On compactness of Orlicz-Sobolev mappings

VLADIMIR RYAZANOV AND EVGENY SEVOST'YANOV

Communicated by Cabiria Andreian-Cazacu

Abstract - We establish compactness of continuous mappings of the Orlicz-Sobolev classes $W^{1,\varphi}_{\mathrm{loc}}$ with the Calderon type condition on φ and one fixed point.

Key words and phrases: continuous mappings, locally uniform convergence, compactness, Orlicz-Sobolev classes, Calderon type conditions.

Mathematics Subject Classification (2010): primary 30C65; secondary 30C62.

1. Introduction

The present paper is a natural continuation of our last work [20] on the Orlicz–Sobolev classes. Note that these classes are intensively studied in various aspects at present, see e.g. [1], [7], [8], [10], [15], [16], [18], [19], [21], [22], [33] and [34]. Recall that the problem of equicontinuity of mappings in the classes $W^{1,p}$ for p > n was investigated in the well–known paper [5], cf. also [16]. However, the condition p > n is too restrictive as it was cleared already in the plane case, see e.g. [4], [9], [14] and [23], although this condition was natural for quasiconformal mappings, see e.g. [3] and [12].

Recall some definitions related to the Sobolev spaces $W^{1,p}$, $p \in [1,\infty)$. Given an open set U in \mathbb{R}^n , $n \geq 2$, $C_0^\infty(U)$ denotes the collection of all functions $\varphi: U \to \mathbb{R}$ with compact support having continuous partial derivatives of any order. Now, let u and $v: U \to \mathbb{R}$ be locally integrable functions. The function v is called the distributional derivative u_{x_i} of u in the variable x_i , $i=1,2,\ldots,n, \ x=(x_1,x_2,\ldots,x_n)$, if

$$\int_{U} u \,\varphi_{x_{i}} \, dm(x) = -\int_{U} v \,\varphi \, dm(x) \quad \forall \, \varphi \in C_{0}^{\infty}(U) \,. \tag{1.1}$$

Here dm(x) corresponds to the Lebesgue measure in \mathbb{R}^n . The Sobolev classes $W^{1,p}(U)$ consist of all functions $u:U\to\mathbb{R}$ in $L^p(U)$ with all distributional derivatives of the first order in $L^p(U)$. A function $u:U\to\mathbb{R}$ belongs to $W^{1,p}_{loc}(U)$ if $u\in W^{1,p}(U_*)$ for every open set U_* with a compact closure in U.

We use the abbreviation $W_{\text{loc}}^{1,p}$ if U is either defined by the context or not essential. The similar notion is introduced for vector-functions $f: U \to \mathbb{R}^m$ in the component-wise sense.

The concept of the distributional derivative was introduced by Sobolev, see [32]. It is known that a continuous function f belongs to $W_{\text{loc}}^{1,p}$ if and only if $f \in ACL^p$, i.e., if f is locally absolutely continuous on a.e. straight line which is parallel to a coordinate axis and if all the first partial derivatives of f are locally integrable with the power p, see e.g. 1.1.3 in [24].

In what follows, D is a domain in a finite-dimensional Euclidean space. Following Orlicz, see [26], given a convex increasing function $\varphi:[0,\infty)\to[0,\infty)$, $\varphi(0)=0$, denote by L^{φ} the space of all functions $f:D\to\mathbb{R}$ such that

$$\int_{D} \varphi\left(\frac{|f(x)|}{\lambda}\right) dm(x) < \infty \tag{1.2}$$

for some $\lambda > 0$. L^{φ} is called the *Orlicz space*. If $\varphi(t) = t^p$, then we write also L^p . In other words, L^{φ} is the cone over the class of all functions $g: D \to \mathbb{R}$ such that

$$\int_{D} \varphi(|g(x)|) \ dm(x) < \infty \tag{1.3}$$

which is also called the *Orlicz class*, see [2].

