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1. Introduction

A great interest to studying various classes of homeomorphisms and more
general mappings is motivated by needs of many fields in Modern Math-
ematics. Some of basic classes are close to quasiconformal and bilipschitz
homeomorphisms. A main characterization of such mappings is obtained
by extension of quasiinvariance of the conformal moduli and p-moduli via
inequalities containing integrals depending on a given measurable functions
and admissible metrics (cf. [3, 8, 9, 13, 18, 22, 23, 24]). Such representa-
tion of moduli can be treated as the quasiinvariance of weighted moduli (cf.
[1, 2, 5, 25]).

Let f : G→ G∗, G,G∗ ⊂ Rn, be a homeomorphism such that f and f−1

are differentiable almost everywhere (a.e.) with nonzero Jacobians in G and
G∗, respectively. It was shown in [9], that under more restrictive conditions
on f the following bounds for the α-module of k-dimensional surface families

inf
%∈extadm Sk

∫
G

%α(x)

HO,α(x, f)
dx ≤Mα(f(Sk)) ≤ inf

ρ∈adm Sk

∫
G

ρα(x)HI,α(x, f) dx

(1.1)
are fulfilled. Here HI,α(x, f) and HO,α(x, f) stand for the α-inner and α-
outer dilatations of f at x ∈ G (see, e.g., [7]).
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In the case, when these dilatations are bounded, i.e. HI,α(x, f) ≤ K
and HO,α(x, f) ≤ K with some absolute constant K in G, one obtains the
well-known class of bilipschitz mappings in G (cf. [6, 7, 10]).

In this paper, we consider the homeomorphisms satisfying at least one
of the following conditions

Mα(f(Sk)) ≤ inf
ρ∈adm Sk

∫
G

ρα(x)Q(x) dx, (1.2)

Mα(f(Sk)) ≥ inf
%∈extadm Sk

∫
G

%α(x)

Q(x)
dx, (1.3)

with a given measurable function Q : G → [0,∞]. For such mappings the
problem can be formulated somethat similarly to the classical problem on
the properties of solutions to the Beltrami equation fz̄ = µ(z)fz, for which
the properties of f are investigated in their dependence on the features of
µ.

The main cases in (1.2)-(1.3) relate to k = 1 and k = n − 1, i.e. to
moduli of curve and of (n − 1)-surface families. We show that inequality
(1.2) yields differentiability a.e., the (N)-property, boundedness of the α-
inner dilatation. We also provide the necessary and sufficient condition for
a homeomorphism to satisfy (1.3). Finally, we establish the relationship
between homeomorphisms satisfying (1.2) for k = 1 and (1.3) for k = n− 1.

2. Dilatations in Rn

Let A : Rn → Rn be a linear bijection. The numbers

HI,α(A) =
| detA|
lα(A)

, HO,α(A) =
||A||α

|detA|
, α ≥ 1,

are called the α-inner and α-outer dilatations of A, respectively. Here

l(A) = min
|h|=1

|Ah|, ||A|| = max
|h|=1

|Ah|,

denote the minimal and maximal stretching of A and detA is the determi-
nant of A.

Let G and G∗ be two bounded domains in Rn, n ≥ 2, and let a mapping
f : G → G∗ be differentiable at a point x ∈ G. This means there exists
a linear mapping f ′(x) : Rn → Rn, called the (strong) derivative of the
mapping f at x, such that

f(x+ h) = f(x) + f ′(x)h+ ω(x, h)|h|,

where ω(x, h)→ 0 as h→ 0.
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We denote

HI,α(x, f) = HI,α(f ′(x)), HO,α(x, f) = HO,α(f ′(x)).

These quantities naturally extend the classical quasiconformal dilatations
(inner and outer) by

HI(x, f) = HI,n(x, f), HO(x, f) = HO,n(x, f).

The third dilatation of quasiconformality called linear

H(x, f) =
||f ′(x)||
l(f ′(x))

is a direct analog of the classical planar Lavrentiev dilatation. The α-inner
and α-outer dilatations provide a class of mappings whose basic properties
are close to quasiconformal homeomorphisms. On the other hand, there are
some essential differences caused by the fact that the dilatations HI(x, f)
and HO(x, f) are always greater than or equal to 1, while the α-inner and
outer dilatations range between 0 and ∞.

