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1. Introduction and preliminaries

Optimization theory plays an important role in many fields, as mechanics,
physics, economics and engineering sciences (see [2, 3, 21]). After the 60’s,
variational inequalities was intensively studied by many authors (see [2-13,
18-22]) as a branch of optimization. It is well-known that variational inequal-
ities are closely related to optimization problems, who were also investigated
by authors like Preda (see [14-17]).

An important research direction in optimization theory is the stability
of the solutions set for variational inequalities and equilibrium problems
with perturbing parameters. Stability refers to semicontinuity, continuity,
Lipschitz continuity or some kinds of differentiability of the optimal solutions
set of variational inequalities or optimization problems. Many authors have
studied these aspects of stability separately for different types of variational
inequalities (see [5-9, 11,13, 19, 20, 22]). Among them, Lalitha and Bathia
studied in [11] the continuity of a parametric quasivariational inequality of
the Minty type. Also, Stanciu analysed in [19] the continuity of the solutions
set of a Minty type invex quasivariational inequality.

This work extends the papers of Lalitha and Bathia (see [11]) and Stanciu
(see [19]) to the case of an equilibrium problem. Thus, further on we give
the general framework in which we will do the study and the equilibrium
problem considered here; then we recall the basic definitions and results
that will be used. Making certain assumptions on the set A and on the
applications K, T and ψ, in Section 2 we will give sufficient conditions for
the upper semicontinuity of the solutions set of the problem (ψMV I (x0)).
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Section 3 focuses on the lower semicontinuity of the solutions set of the
same problem. In Section 4 we analyse the stability of the ε-solutions set
of the problem (ψMV I (x0)). In the last section the study is extended to
the upper and lower semicontinuity of a nested optimization problem having
equilibrium problem constraints.

Throughout the paper, we consider the following equilibrium problem,
corresponding to a parameter x0 ∈ X:

(ψMV I (x0)) Find u0 ∈ K (x0, u0) ∩A such that

ψ (t, u0, v) ≤ 0, ∀v ∈ K (x0, u0), ∀t ∈ T (x0, v),

where X ⊂ Rn is a nonempty, closed set, A ⊂ Y = Rm is a nonempty,
closed and convex set, K : X×Y → 2Y is a closed application, T : X×Y →
2Y and ψ : Y × Y × Y → Y . Suppose that domK = domT = X × Y , where
domK = {(x, y) ∈ X × Y |K (x, y) 6= ∅}.

We denote the solutions set of (ψMV I (x0)) by Mψ (x0), that is

Mψ (x0) = {u0 ∈ K (x0, u0) ∩A |
ψ (t, u0, v) ≤ 0, ∀v ∈ K (x0, u0) , ∀t ∈ T (x0, v)} .

For ψ (t, u, v) = 〈t, η (u, v)〉, where η : Y × Y → Y we obtain the quasivari-
ational inequality considered by Stanciu in [19]. For ψ (t, u, v) = 〈t, u− v〉
we obtain the inequality considered by Lalitha and Bhatia in [11].

Now, let us recall some basic definitions and their properties.

For each ε > 0 and x0 ∈ Y , denote by B (x0, ε) the open ball with
center in x0 and radius ε, that is B (x0, ε) := {x ∈ Y | ‖x0 − x‖ < ε}, and
with U (A, ε) an open ε−neighborhood of a subset of A ⊆ Y defined by
U (A, ε) := {x ∈ Y | there exists a ∈ A such that ‖a− x‖ < ε}.

Now let F : X → 2Y be a set-valued map with domF = X, where X is
a nonempty and closed subset of Rn and Y = Rm.

Definition 1.1. (see [10]) The application F is said to be:

(i) Upper semicontinuous in the sense of Berge (in short, B-usc) at x0 ∈
X if for every open set N satisfying F (x0) ⊂ N , there exists a δ > 0, such
that for every x ∈ B (x0, δ), F (x) ⊂ N .