The Orlicz-Sobolev class $W^{1,\varphi}_{\mathrm{loc}}(D)$ is the class of locally integrable functions f given in D with the first distributional derivatives whose gradient ∇f has a modulus $|\nabla f|$ that belongs locally in D to the Orlicz class. Note that by definition $W^{1,\varphi}_{\mathrm{loc}} \subseteq W^{1,1}_{\mathrm{loc}}$. Later on, we also write $f \in W^{1,\varphi}_{\mathrm{loc}}$ for a locally integrable vector-function $f = (f_1, \ldots, f_m)$ of n real variables x_1, \ldots, x_n if $f_i \in W^{1,1}_{\mathrm{loc}}$ and

$$\int_{D} \varphi\left(|\nabla f(x)|\right) \, dm(x) < \infty \tag{1.4}$$

where $|\nabla f(x)| = \sqrt{\sum_{i,j} \left(\frac{\partial f_i}{\partial x_j}\right)^2}$. In this paper we use the notation $W_{\text{loc}}^{1,\varphi}$

for functions φ without the normalization $\varphi(0)=0$ as in the usual Orlicz classes.

2. On one Calderon result

First of all, let us formulate and analyze the fundamental Calderon result in [7], p. 208.

Proposition 2.1. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be an increasing function with $\varphi(0) = 0$ and the condition

$$A: = \int_{0}^{\infty} \left[\frac{t}{\varphi(t)} \right]^{\frac{1}{k-1}} dt < \infty$$
 (2.1)

for a natural number $k \geq 2$ and let $f: D \to \mathbb{R}$ be a continuous function given in a domain $D \subset \mathbb{R}^k$ of the class $W^{1,\varphi}(D)$. Then

$$\operatorname{diam} f(C) \le \alpha_k A^{\frac{k-1}{k}} \left[\int_C \varphi(|\nabla f|) \ dm(x) \right]^{\frac{1}{k}}$$
(2.2)

for every cube $C \subset D$ whose edges are oriented along coordinate axes where α_k is a constant depending only on k.

Remark 2.1. Here it is not essential that the function φ is (strictly!) increasing. Indeed, let φ is only nondecreasing. Going over, in case of need, to the new function

$$\tilde{\varphi}_{\varepsilon}(t) := \varphi(t) + \sum_{i} \varphi_{i}^{(\varepsilon)}(t)$$

where

$$\varphi_i^{(\varepsilon)}(t) := \varepsilon \frac{2^{-i}}{(b_i - a_i)} \int_0^t \chi_i(t) dt$$

and χ_i is a numbering of the characteristic functions of the intervals of constancy (a_i, b_i) of the function φ , we see that $\varphi(t) \leq \tilde{\varphi}_{\varepsilon}(t) \leq \varphi(t) + \varepsilon$ and, thus, the condition (1.4) on C and the condition (2.1) hold for the (strictly!) increasing function $\tilde{\varphi}_{\varepsilon}$. Letting $\varepsilon \to 0$, we obtain the estimate (2.2) with the initial function φ , see e.g. Theorem I.12.1 in [30].

The function $(t/\varphi(t))^{1/(k-1)}$ can have a nonintegrable singularity at zero. However, it is clear that the behavior of the function φ about zero is not essential for the estimate (2.2). Indeed, we may apply the estimate (2.2) with the replacements $A \mapsto A_*$ and $\varphi \mapsto \varphi_*$ where

$$A_* := \left[\frac{1}{\varphi(t_*)}\right]^{\frac{1}{k-1}} + \int_{t_*}^{\infty} \left[\frac{t}{\varphi(t)}\right]^{\frac{1}{k-1}} dt < \infty \tag{2.3}$$

and $\varphi_*(0) = 0$, $\varphi_*(t) \equiv \varphi(t_*)$ for $t \in (0, t_*)$ and $\varphi_*(t) = \varphi(t)$ for $t \geqslant t_*$ if $\varphi(t_*) > 0$. Hence, in particular, the normalization $\varphi(0) = 0$ in Proposition 2.1 evidently has no valuation, too.