We consider the homeomorphisms f which are differentiable almost ev-
erywhere in G, and fix the real numbers α, β satisfying 1 ≤ α < β < ∞.
Define

HIα,β(f) =

∫
G

H
β

β−α
I,α (x, f) dx, HOα,β(f) =

∫
G

H
α

β−α
O,β (x, f) dx,

and call these quantities the inner and outer mean dilatations of a mapping
f : G→ Rn in G.

Define for the fixed real numbers α, β, γ, δ such that 1 ≤ α < β < ∞,
1 ≤ γ < δ < ∞, the class of mappings with finite mean dilatations which
consists of homeomorphisms f : G→ G∗ satisfying:
(i) f and f−1 are in W 1,1

loc ,
(ii) f and f−1 are differentiable, with Jacobians J(x, f) 6= 0 and J(y, f−1) 6=
0 a.e. in G and G∗, respectively,
(iii) the inner and the outer mean dilatations HIα,β(f) and HOγ,δ(f) are
finite.

The mappings with finite mean dilatations were investigated in [7].
The relations between the classical quasiconformal dilatations

H(x, f) ≤ min(HI(x, f), HO(x, f)) ≤ Hn/2(x, f)

≤ max(HI(x, f), HO(x, f)) ≤ Hn−1(x, f).

show that they are finite or infinity simultaneously. However, this needs not
be true for the mean dilatations.
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The following example shows that the unboundedness of one from these
dilatations does not depend on the value of another mean dilatation.

Consider the unit cube

G = {x = (x1, . . . , xn) | 0 < xk < 1, k = 1, . . . , n}

and let

f(x) =

(
x1, . . . , xn−1,

x1−c
n

1− c

)
, 0 < c < 1.

An easy computation shows that f belongs to the class of mappings with
finite mean dilatations if and only if

0 < c < 1− α/β and 0 < c < 1− (γ − 1)δ/(δ − 1)γ.

When
1− α/β ≤ c < 1 and 1− (γ − 1)δ/(δ − 1)γ ≤ c < 1

we have HIα,β(f) =∞ and HOγ,δ(f) =∞, respectively. Thus, by suitable
choice of parameters c, α, β, γ, δ, one obtains any desired relations between
HIα,β(f) and HOγ,δ(f).

3. α-moduli of k-dimensional surfaces and related classes of home-
omorphisms

Now we give a geometric (modular) description of quasiconformality in Rn
starting with the definition of k-dimensional Hausdorff measure Hk, k =
1, . . . , n− 1 in Rn. For a given E ⊂ Rn, put

Hk(E) = sup
r>0

Hk
r (E),

where
Hk
r (E) = Ωk inf

∑
i

(δi/2)k.

Here the infimum is taken over all countable coverings {Ei, i = 1, 2, . . .} of
E with diameters δi, and Ωk is the volume of the unit ball in Rk.

Let S be a k-dimensional surface, which means that S : Ds → Rn is a
continuous image of the closed domain Ds ⊂ Rk. We denote by

N(S, y) = cardS−1(y) = card{x ∈ Ds | S(x) = y}

the multiplicity function of the surface S at the point y ∈ Rn. For a given
Borel set B ⊆ Rn, the k-dimensional Hausdorff area of B in Rn associated
with the surface S is determined by

HS(B) = HkS(B) =

∫
B

N(S, y) dHky.
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If ρ : Rn → [0,∞] is a Borel function, the integral of ρ over S is defined by∫
S

ρ dσk =

∫
Rn

ρ(y)N(S, y) dHky.

Let Sk be a family of k-dimensional surfaces S in Rn, 1 ≤ k ≤ n − 1
(curves for k = 1). The α-module of Sk is defined as

Mα(Sk) = inf

∫
Rn

ρα dx, α ≥ k,

where the infimum is taken over all Borel measurable functions ρ ≥ 0 and
such that ∫

S

ρk dσk ≥ 1

for every S ∈ Sk. We call each such ρ an admissible function for Sk (ρ ∈
admSk). The n-module Mn(Sk) will be denoted by M(Sk).

Following [13], a metric ρ is said to be extensively admissible for Sk
(ρ ∈ extadmSk) with respect to α-module if ρ ∈ adm (Sk\S̃k) such that
Mα(S̃k) = 0.