(ii) Lower semicontinuous in the sense of Berge (in short, B-lsc) at
x0 ∈ X if for every open set N satisfying F (x0) ∩ N 6= ∅, there exists a
δ > 0, such that for every x ∈ B (x0, δ), F (x) ∩N 6= ∅.

The application F is said to be B-lsc (respectively B-usc) on X if F is B-
lsc (respectively B-usc) at each point x0 ∈ X. F is said to be B-continuous
on X if it is both B-lsc and B-usc on X.

Aubin and Ekeland gave in [1] the following equivalent definition for a
B-lower semicontinuous function:
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Remark 1.1. (see [1]) F is said to be B-lsc at x0 ∈ X if and only if for any
sequence {xn} ⊂ X converging to x0 and for any y0 ∈ F (x0) there exists a
sequence {yn} ⊂ F (xn) converging to y0.

Definition 1.2. (see [1]) F is said to be closed at x0 ∈ X, if for each of
the sequences {xn} ⊂ X converging to x0 and {yn} ⊂ Y converging to y0
such that yn ∈ F (xn), we have y0 ∈ F (x0). F is said to be closed on X if it
is closed at each x0 ∈ X.

Remark 1.2. (see [1]) It is well-known that, if F is B-usc at x0 ∈ X and
F (x0) is closed, then F is closed at x0.

Definition 1.3. Let F : X → 2Y be a set-valued map with domF = Xand
ψ : Y × Y × Y → Y . We say that the application F is:

(i) ψ –pseudomonotone on X iff for any x, x0 ∈ X,
ψ (ξ, x, x0) ≥ 0, for some ξ ∈ F (x0) =⇒ ψ (µ, x, x0) ≥ 0, for any µ ∈

F (x);
(ii) ψ -quasimonotone on X iff for any x, x0 ∈ X, x 6= x0,
ψ (ξ, x, x0) > 0, for some ξ ∈ F (x0) =⇒ ψ (µ, x, x0) > 0, for any µ ∈

F (x).

2. Upper semicontinuity of the solutions set

In this section we derive sufficient conditions that ensure the upper semicon-
tinuity of the application Mψ : X → 2Y , where Mψ (x) is the solutions set
of problem (ψMV I (x)), making certain assumptions on the applications T
and K.

Theorem 2.1. Suppose that for x0 ∈ X, the following conditions are sat-
isfied:

(i) K is closed and B-lsc on {x0} × Y ;
(ii) T is B-lsc on {x0} × Y ;
(iii) A is a compact subset of Y ;
(iv) ψ (·, ·, ·) is continuous in all the arguments.
Then Mψ is B-usc at x0. Moreover, Mψ (x0) is compact and Mψ is closed

at x0.

Proof. Suppose, on the contrary, that Mψ be not B-usc at x0. Then
there exists an open set N containing Mψ (x0), such that for every sequence
xn → x0, there exists un ∈ Mψ(xn), un /∈ N , for every n. Using the line
of [11], is sufficient to show that u0 ∈ Mψ(x0). If u0 /∈ Mψ(x0), then there
exist v0 ∈ K(x0, u0) and t0 ∈ T (x0, v0), such that

ψ (t0, u0, v0) > 0. (2.1)
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Since K is B-lsc at (x0, u0), v0 ∈ K(x0, u0) and (xn, un) → (x0, u0),
there exists vn ∈ K(xn, un), such that vn → v0. Similarly, since T is B-lsc
at (x0, v0), t0 ∈ T (x0, v0) and (xn, vn)→ (x0, v0), it follows that there exists
tn ∈ T (xn, vn), such that tn → t0.

From un ∈Mψ(xn) we have

ψ (t, un, v) ≤ 0, ∀v ∈ K(xn, un), ∀t ∈ T (xn, v). (2.2)

Taking v = vn and t = tn in (2.2) and taking limits as n → ∞, we have
ψ (t0, u0, v0) ≤ 0, which contradicts relation (2.1). Therefore Mψ is B-usc at
x0.

