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1. Introduction

The present paper is a natural continuation of our last work [20] on the
Orlicz–Sobolev classes. Note that these classes are intensively studied in
various aspects at present, see e.g. [1], [7], [8], [10], [15], [16], [18], [19], [21],
[22], [33] and [34]. Recall that the problem of equicontinuity of mappings
in the classes W 1,p for p > n was investigated in the well–known paper
[5], cf. also [16]. However, the condition p > n is too restrictive as it was
cleared already in the plane case, see e.g. [4], [9], [14] and [23], although this
condition was natural for quasiconformal mappings, see e.g. [3] and [12].

Recall some definitions related to the Sobolev spaces W 1,p, p ∈ [1,∞).
Given an open set U in Rn, n ≥ 2, C∞0 (U) denotes the collection of all func-
tions ϕ : U → R with compact support having continuous partial derivatives
of any order. Now, let u and v : U → R be locally integrable functions. The
function v is called the distributional derivative uxi of u in the variable xi,
i = 1, 2, . . . , n, x = (x1, x2, . . . , xn), if∫

U

uϕxi dm(x) = −
∫
U

v ϕ dm(x) ∀ ϕ ∈ C∞0 (U) . (1.1)

Here dm(x) corresponds to the Lebesgue measure in Rn. The Sobolev classes

W 1,p(U) consist of all functions u : U → R in Lp(U) with all distributional
derivatives of the first order in Lp(U). A function u : U → R belongs to
W 1,p

loc (U) if u ∈W 1,p(U∗) for every open set U∗ with a compact closure in U.
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We use the abbreviation W 1,p
loc if U is either defined by the context or not

essential. The similar notion is introduced for vector-functions f : U → Rm
in the component-wise sense.

The concept of the distributional derivative was introduced by Sobolev,
see [32]. It is known that a continuous function f belongs to W 1,p

loc if and only
if f ∈ ACLp, i.e., if f is locally absolutely continuous on a.e. straight line
which is parallel to a coordinate axis and if all the first partial derivatives
of f are locally integrable with the power p, see e.g. 1.1.3 in [24].

In what follows, D is a domain in a finite-dimensional Euclidean space.
Following Orlicz, see [26], given a convex increasing function ϕ : [0,∞)
→ [0,∞), ϕ(0) = 0, denote by Lϕ the space of all functions f : D → R such
that ∫

D

ϕ

(
|f(x)|
λ

)
dm(x) <∞ (1.2)

for some λ > 0. Lϕ is called the Orlicz space. If ϕ(t) = tp, then we write also
Lp. In other words, Lϕ is the cone over the class of all functions g : D → R
such that ∫

D

ϕ (|g(x)|) dm(x) <∞ (1.3)

which is also called the Orlicz class, see [2].

The Orlicz-Sobolev class W 1,ϕ
loc (D) is the class of locally integrable func-

tions f given in D with the first distributional derivatives whose gradient∇f
has a modulus |∇f | that belongs locally in D to the Orlicz class. Note that
by definition W 1,ϕ

loc ⊆ W 1,1
loc . Later on, we also write f ∈ W 1,ϕ

loc for a locally
integrable vector-function f = (f1, . . . , fm) of n real variables x1, . . . , xn if
fi ∈W 1,1

loc and ∫
D

ϕ (|∇f(x)|) dm(x) <∞ (1.4)

where |∇f(x)| =

√∑
i,j

(
∂fi
∂xj

)2
. In this paper we use the notation W 1,ϕ

loc

for functions ϕ without the normalization ϕ(0) = 0 as in the usual Orlicz
classes.

2. On one Calderon result

First of all, let us formulate and analyze the fundamental Calderon result
in [7], p. 208.
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Proposition 2.1. Let ϕ : R+ → R+ be an increasing function with ϕ(0) =
0 and the condition

A : =

∞∫
0

[
t

ϕ(t)

] 1
k−1

dt < ∞ (2.1)

for a natural number k ≥ 2 and let f : D → R be a continuous function
given in a domain D ⊂ Rk of the class W 1,ϕ(D). Then

diam f(C) ≤ αk A
k−1
k

 ∫
C

ϕ (|∇f |) dm(x)

 1
k

(2.2)

for every cube C ⊂ D whose edges are oriented along coordinate axes where
αk is a constant depending only on k.