Accordingly, we say that a property P holds for almost every k-dimensional
surface, if P holds for all surfaces except a family of zero α-module.

We also remind that a continuous mapping f satisfies (N)-property with
respect to k-dimensional Hausdorff area ifHkS(f(B)) = 0 wheneverHkS(B) =
0. Similarly, f has (N−1)-property if HkS(B) = 0 whenever HkS(f(B)) = 0.

Now we provide the bounds for the α-module of k-dimensional surfaces
(see [9]).

Theorem 3.1. Let f : G → Rn be a homeomorphism satisfying (i)-(ii)
with HI,α, H

−1
O,α ∈ L1

loc(G). Suppose that for some k, 1 ≤ k ≤ n − 1 (k ≤
α), and for almost every k-dimensional surface S and its image S∗ (S =
f−1(S∗)) the restriction f |S has the (N) and (N−1)-properties with respect
to k-dimensional Hausdorff area in G and G∗ = f(G), respectively. Then the
double inequality (1.1) holds for any family Sk of k-dimensional surfaces in
G, and for each ρ ∈ admSk and % ∈ extadmSk with respect to the α-module.

Further we use the following lemma from [18].

Lemma 3.1. Let (X,µ) be s measure space with finite measure µ, and let
ϕ : G→ (0,∞) be a measurable function. Set

I(ϕ, α) = inf
ρ

∫
X

ϕρα dµ, 1 < α <∞,
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where the infimum is taken over all Borel nonnegative measurable functions
ρ : X → [0,∞] satisfying

∫
X

ρ dµ = 1. Then

I(ϕ, α) =

(∫
X

ϕ
1

1−α dµ

)1−α

and the infimum is attained only for the metric

ρ =

∫
X

ϕ
1

1−α dµ

−1

ϕ
1

1−α .

Throughout the paper, we use the following notations. A ring domain
R ⊂ Rn is a bounded domain whose complement consists of two components
C0 and C1. The sets F0 = ∂C0 and F1 = ∂C1 are two boundary components
of D. We assume for definiteness that ∞ ∈ C1.

We say that a curve γ joins the boundary components in R if γ is located
in R, except for its endpoints, one of which lies on F0 and the second on
F1. A compact set Σ is said to separate the boundary components of R if
Σ ⊂ R and if C0 and C1 are located in different components of CΣ. Denote
by ΓR the family of all locally rectifiable curves γ which join the boundary
components of R and by ΣR the family of all compact piecewise smooth
(n− 1)-dimensional surfaces Σ which separate the boundary components of
R.

The following relation

Mp(ΓR) =
1

Mp−1
α (ΣR)

, α =
p(n− 1)

p− 1
, 1 < p <∞, n− 1 < α <∞,

(3.1)
between the p-moduli of ΣR and ΓR follows from the results of Ziemer [26]
and Hesse [12] on the moduli and the extremal lengths. Observe that p-
moduli (p 6= n) are not conformal invariants even under linear mappings,
i.e. such mappings do not preserve the value of p-module.

The p-module of a spherical ring A(x0; a, b) = {x ∈ Rn | 0 < a < |x −
x0| < b} is equal to

Mp(ΓA) = ωn−1

(
n− p
p− 1

)p−1(
a
p−n
p−1 − b

p−n
p−1

)1−p
,

where ωn−1 is the (n− 1)-dimensional Lebesgue measure of the unit sphere
Sn−1 in Rn (see e.g. [6]). Indeed, for f(x) = λx, λ > 0, λ ∈ R, we have
Mp(f(ΓA)) = λn−pMp(ΓA).

We also use especially another tool which is important in Potential The-
ory and Mathematical Analysis.
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Following in general [16], a pair E = (A,C), where A ⊂ Rn is an open
set and C ⊂ A is a nonempty compact, is called the condenser. We say
that the condenser E is the ring condenser, if R = A \ C is a ring domain.
The condenser E is bounded, if A is bounded. We also say that a condenser
E = (A,C) lies in a domain G when A ⊂ G. Obviously, for an open and
continuous mapping f : G → Rn and for any condenser E = (A,C) ⊂ G,
the pair (f(A), f(C)) is a condenser in f(G). In this case we shall use the
notation f(E) = (f(A), f(C)).