Proceeding like in [11], we can show that Mψ (x0) is a closed set. More-
over, as Mψ(x0) ⊂ A and A is compact, it follows that Mψ(x0) is compact.
It is well-known that, if Mψ is B-usc at x0 ∈ X and Mψ (x0) is closed, then
Mψ is closed at x0 (see [1]). 2

Example 2.1. Let X = [−1, 1], Y = R and A = [0, 2]. Define ψ : Y × Y ×
Y → Y as ψ (t, u, v) = t2

(
u2 − v2

)
and the set-valued maps K : X×Y → 2Y

and T : X × Y → 2Y as follows

K (x, u) =

{
[u, 2] , if u ≤ 2
[2, u] , if u > 2

, T (x, u) =


{0} , if x = 0
[0, 1] , if x < 0

[0, |x+ u|] , if x > 0
.

We have Mψ (x) = [0, 2], ∀x ∈ X. Here there are satisfied all the as-
sumptions of the above theorems. Therefore Mψ is B-usc at x0, Mψ (x0) is
compact and Mψ is closed at x0.

The following two examples illustrate the fact that the conditions of
closedness on the map K and of compactness on the set A, respectively,
cannot be relaxed in Theorem 2.1.

Example 2.2. Let X = [−2, 2], Y = R and A = [0, 2]. Define ψ : Y ×
Y × Y → Y as ψ (t, u, v) =

(
t2 + t

)
(u− v) and the set-valued maps K :

X × Y → 2Y and T : X × Y → 2Y as follows

K (x, u) =

{
{0} , if x = 1[
0, 12
]

, if x 6= 1
, T (x, u) =

{
{0} , if u ≤ 1

[0, u] , if u > 1
.

For x0 = 1, Mψ (x0) = {0} and for x 6= x0, Mψ (x) =
[
0, 12
]
. We can see that

the maps K and T are B-lsc on {x0} × Y but K is not closed on {x0} × Y .
It can be observed that Mψ is neither B-usc at x0 or closed at x0.

Example 2.3. Let X = [−2, 2] and Y = A = R. Define ψ : Y ×Y ×Y → Y
as ψ (t, u, v) = t (u+ v + t) and the applications K : X × Y → 2Y and
T : X × Y → 2Y as follows

K (x, u) =

{
[u, 0] , if u ≤ 0
[0, u] , if u > 0

, T (x, u) =

{
{0} , if x = 1
[0, 1] , if x 6= 1

.

For x0 = 1, Mψ (x0) = R and for x 6= x0, Mψ (x) = (−∞, 0]. In this example
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the first two conditions and fourth are satisfied, but A is not compact. It
can be observed that Mψ is B-usc at x0 and closed at x0, but Mψ (x0) is not
compact.

Theorem 2.2. Suppose that for x0 ∈ X, the following conditions are sat-
isfied:

(i) K is closed on {x0} × Y ;
(ii) A is a compact subset of Y ;
(iii) ∀u0 ∈ K(x0, u0) ∩A, ∀(xn, un)→ (x0, u0) and

ψ (t0, u0, v0) > 0, for some v0 ∈ K(x0, u0), t0 ∈ T (x0, v0) (2.3)

implies that there exists a positive integer n, such that ψ (t, un, v) > 0, for
some v ∈ K(xn, un), t ∈ T (xn, v);

(iv) ψ (·, ·, ·) is continuous in all the arguments.
Then Mψ is B-usc at x0. Moreover, Mψ (x0) is compact and Mψ is closed

at x0.

Proof. Suppose, on the contrary, that Mψ be not B-usc at x0. Then
there exists an open set N containing Mψ (x0), such that for every sequence
xn → x0, there exists un ∈ Mψ(xn), un /∈ N , for every n. As in [11], we
arrive to a contradiction and hence Mψ is B-usc at x0. The fact that Mψ(x0)
be compact and Mψ be closed at x0, follows as in Theorem 2.1. 2

It can be observed that in the above theorem the conditions of B-lower
semicontinuity of K and T from Theorem 2.1 are replaced with a weaker
one. The advantage of assumption (iii) can be illustrated by means of the
following example, wherein the solutions set is B-usc and compact at x0,
even though the map T is not B-lsc on {x0} × Y , where x0 = 0.