Remark 2.1. Here it is not essential that the fuction ϕ is (strictly !) in-
creasing. Indeed, let ϕ is only nondecreasing. Going over, in case of need,
to the new function

ϕ̃ε(t) := ϕ(t) +
∑
i

ϕ
(ε)
i (t)

where

ϕ
(ε)
i (t) := ε

2−i

(bi − ai)

t∫
0

χi(t) dt

and χi is a numbering of the characteristic functions of the intervals of
constancy (ai, bi) of the function ϕ, we see that ϕ(t) 6 ϕ̃ε(t) 6 ϕ(t) + ε and,
thus, the condition (1.4) on C and the condition (2.1) hold for the (strictly!)
increasing function ϕ̃ε. Letting ε→ 0, we obtain the estimate (2.2) with the
initial function ϕ, see e.g. Theorem I.12.1 in [30].

The function (t/ϕ(t))1/(k−1) can have a nonintegrable singularity at zero.
However, it is clear that the behavior of the function ϕ about zero is not
essential for the estimate (2.2). Indeed, we may apply the estimate (2.2)
with the replacements A 7→ A∗ and ϕ 7→ ϕ∗ where

A∗ :=

[
1

ϕ(t∗)

] 1
k−1

+

∞∫
t∗

[
t

ϕ(t)

] 1
k−1

dt <∞ (2.3)

and ϕ∗(0) = 0, ϕ∗(t) ≡ ϕ(t∗) for t ∈ (0, t∗) and ϕ∗(t) = ϕ(t) for t > t∗ if
ϕ(t∗) > 0. Hence, in particular, the normalization ϕ(0) = 0 in Proposition
2.1 evidently has no valuation, too.
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3. The main lemma

Recall that a nondecreasing convex function ϕ : R+ → R+ is called strictly
convex, see e.g. [28], if

lim
t→∞

ϕ(t)

t
= ∞ . (3.1)

Here the continuity of functions ϕ : R+ → R+ will be understood in the
sense of the topology of the extended positive real axis R+. Set

t0 = sup
ϕ(t)=0

t , t0 = 0 if ϕ(t) > 0 ∀t ∈ R+ (3.2)

and

T0 = inf
ϕ(t)=∞

t , T0 = ∞ if ϕ(t) <∞ ∀t ∈ R+ . (3.3)

Remark 3.1. Note that a nonconstant continuous nondecreasing convex
function ϕ : R+ → R+ satisfying the condition of Calderon type

∞∫
t∗

(
t

ϕ(t)

)α
dt < ∞ (3.4)

for some α > 0 and t∗ ∈ (t0,∞) is strictly convex. Indeed, the slope ϕ(t)/t
is a nondecreasing function if ϕ is convex, see e.g. Proposition I.4.5 in [6].
Hence the condition (3.4) for α > 0 implies (3.1).

The proof of the main result, Theorem 4.1 further, will be based on the
following lemma.

Lemma 3.1. Let ϕ : R+ → R+ be a nonconstant continuous nondecreasing
convex function with the condition (3.4) for some α > 0 and let α̃ ∈ (α,∞).
Then ϕ admits the decomposition ϕ = ψ ◦ ϕ̃ where ψ and ϕ̃ : R+ → R+ are
strictly convex and, moreover, ϕ̃ ≤ ϕ and ϕ̃ satisfies (3.4) with the new α̃.