Let E = (A,C) be a condenser. Denote by C0(A) the set of all continuous
functions u : A→ R1 with compact support in A. Consider the setW0(E) =
W0(A,C) of all nonnegative functions u : A→ R1 such that

1) u ∈ C0(A), 2) u(x) ≥ 1 for x ∈ C and 3) u belongs ACL. Put

cappE = capp (A,C) = inf
u∈W0(E)

∫
A

|∇u|p dx, p ≥ 1,

where, as usual

|∇u| =

(
n∑
i=1

(∂iu)2

)1/2

.

This quantity is called p-capacity of condenser E.

It was proven in [12] that for p > 1

cappE =Mp(∆(∂A, ∂C;A \ C)), (3.2)

where ∆(∂A, ∂C;A \C)) denotes the set of all continuous curves which join
the boundaries ∂A and ∂C in A \ C. For general properties of p-capacities
and their relation to the mapping theory, we refer for instance to [10] and
[19]. In particular, for 1 ≤ p < n,

cappE ≥ nΩ
p
n
n

(
n− p
p− 1

)p−1

[mC]
n−p
n , (3.3)

where Ωn denotes the volume of the unit ball in Rn, and mC is the n-
dimensional Lebesgue measure of C.

For n− 1 < p ≤ n, there is the following lower estimate

(
capp E

)n−1 ≥ γ
d(C)p

(mA)1−n+p
, (3.4)

where d(C) denotes the diameter of C, and γ is a positive constant depending
only on n and p (see [14]).
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4. Q-homeomorphisms and their properties

Let Q : G → [1,∞] be a measurable function. Due to [17], a homeomor-
phism f : G→ Rn is called a Q-homeomorphism if

M(f(Γ)) ≤
∫
G

Q(x)ρn(x) dx (4.1)

for every family Γ of curves in G and for every admissible function ρ for Γ
(see also [18]).

The origin of this notion relies on a natural generalization of quasicon-
formality. Given a function Q : G→ [1,∞], we say that a sense preserving
homeomorphism f : G→ Rn is Q(x)-quasiconformal if f ∈W 1,n

loc (G) and

max{HI(x, f), HO(x, f)} ≤ Q(x) a.e.

Any Q(x)-quasiconformal mapping f : G → Rn is differentiable a.e.,
satisfies the (N)-property, and J(x, f) ≥ 0 a.e. If, in addition, Q ∈ Ln−1

loc ,

then f−1 ∈ W 1,n
loc (G∗) and is differentiable a.e.; f has (N−1)-property and

J(x, f) > 0 a.e. All this follows from [4, 11, 20, 21] (cf. [18]).

Given a measurable function Q : G → [0,∞], a homeomorphism f :
G→ Rn is called Q-homeomorphism with respect to α-module, if

Mα(f(Sk)) ≤
∫
G

Q(x)ρα(x) dx (4.2)

for every family of k-dimensional surfaces Sk in G and for every admissible
function ρ for Sk; 1 ≤ k ≤ n− 1, and such integer k is fixed.

It is the well-known fact that quasiconformal mappings preserve their
n-moduli up to an absolute factor, i.e.

K
k−n
n−1M(Sk) ≤M(f(Sk)) ≤ K

n−k
n−1M(Sk) (4.3)

(a quasiinvariance of n-module). For conformal mappings the n-module
becomes an invariant. Observe that the inequality (4.1) is a natural gener-
alization of the right-hand side in (4.3) for the curve families. Note also that
the integral in (4.2) can be interpreted as a weighted module (cf. [1, 5, 25]).

We now restrict ourselves by the case k = 1, which corresponds to the
curve families. For Q-homeomorphisms with Q ∈ L1

loc, the differentiability
a.e. and ACL-property were established in [22]. It is also known that Q-
homeomorphisms satisfy the (N−1)-property (see [18]).

To establish the differential properties of Q-homeomorphisms with re-
spect to α-moduli, we first consider some set functions. Let Φ be a finite
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nonnegative function in G defined for open subsets E of G satisfying

m∑
k=1

Φ(Ek) ≤ Φ(E)

for any finite collection {Ek}mk=1 of nonintersecting open sets Ek ⊂ E. De-
note the class of all such set functions Φ by F .