Example 2.4. Let X = [−1, 1], Y = R and A = [0, 2]. Define ψ : Y × Y ×
Y → Y as ψ (t, u, v) = u (v − t) and the set-valued maps K : X × Y → 2Y

and T : X × Y → 2Y as follows

K (x, u) =

{
{0, 1} , if u = 0

[0, |u|+ 3] , if u 6= 0
, T (x, u) =

{
[1, 2] , if x = 0
{3} , if x 6= 0

.

We have Mψ (x) = {0}, ∀x ∈ X.

Example 2.5. Let X = [−1, 1], Y = R and A = [0, 2]. Define ψ : Y × Y ×
Y → Y as ψ (t, u, v) = u+ v− 2t and the set-valued maps K : X × Y → 2Y

and T : X × Y → 2Y as follows: K (x, u) = {0, 1},

T (x, u) =

{ [
0, 12
]

, if x = 0
{1} , if x 6= 0

.

For x0 = 0, Mψ (x0) = {0} and for x 6= x0, Mψ (x) = {0, 1}. We can see
that for x0 = 0 and (xn, un) = ( 1

n ,
1
n), condition (iii) of Theorem 2.2 fails to

hold and Mψ is not B-usc at x0. So, wherein the conclusion of Theorem 2.2
fails to hold in the absence of condition (iii).
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3. Lower semicontinuity of the solutions set

Since continuity implies both upper as well as lower semicontinuity, in this
section we establish conditions ensuring the lower semicontinuity of the ap-
plication Mψ defined as in Section 2.

Theorem 3.1. Suppose that for x0 ∈ X, the following conditions are sat-
isfied:

(i) K is B-lsc at x0, where K (x) = {u ∈ A : u ∈ K (x, u)};
(ii) ∀u0 ∈ K(x0, u0) ∩A, ∀(xn, un)→ (x0, u0) and

ψ (t, u0, v) ≤ 0, ∀v ∈ K(x0, u0), ∀t ∈ T (x0, v) (3.1)

implies that there exists a positive integer n, such that ψ (t, un, v) ≤ 0, ∀v ∈
K(xn, un), ∀t ∈ T (xn, v);

(iii) ω (·, ·, ·) is continuous in all the arguments.
Then Mψ is B-lsc at x0.

Proof. Suppose, on the contrary, thatMψ be not B-lsc at x0. From Remark
2.1, there exists a sequence {xn} in X converging to x0 and u0 ∈ Mψ(x0),
such that for every sequence yn ∈ Mψ(xn), yn 9 u0. Since xn → x0 and
u0 ∈ K(x0), from assumption (i) it follows that there exists a sequence
un ∈ K(xn) such that un → u0. It follows that un /∈Mψ(xn) and then

ψ (tn, un, vn) > 0, for some vn ∈ K(xn, un), tn ∈ T (xn, vn). (3.2)

Since u0 ∈ Mψ(x0), it follows that relation (3.1) holds and hence by
condition (ii) of the hypothesis, there exists n ∈ N, such that

ψ (t, un, v) ≤ 0, ∀v ∈ K(xn, un), ∀t ∈ T (xn, v),

which contradicts (3.2). Therefore Mψ is B-lsc at x0. 2

Now we give an example where there are satisfied all the conditions of
the above theorem and, therefore, the conclusion is valid.

Example 3.1. Let X = [−2, 2], Y = R and A = [0,+∞). Define ψ : Y ×
Y ×Y → Y as ψ (t, u, v) = tv−u and the set-valued maps K : X ×Y → 2Y

and T : X × Y → 2Y as follows:

K (x, u) =

{
[2u− 1, 1 + |x|] , if u < 1

[1, u] , if u ≥ 1
, T (x, u) =

{
[0, 1] , if x = 0
{0} , if x 6= 0

.

For x0 = 0, Mψ (x0) = [1,+∞) and for x 6= x0, Mψ (x) = [0,+∞).