Proof. Note that the convex function ϕ is locally Lipschitz on the interval
(0, T0), where T0 is defined by (3.3), T0 > t0 by continuity and variability
of the function ϕ. Consequently, ϕ is locally absolutely continuous and,
furthermore, differentiable except a countable collection of points in the
given nondegenerate interval and ϕ′ is nondecreasing, see e.g. Corollaries
1-2 and Proposition 8 of Section I.4 in [6]. Thus, denoting by ϕ′+(t) the
function which coincides with ϕ′(t) at the points of differentiability of ϕ and
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ϕ′+(t) = lim
τ→t+0

ϕ′(τ) at the rest points in the interval [0, T0) and, finally,

setting ϕ′+(t) =∞ for all t ∈ [T0,∞], we have that

ϕ(t) = ϕ(0) +

t∫
0

ϕ′+(τ) dτ ∀ t ∈ R+ . (3.5)

By monotonicity of the function ϕ′+, calculating its averages over the
segments [0, t] and [t/2, t], correspondingly, we obtain from (3.5) the two-
sided estimate

1

2
ϕ′+ (t/2) ≤ ϕ(t) − ϕ(0)

t
≤ ϕ′+(t) ∀ t ∈ R+ . (3.6)

The inequalities (3.6) show that the condition (3.4) is equivalent to the
following

I : =

∞∫
t∗

dt

[ϕ′+(t)]α
< ∞ . (3.7)

Again by monotonicity of ϕ′+, the condition (3.7) implies that ϕ′+(t)→
∞ as t → ∞. Thus, T∗ = sup

ϕ′+(t)<1

t is finite, T∗ ∈ [t0, T0). Set λ = α/α∗ ∈

(0, 1).

Consider the functions ϕ̃(t) =
t∫
0

h(τ) dτ and ψ(s) = ϕ(0) +
s∫
0

H(r) dr

where h(t) = ϕ′+(t) for t ∈ [0, T∗) and h(t) = [ϕ′+(t)]λ for t ∈ [T∗,∞]
and H(s) = 1 for s ∈ [0, S∗), S∗ = ϕ∗(T∗), H(s) = [ϕ′+(ϕ̃−1(s))]1−λ for
s ∈ [S∗, S0), S0 = ϕ∗(T0), and H(s) =∞ for s ∈ [S0,∞].

By the construction, ϕ̃(t) ≤ ϕ(t) for all t ∈ R+, the functions ψ and ϕ̃ as
well as ψ ◦ ϕ̃ are nondecreasing and convex, see e.g. Proposition 8 of Section
I.4 in [6], and

∞∫
t∗

dt

[ϕ̃′+(t)]α̃
= I < ∞ (3.8)

and, thus, ϕ̃ satisfies (3.4) with the new α̃. Moreover, similarly to (3.6)

ψ(s) − ψ(0)

s
≥ 1

2
H (s/2) ∀ s ∈ R+ (3.9)

where the right hand side converges to ∞ as s → ∞. Thus, ψ is strictly
convex.

Finally, simple calculations by the chain rule show that

(ψ ◦ ϕ̃)′+(t) = ψ′+(ϕ̃(t)) · ϕ̃′+(t) = ϕ′+(t)

except a countable collection of points in R+, ψ ◦ ϕ̃(0) = ϕ(0) and, conse-
quently, ψ ◦ ϕ̃ ≡ ϕ in view of (3.5). 2
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4. On compactness of Orlicz–Sobolev mappings

Recall definitions related to normal and compact families of mappings in
metric spaces. Let (X, d) and (X ′, d ′) be metric spaces with distances d
and d ′, respectively. A family F of continuous mappings f : X → X ′ is said
to be normal if every sequence of mappings fj ∈ F has a subsequence fjm
converging uniformly on each compact set C ⊂ X to a continuous mapping
f . If in addition F is closed with respect to the locally uniform convergence,
i.e., f ∈ F, then the family is called compact.

Normality is closely related to the following notion. A family F of map-
pings f : X → X ′ is said to be equicontinuous at a point x0 ∈ X if for
every ε > 0 there is δ > 0 such that d ′(f(x), f(x0)) < ε for all f ∈ F
and x ∈ X with d(x, x0) < δ. The family F is called equicontinuous if F is
equicontinuous at every point x0 ∈ X.

Given a domain D in Rn, n ≥ 2, a nondecreasing function ϕ : R+ → R+,
M ∈ [0,∞) and x0 ∈ D, denote by FϕM the family of all continuous mappings

f : D → Rm, m ≥ 1, of the class W 1,1
loc such that f(x0) = 0 and∫

D

ϕ (|∇f |) dm(x) ≤M . (4.1)

We also use the notation FpM for the case of the function ϕ(t) = tp, p ∈ [1,∞).