The upper and lower derivatives of a set function Φ ∈ F at a point x ∈ G
are defined by

Φ′(x) = lim
h→0

sup
d(Q)<h

Φ(Q)

mQ
, Φ′(x) = lim

h→0
inf

d(Q)<h

Φ(Q)

mQ
,

where Q ranges over all open cubes or open balls such that x ∈ Q ⊂ G.
Due to [20], these derivatives have the following properties: Φ′(x) and Φ′(x)
are Borel’s functions; Φ′(x) = Φ′(x) < ∞ a.e. in G; and for each open set
V ⊂ G, ∫

V

Φ′(x) dx ≤ Φ(V ).

Theorem 4.1. Let f : G → G∗ be an Q-homeomorphism with respect to
α-module with Q ∈ L1

loc(G) and α > n−1. Then f is ACL-homeomorphism
which is differentiable a.e. in G.

For the proof of Theorem 4.1 we refer to [8] (cf. [22] for α = n).

Corollary 4.1. Under the assumptions of Theorem 4.1, any Q-homeomor-
phism with respect to α-module belongs to W 1,1

loc .

The following theorem implies the upper estimates for the maximal
stretching and Jacobian of f .

Theorem 4.2. Let G and G∗ be two bounded domains in Rn, n ≥ 2, and
f : G → G∗ be a sense preserving Q-homeomorphism with respect to α-
module, n− 1 < α < n, so that Q ∈ L1

loc. Then

‖f ′(x)‖ ≤ λn,αQ
1

n−α (x) a.e. (4.4)

and

J(x, f) ≤ γn,αQ
n

n−α (x) a.e., (4.5)

where λn,α and γn,α are a positive constants depending only on n and α.
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Proof. As well known (see [20]),

lim sup
r→0

mf(B(x, r))

mB(x, r)
<∞ and lim sup

r→0

1

mB(x, r)

∫
B(x,r)

Q(x) dx <∞

a.e. in G. Let A = A(x0, ε1, ε2) = {x | ε1 < |x − x0| < ε2} be a spherical
ring centered at x0 ∈ G, with radii ε1 and ε2, 0 < ε1 < ε2, satisfying
A(x0, ε1, ε2) ⊂ G, choosing x0 so that the above limits are simultaneously
finite at x0. Then

(
f(B(x0, ε2)), f(B(x0, ε1))

)
is a ring condenser in G∗ and

in accordance with (3.2),

capα (f(B(x0, ε2)), f(B(x0, ε1)) =Mα(4(∂f(B(x0, ε2)), ∂f(B(x0, ε1)); f(A)).

Since f is homeomorphic

4 (∂f(B(x0, ε2)), ∂f(B(x0, ε1)); f(A)) = f (4 (∂B(x0, ε2), ∂B(x0, ε1);A)) .

Pick the admissible function

ρ(x) =

{ 1
ε2−ε1 , x ∈ A

0, x /∈ A.

Since f is a Q-homeomorphism with respect to α-module,

capα (f(B(x0, ε2)), f(B(x0, ε1)) ≤ 1

(ε2 − ε1)α

∫
A(x0,ε1,ε2)

Q(x) dx. (4.6)

Choosing ε1 = 2ε and ε2 = 4ε, we get

capα (f(B(x0, 4ε)), f(B(x0, 2ε)) ≤
1

(2ε)α

∫
B(x0,4ε)

Q(x) dx. (4.7)

On the other hand, the inequality (3.3) implies

capα (fB(x0, 4ε), f(B(x0, 2ε)) ≥ Cn,α [mf(B(x0, 2ε))]
n−α
n , (4.8)

where the constant Cn,α depends only on the dimension n and α.
Combining (4.7) and (4.8) yields

mf(B(x0, 2ε))

mB(x0, 2ε)
≤ cn,α

[
−
∫
B(x0,4ε)

Q(x) dx

] n
n−α

, (4.9)

where cn,α also depends on n and α. As ε→ 0, the estimate (4.5) follows.

Now choosing ε1 = ε and ε2 = 2ε in (4.6), we obtain

capα (f(B(x0, 2ε)), f(B(x0, ε)) ≤
1

εα

∫
B(x0,2ε)

Q(x) dx,
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and since by (3.4),

capα (f(B(x0, 2ε)), f(B(x0, ε)) ≥ Cn,α
[d(f(B(x0, ε)))]

α
n−1

[mf(B(x0, 2ε))]
1−n+α
n−1

,

we have

d(fB(x0, ε))

ε
≤ γn,α

(
mf(B(x0, 2ε))

mB(x0, 2ε)

) 1−n+α
α

(
−
∫
B(x0,2ε)

Q(x) dx

)n−1
α

,

(4.10)
where γn,α is a positive constant depending on n and α.