If in Example 3.1 we take T (x, u) =

{
[0, 1] , if x 6= 0
{0} , if x = 0

, condition (ii) of

Theorem 3.1 fails to hold for u0 = 0, x0 = 0 and (xn, un) = ( 1
n ,

1
n) (we take

t = 0). It can be easily verified that Mψ (x0) = [0,+∞) and for x 6= x0,
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Mψ (x) = [1,+∞); hence x 6= x0, Mψ is not B-lsc at x0. So, if the condition
(ii) is not satisfied, then the conclusion of Theorem 3.1 fails to hold.

As lower semicontinuity is stronger than upper semicontinuity, the fol-
lowing two results give sufficient conditions ensuring the lower semicontinu-
ity, by imposing additional conditions to those of Theorem 2.1 regarding the
upper semicontinuity.

Theorem 3.2. Suppose that conditions of Theorem 2.1 are satisfied and
that for x0 ∈ X, we have:

(i) for every u0 ∈ Mψ(x0), ψ (t, u0, v) < 0, ∀v ∈ Mψ(x0)\{u0} and for
some t ∈ T (x0, v);

(ii) −T is ψ-quasimonotone on {x0} × Y .
Then Mψ is B-lsc at x0.

Proof. Suppose, on the contrary, thatMψ be not B-lsc at x0. From Remark
1.2, there exists a sequence {xn} in X with xn → x0 and u0 ∈ Mψ(x0),
such that for every sequence yn ∈ Mψ(xn), yn 9 u0. As un ∈ A and A
is a compact subset of Y , without loss of generality, we can assume that
yn → u′ ∈ A, u′ 6= u0. By Theorem 2.1, it follows that u′ ∈ Mψ(x0). As
u0, u

′ ∈Mψ(x0), from (i) it follows that

ψ
(
t′, u0, u

′) > 0, for some t′ ∈ −T
(
x0, u

′)
and

ψ
(
t0, u0, u

′) > 0, for some t0 ∈ −T (x0, u0) ,

which contradicts the ψ-quasimonotony of −T . 2

If in Example 3.1 we take T (x, u) =

{
[0, 1] , if x 6= 0
{0} , if x = 0

, there are satis-

fied the conditions of Theorem 2.1, −T is ψ-quasimonotone on {x0} × Y ,
but for u0 = 0 and v = 1 ∈ Mψ(x0) it can be seen that ψ (t, u0, v) = 0 for
any t ∈ T (x0, v) = {0} and hence condition (i) of the above theorem is not
satisfied. Since Mψ (x0) = [0,+∞) and for x 6= x0, Mψ (x) = [1,+∞), Mψ

is not B-lsc at x0. So, if the condition (i) is not satisfied, then the conclusion
of Theorem 3.2 fails to hold.

By using the same technique as above, we can establish the following
result:

Theorem 3.3. Suppose that conditions of Theorem 2.1 are satisfied and
that for x0 ∈ X, we have:

(i) for every u0 ∈ Mψ(x0), ψ (t, u0, v) ≤ 0, ∀v ∈ Mψ(x0) and for some
t ∈ T (x0, v);

(ii) −T is ψ-pseudomonotone on {x0} × Y ;
(iii) ψ (t, u, v) = 0, for t ∈ T (x0, u) ∪ T (x0, v)⇒ u = v;
(iv) ψ (t, u, v) = −ψ (t, v, u), ∀t, u, v ∈ K.
Then Mψ is B-lsc at x0.
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Proof. Suppose, on the contrary, thatMψ be not B-lsc at x0. From Remark
2.1, there exists a sequence {xn} in X with xn → x0 and u0 ∈ Mψ(x0),
such that for every sequence yn ∈ Mψ(xn), yn 9 u0. As un ∈ A and A
is a compact subset of Y , without loss of generality, we can assume that
yn → u′ ∈ A, u′ 6= u0. By Theorem 2.1, it follows that u′ ∈ Mψ(x0). As
u0, u

′ ∈Mψ(x0), from (i) it follows that

ψ
(
t′, u0, u

′) ≥ 0, for somet′ ∈ −T
(
x0, u

′) (3.3)

and
ψ
(
t0, u

′, u0
)
≥ 0, for some t0 ∈ −T (x0, u0) . (3.4)

Since −T is ψ-pseudomonotone, it follows from (3.3) that ψ (t0, u0, u
′) ≥ 0

and, together with (3.4), we obtain ψ (t0, u0, u
′) = 0. By (iii) we have

u′ = u0, which is a contradiction. 2

If the hypothesis of Theorem 3.2 or Theorem 3.3 hold, the application
Mψ : X → 2Y is B-continuous at x0.