The main result of the present paper is the following.

Theorem 4.1. Let ϕ : R+ → R+ be a nonconstant continuous nondecreas-
ing convex function satisfying the condition (3.4). Then FϕM is compact with
respect to the locally uniform convergence in Rn.

Proof. First, let us show that mappings in FϕM are equicontinuous. Indeed,

by Lemma 3.1 ϕ admits the decomposition ϕ = ψ◦ ϕ̃ where ψ and ϕ̃ : R+ →
R+ are strictly convex and

∞∫
t∗

(
t

ϕ̃(t)

) 1
n−1

dt < ∞,

moreover, ϕ̃ ≤ ϕ and hence∫
D

ϕ̃ (|∇f |) dm(x) ≤M.

Given z0 ∈ D and δ > 0, denote by C(z0, δ) the n–dimensional open cube
centered at the point z0 with edges which are parallel to coordinate axes and
whose length is equal to δ. Fix ε > 0. Since the function ψ is strictly convex,
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the integral of ϕ̃(|∇f |) over C(z0, δ) ⊂ D is arbitrary small at sufficiently
small δ > 0 for all f ∈ FϕM , see e.g. Theorem III.3.1.2 in [28]. Thus, by
Proposition 2.1 and Remark 2.1 applied to ϕ̃ we have that |f(z)−f(z0)| < ε
for all z ∈ C(z0, δ) under some δ = δ(ε) > 0.

Now, let us show that a family FϕM is uniformly bounded on compacta.
Indeed, let K be a compactum in D. With no loss of generality we may
consider that K is a connected set containing the point x0 from the definition
of FϕM , see e.g. Lemma 1 in [31]. Let us cover K by the collection of
cubes C(z, δz), z ∈ K, where δz corresponds to ε := 1 from the first part
of the proof. Since K is compact, we can find a finite number of cubes

Ci = C(zi, δzi), i = 1, 2, . . . , N that cover K. Note that D∗ :=
N⋃
i=1

Ci is a

subdomain of D because K is a connected set. Consequently, each point
z∗ ∈ K can be joined with x0 in D∗ by a polygonal curve with ends of its
segments at points x0, x1, . . . , xk, z∗ in the given order lying in the cubes with
numbers i1, . . . , ik, x0 ∈ C(zi1 , δzi1 ), z∗ ∈ C(zik , δzik ) and xl ∈ Cil ∩ Cil+1

,
l = 1, . . . , k − 1, k ≤ N − 1. By the triangle inequality we have that

|f(z∗)| ≤
k−1∑
l=0

|f(xl)− f(xl+1)|+ |f(xk)− f(z∗)| ≤ N .

Since N depends on a compactum K only, it follows that FϕM is uniformly
bounded on compacta and, consequently, is normal by the Arzela-Ascoli
theorem, see e.g. IV.6.7 in [11].

Finally, show that the class FϕM is closed. By Remark 3.1 ϕ is strictly
convex and by Theorem III.3.1.2 in [28], for every ε > 0, there is δ = δ(ε) > 0
such that

∫
E

|∇f | dm(x) ≤ ε for all f ∈ FϕM whenever m(E) < δ. Let fj ∈ FϕM

and fj → f locally uniformly as j →∞. Then by Lemma 2.1 in [29] we have

the inclusion f ∈ W 1,1
loc . Finally, by Theorem 3.3 in Ch. III, § 3.4, of the

monograph [27], f satisfies the condition (4.1), i.e., FϕM is closed. Thus, the
class FϕM is compact. 2

Corollary 4.1. The class FpM is compact with respect to the locally uniform
convergence for each p ∈ (n,∞).

Proof. It is easy to verify that the function ϕ(t) = tp satisfies the hy-
potheses of Theorem 4.1 for an arbitrary number α ∈ (1/(p− 1), 1/(n− 1)).
2

References

[1] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev
functions, Ark. Mat., 43 (2005), 1-28.



86 Vladimir Ryazanov and Evgeny Sevost’yanov
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