The inequalities (4.10) and (4.9) yield

d(f(B(x0, ε)))

ε
≤ λn,α

(
−
∫
B(x0,4ε)

Q(x) dx

)n(1−n+α)
α(n−α)

[
−
∫
B(x0,2ε)

Q(x) dx

]n−1
α

.

Finally, letting ε→ 0, one derives

lim sup
x→x0

|f(x)− f(x0)|
|x− x0|

≤ lim sup
ε→0

d(f(B(x0, ε)))

ε
≤ λn,αQ

1
n−α (x0),

where λn,α is a positive constant which depends only on n and α. Thus (4.4)
follows. 2

Corollary 4.2. Let G and G∗ be two domains in Rn, n ≥ 2, and let f :
G → G∗ be a Q-homeomorphism with respect to α-module, n − 1 < α < n.

Assume that Q(x) ∈ L
s

n−α
loc with s > n− α. Then f ∈W 1,s

loc .

Indeed for any compact set V ⊂ G,∫
V

‖f ′(x)‖s dx ≤ λsn,α
∫
V

Q
s

n−α (x) dx <∞ .

As well known, every W 1,n
loc -homeomorphism possesses the (N)-property;

thus we have

Corollary 4.3. If Q ∈ L
n

n−α
loc then f satisfies (N)-property.

Corollary 4.4. Let f : G → G∗ be a Q-homeomorphism with respect to

α-module such that Q(x) ∈ L
n

n−α
loc , n− 1 < α < n. Then

mf(E) ≤ γn,α
∫
E

Q
n

n−α (x) dx.
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Proof. Since Q(x) ∈ L
n

n−α
loc (G), f satisfies Lusin’s (N)-property and

mf(E) =

∫
E

J(x, f) dx ≤ γn,α
∫
E

Q
n

n−α (x) dx .

2

The following result shows that the dilatation HI,α is dominated a.e. in
G by the upper derivative of the set function

Ψ(V ) =

∫
V

Q(x) dx,

where V is an open subset of G.

Theorem 4.3. Let f : G → G∗ be a Q-homeomorphism with respect to
α-module, α > n − 1, with Q ∈ L1

loc(G) such that J(x, f) 6= 0 a.e. in G.
Then

HI,α(x, f) ≤ Ψ
′
(x) a.e. in G.

Proof. Let a ∈ G be an arbitrary point where f is differentiable at a,
with J(a, f) 6= 0 and Ψ

′
(a) 6= 0. The image of the unit ball under the linear

mapping f ′(a) is an ellipsoid E(f) with semi-axes λ1, λ2, . . . , λn ordered
by λ1 ≥ λ2 ≥ . . . ≥ λn > 0. Preceding f , if necessary, by a rotation
and a reflection, one reduces to the case f(a) = a = 0 and |f ′(0)ei| = λi,
i = 1, . . . , n; here eν denotes the νth unit basis vector.

For every t > 0, let R be the ring domain obtained from n-dimensional
interval

In = {x | |xi| < r(tλi + 1), i = 1, . . . , n− 1, |xn| < rtλn},

by deleting the points of (n− 1)-dimensional interval

Πn−1(0, r) = {x : |xi| ≤ r, i = 1, . . . , n− 1, xn = 0}.

We choose r > 0 so that R ⊂ G and will show that

λ1 · . . . · λn
λαn

≤ Ψ
′
(0). (4.11)

Indeed, the inequality

Mα(f(ΓR)) ≤
∫
R

Q(x)ρα(x) dx,

together with the following estimate (see, e.g. [14])

Mα(ΓR) ≥

(
inf
Σ
mn−1Σ

)α(
mR

)α−1 ,
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gives (
inf
Σ∗
mn−1Σ∗

)α
(
mf(R)

)α−1 ≤ 1(
dist(F0, F1)

)α ∫
R

Q(x) dx,

where the infimum is taken over all surfaces Σ∗ which separate f(C0) and
f(C1) in f(R).

Fix 0 < ε < λn and choose r > 0 so small that

mf(In) ≤ (J(0, f) + ε)mIn and |f(x)− f ′(0)x| < εr.