3. The main lemma

Recall that a nondecreasing convex function $\varphi: \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ is called *strictly convex*, see e.g. [28], if

$$\lim_{t \to \infty} \frac{\varphi(t)}{t} = \infty . \tag{3.1}$$

Here the continuity of functions $\varphi : \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ will be understood in the sense of the topology of the extended positive real axis $\overline{\mathbb{R}^+}$. Set

$$t_0 = \sup_{\varphi(t)=0} t$$
, $t_0 = 0$ if $\varphi(t) > 0$ $\forall t \in \overline{\mathbb{R}^+}$ (3.2)

and

$$T_0 = \inf_{\varphi(t) = \infty} t$$
, $T_0 = \infty$ if $\varphi(t) < \infty$ $\forall t \in \overline{\mathbb{R}^+}$. (3.3)

Remark 3.1. Note that a nonconstant continuous nondecreasing convex function $\varphi : \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ satisfying the condition of Calderon type

$$\int_{t_{\star}}^{\infty} \left(\frac{t}{\varphi(t)}\right)^{\alpha} dt < \infty \tag{3.4}$$

for some $\alpha > 0$ and $t_* \in (t_0, \infty)$ is strictly convex. Indeed, the slope $\varphi(t)/t$ is a nondecreasing function if φ is convex, see e.g. Proposition I.4.5 in [6]. Hence the condition (3.4) for $\alpha > 0$ implies (3.1).

The proof of the main result, Theorem 4.1 further, will be based on the following lemma.

Lemma 3.1. Let $\varphi : \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ be a nonconstant continuous nondecreasing convex function with the condition (3.4) for some $\alpha > 0$ and let $\tilde{\alpha} \in (\alpha, \infty)$. Then φ admits the decomposition $\varphi = \psi \circ \tilde{\varphi}$ where ψ and $\tilde{\varphi} : \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ are strictly convex and, moreover, $\tilde{\varphi} \leq \varphi$ and $\tilde{\varphi}$ satisfies (3.4) with the new $\tilde{\alpha}$.

Proof. Note that the convex function φ is locally Lipschitz on the interval $(0, T_0)$, where T_0 is defined by (3.3), $T_0 > t_0$ by continuity and variability of the function φ . Consequently, φ is locally absolutely continuous and, furthermore, differentiable except a countable collection of points in the given nondegenerate interval and φ' is nondecreasing, see e.g. Corollaries 1-2 and Proposition 8 of Section I.4 in [6]. Thus, denoting by $\varphi'_+(t)$ the function which coincides with $\varphi'(t)$ at the points of differentiability of φ and

 $\varphi'_+(t) = \lim_{\tau \to t+0} \varphi'(\tau)$ at the rest points in the interval $[0, T_0)$ and, finally, setting $\varphi'_+(t) = \infty$ for all $t \in [T_0, \infty]$, we have that

$$\varphi(t) = \varphi(0) + \int_{0}^{t} \varphi'_{+}(\tau) d\tau \qquad \forall \ t \in \overline{\mathbb{R}^{+}} . \tag{3.5}$$

By monotonicity of the function φ'_+ , calculating its averages over the segments [0,t] and [t/2,t], correspondingly, we obtain from (3.5) the two-sided estimate

$$\frac{1}{2} \varphi'_{+}(t/2) \leq \frac{\varphi(t) - \varphi(0)}{t} \leq \varphi'_{+}(t) \qquad \forall \ t \in \overline{\mathbb{R}^{+}} \ . \tag{3.6}$$

The inequalities (3.6) show that the condition (3.4) is equivalent to the following

$$I:=\int_{t_{\pi}}^{\infty} \frac{dt}{[\varphi'_{+}(t)]^{\alpha}} < \infty.$$
 (3.7)

Again by monotonicity of φ'_+ , the condition (3.7) implies that $\varphi'_+(t) \to \infty$ as $t \to \infty$. Thus, $T_* = \sup_{\varphi'_+(t) < 1} t$ is finite, $T_* \in [t_0, T_0)$. Set $\lambda = \alpha/\alpha_* \in (0, 1)$.