4. Continuity of the ε-solutions set

In this section we extend the study of upper and lower semicontinuity to
ε-solutions set and to modified ε-solutions set of problem (ψMV I (x0)). For
a fixed ε ≥ 0, we define an ε-solution of problem (ψMV I (x0)) to be an
u0 ∈ K (x0, u0)∩A such that ∀v ∈ K (x0, u0), ∀t ∈ T (x0, v), ψ (t, u0, v) ≤ ε.
The set of all ε-solutions of (ψMV I (x0)) is denoted by M ε

ψ (x0). We can
easily see that if ε = 0, we have M ε

ψ (x0) = Mψ (x0). Motivated by [13] we
introduce the set of modified ε-solutions of (ψMV I (x0)) as

M̃ ε
ψ (x) =

{
Mψ (x0) , if x = x0
M ε
ψ (x) , if x 6= x0

.

The proofs of the following two theorems are analogous to those of The-
orems 2.1, 2.2 respectively.

Theorem 4.1. Suppose that for x0 ∈ X the conditions of Theorem 2.1 hold.
Then M ε

ψ is B-usc at x0, for any ε ≥ 0. Moreover, M ε
ψ (x0) is compact and

M ε
ψ is closed at x0, for any ε ≥ 0.

Theorem 4.2. Suppose that for x0 ∈ X the conditions (i)–(ii) and (iv) of
Theorem 2.1 hold and, in addition, ∀u0 ∈ K(x0, u0)∩A, ∀(xn, un)→ (x0, u0)
and

ψ (t0, u0, v0) > ε, for some v0 ∈ K(x0, u0), t0 ∈ T (x0, v0)

implies that there exists a positive integer n, such that ψ (t, un, v) > ε, for
some v ∈ K(xn, un), t ∈ T (xn, v).

Then M ε
ψ is B-usc at x0. Moreover, M ε

ψ (x0) is compact and M ε
ψ is closed

at x0.
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Next we show that if problem (ψMV I (x0)) is well-posed, then Mψ is
B-upper semicontinuous.

Definition 4.1. A sequence {un} is said to be an approximating sequence
for the problem (ψMV I (x0)) iff there exists a sequence {xn} in X, such
that xn → x0 and there exists a sequence {εn} in R, εn > 0 with εn → 0,
such that un ∈M εn

ψ (xn), ∀n ∈ N.

Definition 4.2. We say that the equilibrium problem (ψMV I (x0)) is well-
posed iff

(i) the solution set Mψ(x0) of (ψMV I (x0)) is nonempty;

(ii) every approximating sequence for (ψMV I (x0)) has a subsequence,
which converges to some point of Mψ(x0).

Remark 4.1. Well-posedness of (ψMV I (x0)) implies that the solution set
Mψ(x0) is a nonempty compact set.

Theorem 4.3. If (ψMV I (x0)) is well-posed, then Mψ is B-usc at x0.

Proof. Suppose, on the contrary, that Mψ be not B-usc at x0. Then there
exists an open set N containing Mψ (x0), such that for every sequence xn →
x0, there exists un ∈ Mψ(xn) but un /∈ N . As xn → x0 and un ∈ Mψ(xn),
it follows that {un} is an approximating sequence for (ψMV I (x0)). Since
un /∈ N and Mψ (x0) ⊂ N , none of its subsequences converge to a point of
Mψ (x0), thereby leading to a contradiction to the fact that (ψMV I (x0)) is
well-posed. So, Mψ is B-usc at x0. 2

The converse of the above result may fail to hold. For the problem
(ψMV I (x0)) considered in Example 2.3, if we choose the sequences {xn}
and {un} as xn = 1 + 1

n and un = −n for every n, then it can be observed
that {un} is an approximating sequence for the problem (ψMV I (x0)), but
it possesses no convergent subsequence, thereby implying that (ψMV I (x0))
is not well-posed.