Since

mR = mIn = 2nrntλn(tλ1 + 1) · . . . · (tλn−1 + 1),

and

inf
Σ∗
mn−1Σ∗ ≥ 2mn−1Π̃n−1(0, r) = 2nrn−1(λ1 − ε) · . . . · (λn−1 − ε),

we have [
2nrn−1(λ1 − ε) · . . . · (λn−1 − ε)

]α[
(J(0, f) + ε)mA

]α−1 ≤ 1(
rtλn

)α ∫
R

Q(x) dx,

where Π̃n−1(0, r) = {y | |yi| ≤ rλi − εr, i = 1, . . . , n − 1, yn = 0}. Letting
t→ 0 and thereafter r → 0, we get[

(λ1 − ε) · . . . · (λn−1 − ε)
]α[

J(0, f) + ε
]α−1 ≤ Ψ

′
(0),

which implies (4.11) as ε → 0. Hence HI,α(x, f) ≤ Ψ
′
(x) for almost all

x ∈ R. 2

Remark 4.1. If one omits the restriction α > n − 1 (i.e. for 1 ≤ α ≤
n − 1), Theorem 4.3 can be proved assuming additionally that the Q-
homeomorphisms f with respect to α-module are differentiable a.e.

Remark 4.2. The inequality in Theorem 4.3 can be replaced byHI,α(x, f) ≤
Q(x) a.e.

5. Ring Q-homeomorphisms and their properties

Recall some necessary notions. Let E ,F ⊆ Rn be arbitrary domains. De-
note by ∆(E,F,G) the family of all curves γ : [a, b] → Rn, which join E
and F in G, i.e. γ(a) ∈ E , γ(b) ∈ F and γ(t) ∈ G for a < t < b .
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Set d0 = dist (x0 , ∂G) and let Q : G → [0 ,∞] be a Lebesgue measurable
function. Denote

A(x0, r1, r2) = {x ∈ Rn | r1 < |x− x0| < r2} ,

and
Si = S(x0, ri) = {x ∈ Rn | |x− x0| = ri} , i = 1, 2. (5.1)

We say that a homeomorphism f : G→ Rn is the ring Q-homeomorphism
with respect to p-module at the point x0 ∈ G, (1 < p ≤ n) if the inequality

Mp (∆ (f(S1), f(S2), f(G))) ≤
∫
A

Q(x) · ηp(|x− x0|) d x (5.2)

is fulfilled for any ring A = A(x0, r1, r2), 0 < r1 < r2 < d0 and for every
measurable function η : (r1, r2)→ [0,∞] , satisfying

r2∫
r1

η(r) dr ≥ 1 . (5.3)

The homeomorphism f : G→ Rn is the ring Q-homeomorphism with respect
to p-module in the domain G, if inequality (5.2) holds for all points x0 ∈ G .
The properties of the ring Q-homeomorphisms for p = n are studied in [24].

The ring Q-homeomorphisms are defined in fact locally and contain as a
proper subclass of Q-homeomorphisms (see [18]). A necessary and sufficient
condition for homeomorphisms to be ring Q-homeomorphisms with respect
to p-module at a point given in [23], asserts:

Proposition 5.1. Let G be a bounded domain in Rn, n ≥ 2 and let Q :
G → [0, ∞] belong to L1

loc. A homeomorphism f : G → Rn is a ring Q-
homeomorphism with respect to p-module at x0 ∈ G if and only if for any
0 < r1 < r2 < d0 = dist (x0, ∂G),

Mp (∆ (f(S1), f(S2), f(G))) ≤ ωn−1

Ip−1
,

where S1 and S2 are the spheres defined in (5.1)

I = I(x0, r1, r2) =

r2∫
r1

dr

r
n−1
p−1 q

1
p−1
x0 (r)

,

and qx0(r) is the mean value of Q over |x−x0| = r . Note that the infimum
in the right-hand side of (5.2) over all admissible η satisfying (5.3) is attained
only for the function

η0(r) =
1

Ir
n−1
p−1 q

1
p−1
x0 (r)

.
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6. Lower Q-homeomorphisms and their module bounds

Let G and G∗ be two bounded domains in Rn, n ≥ 2 and x0 ∈ G. Given a
Lebesgue measurable function Q : G → [0,∞], a homeomorphism f : G →
G∗ is called the lower Q-homeomorphism with respect to p-module at x0 if

Mp(f(Σε)) ≥ inf
ρ∈expadm Σε

∫
Dε(x0)

ρp(x)

Q(x)
dx, (6.1)

where

Gε(x0) = G∩{x ∈ Rn | ε < |x−x0| < ε0}, 0 < ε < ε0, 0 < ε0 < sup
x∈G
|x−x0|,

and Σε denotes the family of all pieces of spheres centered at x0 of radii r,
ε < r < ε0, located in G.