Consider the functions $\tilde{\varphi}(t) = \int_0^t h(\tau) d\tau$ and $\psi(s) = \varphi(0) + \int_0^s H(r) dr$ where $h(t) = \varphi'_+(t)$ for $t \in [0, T_*)$ and $h(t) = [\varphi'_+(t)]^{\lambda}$ for $t \in [T_*, \infty]$ and H(s) = 1 for $s \in [0, S_*)$, $S_* = \varphi_*(T_*)$, $H(s) = [\varphi'_+(\tilde{\varphi}^{-1}(s))]^{1-\lambda}$ for $s \in [S_*, S_0)$, $S_0 = \varphi_*(T_0)$, and $H(s) = \infty$ for $s \in [S_0, \infty]$.

By the construction, $\tilde{\varphi}(t) \leq \varphi(t)$ for all $t \in \mathbb{R}^+$, the functions ψ and $\tilde{\varphi}$ as well as $\psi \circ \tilde{\varphi}$ are nondecreasing and convex, see e.g. Proposition 8 of Section I.4 in [6], and

$$\int_{t_*}^{\infty} \frac{dt}{\left[\tilde{\varphi}'_{+}(t)\right]^{\tilde{\alpha}}} = I < \infty \tag{3.8}$$

and, thus, $\tilde{\varphi}$ satisfies (3.4) with the new $\tilde{\alpha}$. Moreover, similarly to (3.6)

$$\frac{\psi(s) - \psi(0)}{s} \ge \frac{1}{2} H(s/2) \qquad \forall s \in \overline{\mathbb{R}^+}$$
 (3.9)

where the right hand side converges to ∞ as $s \to \infty$. Thus, ψ is strictly convex.

Finally, simple calculations by the chain rule show that

$$(\psi \circ \tilde{\varphi})'_{+}(t) \ = \ \psi'_{+}(\tilde{\varphi}(t)) \cdot \tilde{\varphi}'_{+}(t) \ = \ \varphi'_{+}(t)$$

except a countable collection of points in $\overline{\mathbb{R}^+}$, $\psi \circ \tilde{\varphi}(0) = \varphi(0)$ and, consequently, $\psi \circ \tilde{\varphi} \equiv \varphi$ in view of (3.5).

4. On compactness of Orlicz-Sobolev mappings

Recall definitions related to normal and compact families of mappings in metric spaces. Let (X,d) and (X',d') be metric spaces with distances d and d', respectively. A family \mathfrak{F} of continuous mappings $f:X\to X'$ is said to be normal if every sequence of mappings $f_j\in\mathfrak{F}$ has a subsequence f_{j_m} converging uniformly on each compact set $C\subset X$ to a continuous mapping f. If in addition \mathfrak{F} is closed with respect to the locally uniform convergence, i.e., $f\in\mathfrak{F}$, then the family is called compact.

Normality is closely related to the following notion. A family \mathfrak{F} of mappings $f: X \to X'$ is said to be equicontinuous at a point $x_0 \in X$ if for every $\varepsilon > 0$ there is $\delta > 0$ such that $d'(f(x), f(x_0)) < \varepsilon$ for all $f \in \mathfrak{F}$ and $x \in X$ with $d(x, x_0) < \delta$. The family \mathfrak{F} is called equicontinuous if \mathfrak{F} is equicontinuous at every point $x_0 \in X$.

