[-2,2], Y =R and A =[0,2]. Define ¢ : ¥ x Y x
Y =Y as o (t,u,v) = t2 (u3 — 113) and the applications K : X x Y — 2Y
and T: X x Y — 2Y as follows: K (x,u) = [0, |ul],
{1},ifz=0
T (z,u) = { {0,1},if 2 #£0
For any z € X we have My (z) = {0} and M, (z) = [0, J/¢].
Now consider the problem

inf f(z,u) + Jax (), with v € My (z), = € X,
where f(z,u) = |z —u|, k =10 and ¢; (x) = (i —1)x + 1, i = 1,10. Let

My, (x) be the solutions set of the inequality considered above and a (z) =
x—1.
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c(z),ifzx<0

It can be verified that X = [—2,1], maxi<i<10 ¢ () = { cr0(2), if 2> 0
- 10 )

and Q = {(0,0)}. Also,

Q(e) = {(J),u)é)?XY‘UGK(.I‘,u)ﬂA,

(2) <
[z, u)+ e G (z) <

< _inf  f(y,v)+ max ¢ (y)+0, u€ 0, Ve
yeX ,wEMy (y) 1<i<10

:{(m,u)E)N(xY| u€ K (z,u)NA,

— (r) <1 v
ol 4 mas e (@) 145, uelD ﬁ]}

{(x,u) e X ><Y||:L‘—u|+1max ci(r)<1+4+4d,uce [O,min{%,Q}]}

<i<10

and hence Q7 (0) = {(x,O) | |z| + maxi<i<ioci (x) <1+d,x € )Z'} There-

fore Q% (0) = {(z,0) |2 € [max {—2, -6}, min {1, %}] }. It can be observed
that Q7 is B-usc and hence, B-continuous at ¢ = 0.
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