Regarding semicontinuity of the modified ε-solutions set of problem
(ψMV I (x0)), we have the following result:

Theorem 4.4. Suppose that for x0 ∈ X, the following conditions are sat-
isfied:

(i) K is B-usc with compact values on {x0} × Y ;

(ii) K is B-lsc at x0, where K(x) = {u ∈ A : u ∈ K(x, u)};
(iii) T is B-usc with compact values on {x0} × Y ;

(iv) ψ (·, ·, ·) is continuous in all the arguments.

Then M̃ ε
ψ is B-lsc at x0, for each ε > 0.
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Proof. Suppose, on the contrary, that M̃ ε
ψ be not B-lsc at x0. Using

the line of [11], there exists a sequence {xn} in X converging to x0 and

u0 ∈ M̃ ε
ψ(x0), such that for every sequence yn ∈ M̃ ε

ψ(xn), we have yn 9 u0.

Since K is B-lsc at x0, xn → x0 and u0 ∈ K(x0), there exists a sequence

{un} ⊂ K(xn) converging to u0. It follows that un /∈ M̃ ε
ψ(xn), that is

ψ (tn, un, vn) > ε, for some vn ∈ K(xn, un), tn ∈ T (xn, vn). (4.1)

As K is B-usc and compact valued at (x0, u0) and vn ∈ K(xn, un), there
exists v0 ∈ K(x0, u0), such that vn → v0. Also, since T is B-usc and compact
valued at (x0, v0) and tn ∈ T (xn, vn), there exists some t0 ∈ T (x0, v0), such
that tn → t0. Taking limit as n→∞ in relation (4.1) we have ψ (t0, u0, v0) ≥
ε, a contradiction to u0 ∈ M̃ ε

ψ(x0). 2

5. The case of a nested optimization problem

Consider the following nested optimization problem:

(P) min f (x, u) + max1≤i≤k ci (x), with u ∈Mψ (x), x ∈ X̃,

where f : X×Y → R, Mψ (x) is the solutions set of the equilibrium problem

(ψMV I (x)) defined in Section 1, X̃ := {x ∈ X | a (x) ≤ 0}, with ci : Rn →
R for 1 ≤ i ≤ k and a : Rn → Rp being convex and continuous functions.

This problem is equivalent with

(P’) min g (x, u), with u ∈Mψ (x), x ∈ X̃,

where the function g : X × Y → R is defined such that for every (x, u) ∈
X × Y , we have g (x, u) = f (x, u) + max1≤i≤k ci (x).

We denote by Ω the set of solutions of problem (P), that is

Ω :=
{

(x, u) ∈ X̃ × Y |u ∈ K (x, u) ∩A, g (x, u) ≤ inf
y∈X̃,v∈Mψ(y)

g (y, v)

and ψ (t, u, v) ≤ 0,∀v ∈ K (x, u) , ∀t ∈ T (x, v)} .

For ε ≥ 0, we define a parametric form (P(ε)) of the optimization problem
(P), as follows:

(P(ε)) min f (x, u) + max1≤i≤k ci (x), with u ∈M ε
ψ (x), x ∈ X̃,

where M ε
ψ (x) is the ε-solutions set of problem (ψMV I (x)). For ε = 0, the

problem reduces to problem (P).
For δ, ε ≥ 0, define the ε-solutions set for the problem (P(ε)) as

Ωδ (ε) :=
{

(x, u) ∈ X̃ × Y |u ∈ K (x, u) ∩A,

g (x, u) ≤ inf
y∈X̃,v∈Mψ(y)

g (y, v) + δ

and ψ (t, u, v) ≤ ε, ∀v ∈ K (x, u) , ∀t ∈ T (x, v)} .
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This section gives sufficient conditions for continuity of ε-solutions set of
problem (P(ε)), that is of the application Ωδ : R+ → 2X×Y , with Ωδ (ε)
being the ε-solutions set of problem (P(ε)).