Given a domain D in \mathbb{R}^n , $n \geq 2$, a nondecreasing function $\varphi : \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$, $M \in [0, \infty)$ and $x_0 \in D$, denote by \mathfrak{F}_M^{φ} the family of all continuous mappings $f: D \to \mathbb{R}^m$, $m \geq 1$, of the class $W_{\text{loc}}^{1,1}$ such that $f(x_0) = 0$ and

$$\int_{D} \varphi(|\nabla f|) \ dm(x) \le M \ . \tag{4.1}$$

We also use the notation \mathfrak{F}_M^p for the case of the function $\varphi(t)=t^p, p\in [1,\infty)$.

The main result of the present paper is the following.

Theorem 4.1. Let $\varphi: \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ be a nonconstant continuous nondecreasing convex function satisfying the condition (3.4). Then \mathfrak{F}_M^{φ} is compact with respect to the locally uniform convergence in \mathbb{R}^n .

Proof. First, let us show that mappings in \mathfrak{F}_M^{φ} are equicontinuous. Indeed, by Lemma 3.1 φ admits the decomposition $\varphi = \psi \circ \tilde{\varphi}$ where ψ and $\tilde{\varphi} : \overline{\mathbb{R}^+} \to \overline{\mathbb{R}^+}$ are strictly convex and

$$\int_{t_{n}}^{\infty} \left(\frac{t}{\tilde{\varphi}(t)}\right)^{\frac{1}{n-1}} dt < \infty,$$

moreover, $\tilde{\varphi} \leq \varphi$ and hence

$$\int\limits_{D} \tilde{\varphi}\left(|\nabla f|\right) \, dm(x) \le M.$$

Given $z_0 \in D$ and $\delta > 0$, denote by $C(z_0, \delta)$ the *n*-dimensional open cube centered at the point z_0 with edges which are parallel to coordinate axes and whose length is equal to δ . Fix $\varepsilon > 0$. Since the function ψ is strictly convex,

the integral of $\tilde{\varphi}(|\nabla f|)$ over $C(z_0, \delta) \subset D$ is arbitrary small at sufficiently small $\delta > 0$ for all $f \in \mathfrak{F}_M^{\varphi}$, see e.g. Theorem III.3.1.2 in [28]. Thus, by Proposition 2.1 and Remark 2.1 applied to $\tilde{\varphi}$ we have that $|f(z) - f(z_0)| < \varepsilon$ for all $z \in C(z_0, \delta)$ under some $\delta = \delta(\varepsilon) > 0$.

Now, let us show that a family \mathfrak{F}_M^{φ} is uniformly bounded on compacta. Indeed, let K be a compactum in D. With no loss of generality we may consider that K is a connected set containing the point x_0 from the definition of \mathfrak{F}_M^{φ} , see e.g. Lemma 1 in [31]. Let us cover K by the collection of cubes $C(z,\delta_z), z\in K$, where δ_z corresponds to $\varepsilon:=1$ from the first part of the proof. Since K is compact, we can find a finite number of cubes $C_i=C(z_i,\delta_{z_i}), i=1,2,\ldots,N$ that cover K. Note that $D_*:=\bigcup_{i=1}^N C_i$ is a subdomain of D because K is a connected set. Consequently, each point $z_*\in K$ can be joined with x_0 in D_* by a polygonal curve with ends of its segments at points x_0,x_1,\ldots,x_k,z_* in the given order lying in the cubes with numbers $i_1,\ldots,i_k, x_0\in C(z_{i_1},\delta_{z_{i_1}}), z_*\in C(z_{i_k},\delta_{z_{i_k}})$ and $x_l\in C_{i_l}\cap C_{i_{l+1}}, l=1,\ldots,k-1, k\leq N-1$. By the triangle inequality we have that

$$|f(z_*)| \le \sum_{l=0}^{k-1} |f(x_l) - f(x_{l+1})| + |f(x_k) - f(z_*)| \le N.$$

Since N depends on a compactum K only, it follows that \mathfrak{F}_M^{φ} is uniformly bounded on compacta and, consequently, is normal by the Arzela-Ascoli theorem, see e.g. IV.6.7 in [11].