We see that if δ = 0, then Ωδ (0) = Ω. Also for any δ ≥ 0, Ωδ (0) ⊆ Ωδ (ε),
∀ε ≥ 0, from which we deduce that Ωδ is B-lsc at ε = 0. Hence, to obtain
the continuity of the application Ωδ at ε = 0, it is enough to establish
conditions for the upper semicontinuity. The conditions that ensure the
upper semicontinuity of Ωδ at ε = 0 are similar to those given by Lalitha in
[11] for the special case where ψ (t, u, v) = 〈t, u− v〉, for any u, v ∈ Y .

Theorem 5.1. Suppose that the conditions of Theorem 2.1 hold and
(i) X is a bounded subset of Rn;
(ii) f is lower semicontinuous.
Then for every δ ≥ 0, Ωδ is B-usc at ε = 0.

Corollary 5.1. Suppose that conditions (i), (ii) and (iv) of Theorem 2.1
hold and

(i) there exist ε′, δ′ > 0 such that Ωδ′ (ε′) is bounded;
(ii) f is lower semicontinuous.
Then for every δ ≤ δ′, Ωδ is B-usc at ε = 0.

Theorem 5.2. Suppose that the conditions of Theorem 2.2 hold and
(i) X is a bounded subset of Rn;
(ii) f is lower semicontinuous.
Then for every δ ≥ 0, Ωδ is B-usc at ε = 0.

Remark 5.1. Since Ωδ is B-usc at ε = 0, if the conditions of one of Theo-
rems 5.1 or 5.2 hold, then Ωδ is B-continuous at ε = 0.

The following optimization problem satisfies the conditions of Theorem
5.1.

Example 5.1. Let X = [−2, 2], Y = R and A = [0, 2]. Define ψ : Y × Y ×
Y → Y as ψ (t, u, v) = t2

(
u3 − v3

)
and the applications K : X × Y → 2Y

and T : X × Y → 2Y as follows: K (x, u) = [0, |u|],

T (x, u) =

{
{1} , if x = 0
{0, 1} , if x 6= 0

.

For any x ∈ X we have Mψ (x) = {0} and M ε
ψ (x) = [0, 3

√
ε].

Now consider the problem

inf f(x, u) + max
1≤i≤k

ci (x) , with u ∈Mψ (x) , x ∈ X̃,

where f(x, u) = |x − u|, k = 10 and ci (x) = (i− 1)x + 1, i = 1, 10. Let
Mψ (x) be the solutions set of the inequality considered above and a (x) =
x− 1.
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It can be verified that X̃ = [−2, 1], max1≤i≤10 ci (x) =

{
c1 (x) , if x ≤ 0
c10 (x) , if x > 0

and Ω = {(0, 0)}. Also,

Ωδ (ε) :=
{

(x, u) ∈ X̃ × Y |u ∈ K (x, u) ∩A,

f (x, u) + max
1≤i≤10

ci (x) ≤

≤ inf
y∈X̃,v∈Mψ(y)

f (y, v) + max
1≤i≤10

ci (y) + δ, u ∈ [0, 3
√
ε]

}

=
{

(x, u) ∈ X̃ × Y | u ∈ K (x, u) ∩A,

|x− u|+ max
1≤i≤10

ci (x) ≤ 1 + δ, u ∈ [0, 3
√
ε]

}
=

{
(x, u) ∈ X̃ × Y | |x− u|+ max

1≤i≤10
ci (x) ≤ 1 + δ, u ∈ [0,min

{
3
√
ε, 2
}

]

}
and hence Ωδ (0) =

{
(x, 0) | |x|+ max1≤i≤10 ci (x) ≤ 1 + δ, x ∈ X̃

}
. There-

fore Ωδ (0) =
{

(x, 0) |x ∈
[
max {−2,−δ} ,min

{
1, δ10

}]}
. It can be observed

that Ωδ is B-usc and hence, B-continuous at ε = 0.
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