Finally, show that the class \mathfrak{F}_M^{φ} is closed. By Remark 3.1 φ is strictly convex and by Theorem III.3.1.2 in [28], for every $\varepsilon > 0$, there is $\delta = \delta(\varepsilon) > 0$ such that $\int\limits_E |\nabla f| \, dm(x) \leq \varepsilon$ for all $f \in \mathfrak{F}_M^{\varphi}$ whenever $m(E) < \delta$. Let $f_j \in \mathfrak{F}_M^{\varphi}$ and $f_j \to f$ locally uniformly as $j \to \infty$. Then by Lemma 2.1 in [29] we have the inclusion $f \in W^{1,1}_{\text{loc}}$. Finally, by Theorem 3.3 in Ch. III, § 3.4, of the monograph [27], f satisfies the condition (4.1), i.e., \mathfrak{F}_M^{φ} is closed. Thus, the class \mathfrak{F}_M^{φ} is compact.

Corollary 4.1. The class \mathfrak{F}_M^p is compact with respect to the locally uniform convergence for each $p \in (n, \infty)$.

Proof. It is easy to verify that the function $\varphi(t) = t^p$ satisfies the hypotheses of Theorem 4.1 for an arbitrary number $\alpha \in (1/(p-1), 1/(n-1))$.

References

[1] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat., 43 (2005), 1-28.

- [2] Z. BIRNBAUM and W. ORLICZ, Über die Verallgemeinerungen des Begriffes der zueinauder konjugierten Potenzen, Studia Math., 3 (1931), 1-67.
- [3] B. BOJARSKI, Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients, Mat. Sb. N.S.,
 43 (85) (1957), 451-503 [in Russian]; translation into English in: Report. University of Jyväskylä Department of Mathematics and Statistics, 118, 2009, 64pp.
- [4] B. Bojarski, V. Gutlyanskii and V. Ryazanov, On Beltrami equations with two characteristics, *Complex Var. Elliptic Equ.*, **54** (2009), 933-950.
- [5] B. BOJARSKI and T. IWANIEC, Analytic foundations of the theory of quasi-conformal mappings in \mathbb{R}^n , Ann. Acad. Sci. Fenn. Ser. A I Math., 8 (1983), 257-324.
- [6] N. BOURBAKI, Functions of one real variable, Nauka, Moscow, 1965 [in Russian].
- [7] A.P. CALDERON, On the differentiability of absolutely continuous functions, *Rivista Mat. Univ. Parma*, **2** (1951), 203-213.
- [8] A. CIANCHI, A sharp embedding theorem for Orlicz-Sobolev spaces, *Indiana Univ. Math. J.*, **45** (1996), 39-65.
- [9] G. DAVID, Solutions de l'équation de Beltrami avec $\|\mu\|_{\infty} = 1$, Ann. Acad. Sci. Fenn. Ser. A I Math., 13 (1988), 25-70 [in French].
- [10] T. DONALDSON, Nonlinear elliptic boundary-value problems in Orlicz-Sobolev spaces, J. Differential Equations, 10 (1971), 507-528.
- [11] N. Dunford and J.T. Schwartz, *Linear Operators, Part I: General Theory*, Interscience Publishers, New York, 1957.
- [12] F.W. Gehring, The L^p -integrability of the partial derivatives of a quasiconformal mapping, $Acta\ Math.$, 130 (1973), 265-277.
- [13] J.-P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces, *Nonlinear Anal.*, **11** (1987), 379-392.
- [14] V. Gutlyanskii, V. Ryazanov, U. Srebro and E. Yakubov, *The Beltrami Equation: A Geometric Approach*, Developments in Mathematics, Vol. 26, Springer, New York etc., 2012.
- [15] M. HSINI, Existence of solutions to a semilinear elliptic system through generalized Orlicz-Sobolev spaces, J. Partial Differ. Equ., 23 (2010), 168-193.
- [16] T. IWANIEC, P KOSKELA and J. ONNINEN, Mappings of finite distortion: Compactness, Ann. Acad. Sci. Fenn. Math., 27 (2002), 391-417.
- [17] J. KAUHANEN, P. KOSKELA and J. MALY, On functions with derivatives in a Lorentz space, Manuscripta Math., 10 (1999), 87-101.
- [18] E.YA. KHRUSLOV and L.S. PANKRATOV, Homogenization of the Dirichlet variational problems in Sobolev-Orlicz spaces, *Operator theory and its applica*tions (Winnipeg, MB, 1998), 345-366, Fields Inst. Commun., 25, Amer. Math. Soc., Providence, R.I., 2000.
- [19] J.D. KORONEL, Continuity and k-th order differentiability in Orlicz-Sobolev spaces: W^kL_A , Israel J. Math., **24** (1976), 119-138.

- [20] D. KOVTONYUK, V. RYAZANOV, R. SALIMOV and E. SEVOSTYANOV, On mappings in the Orlicz-Sobolev classes, Ann. Univ. Buchar. Math. Ser., 3 (LXI) (2012), 67-78.
- [21] R. Landes and V. Mustonen, Pseudo-monotone mappings in Sobolev-Orlicz spaces and nonlinear boundary value problems on unbounded domains, *J. Math. Anal. Appl.*, **88** (1982), 25-36.
- [22] V. LAPPALAINEN and A. LEHTONEN, Embedding of Orlicz-Sobolev spaces in Hölder spaces, Ann. Acad. Sci. Fenn. Ser. A I Math., 14 (1989), 41-46.
- [23] O. MARTIO, V. RYAZANOV, U. SREBRO and E. YAKUBOV, Moduli in Modern Mapping Theory, Springer Monographs in Mathematics, Springer, New York etc., 2009.
- [24] V. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985.
- [25] J. Onninen, Differentiability of monotone Sobolev functions, *Real Anal. Exchange*, **26** (2000/01), 761-772.
- [26] W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Int. Acad. Pol. Ser. A, 8 (1932), 207-220.
- [27] YU.G. RESHETNYAK, Space Mappings with Bounded Distortion, Nauka, Novosibirsk, 1982; English translation, Translations of Mathematical Monographs, vol. 73, Amer. Math. Soc., Providence, R.I., 1988.
- [28] W. Rudin, Function Theory in Polydiscs, Math. Lect. Notes Ser., New York, Amsterdam, W.A. Benjamin INC, 1969.
- [29] V. RYAZANOV, U. SREBRO and E. YAKUBOV, On convergence theory for Beltrami equations, Ukr. Mat. Visn., 5 (2008), 524-535.
- [30] S. Saks, Theory of the Integral, Dover, New York, 1964.
- [31] E.S. SMOLOVAYA, Boundary behavior of ring Q-homeomorphisms in metric spaces, *Ukrainian Math. J.*, **62** (2010), 785-793.
- [32] S.L. SOBOLEV, Applications of Functional Analysis in Mathematical Physics, Izdat. Gos. Univ., Leningrad, 1950; English translation Amer. Math. Soc., Providence, R.I., 1963.
- [33] H. TUOMINEN, Characterization of Orlicz-Sobolev space, Ark. Mat., 45 (2007), 123-139.
- [34] P.A. VUILLERMOT, Hölder-regularity for the solutions of strongly nonlinear eigenvalue problems on Orlicz-Sobolev spaces, *Houston J. Math.*, 13 (1987), 281-287.

Vladimir Ryazanov and Evgeny Sevost'yanov Institute of Applied Mathematics and Mechanics,

National Academy of Sciences of Ukraine

74 Roze Luxemburg str., 83114 Donetsk, Ukraine

E-mail: vlryazanov1@rambler.ru, brusin2006@rambler.ru