In this section, we provide a necessary and sufficient condition for home-
omorphisms to be lower Q-homeomorphisms with respect to p-module. The
case p = n is considered in [18].

Theorem 6.1. Let G be a domain in Rn, n ≥ 2, x0 ∈ G, and let Q : G→
[0,∞] be a measurable function. A homeomorphism f : G→ Rn is a lower
Q-homeomorphism at x0 with respect to p-module for p > n− 1 if and only
if the following inequality

Mp(f(Σε)) ≥
ε0∫
ε

dr

||Q|| s(r)
∀ ε ∈ (0, ε0) , ε0 ∈ (0, d0) ,

holds, where s = n−1
p−n+1 ,

d0 = sup
x∈D
|x− x0| ,

Σε is the family of all intersections of the spheres S(x0, r) = {x ∈ Rn | |x−
x0| = r}, r ∈ (ε, ε0) with G and

||Q||s(r) =

 ∫
G(x0,r)

Qs(x) dσn−1


1
s

here G(x0, r) = {x ∈ G | |x− x0| = r} = G∩S(x0, r). The infimum in (6.1)
is attained only on the functions

%0(x) =
Q(x)

||Q||s (r)
.
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Proof. For any % ∈ extadm Σε the function

A%(r) :=

∫
G(x0,r)

%n−1(x) dσn−1 6= 0

is measurable on (ε, ε0). It is admissible if A%(r) ≥ 1. Assuming that
A%(r) ≡ 1, we obtain

inf
%∈extadm Σε

∫
Gε(x0)

%p(x)

Q(x)
dx =

ε0∫
ε

 inf
ψ∈I(r)

∫
G(x0,r)

ψq(x)

Q(x)
dσn−1

 dr ,

where q = p/(n−1) > 1 and I(r) denotes the set of all measurable functions
ψ on the surface G(x0, r) satisfying∫

G(x0,r)

ψ(x) dσn−1 = 1 .

Thus Theorem 6.1 follows from Lemma 3.1 taking there X = G(x0, r)
and µ to be the (n − 1)-dimensional area on G(x0, r), and ϕ(x) = 1/Q(x)
on G(x0, r), and q = p/(n− 1) > 1. This completes the proof. 2

7. Connection between the ring and lower Q-homeomorphisms

In this sections we establish the relationship between the ring and lower
Q-homeomorphisms with respect to p-module.

Theorem 7.1. Every lower Q-homeomorphism with respect to p-module

f : G → G∗ at x0 ∈ G, with p > n − 1 and Q ∈ L
n−1
p−n+1

loc , is a ring

Q̃-homeomorphism with respect to α-module at x0 with Q̃ = Q
n−1
p−n+1 and

α = p
p−n+1 .

Proof. Let 0 < r1 < r2 < d(x0, ∂G) and Si = S(x0, ri), i = 1, 2, be from
(5.1). Then taking into account the relation (3.1), we obtain

Mα (f (∆(S1, S2, G))) ≤ 1

M
n−1
p−n+1
p (f (Σ))

, (7.1)

where f (Σ) ⊂ Σ (f(S1), f(S2), f(G)) and Σ denotes the family of all spheres
centered at x0, located between S1 and S2, while Σ (f(S1), f(S2), f(G)) con-
sists of all (n− 1)-dimensional surfaces in f(G), separating f(S1) and f(S2)
(cf. [18]) Now directly by (7.1) and Theorem 6.1,

Mα (f (∆(S1, S2, G))) ≤

 r2∫
r1

dr

‖Q‖ n−1
p−n+1

(r)

 1−n
p−n+1

=
ωn−1

Ĩ
n−1
p−n+1

, (7.2)
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where Ĩ = Ĩ(x0, r1, r2) =
r2∫
r1

dr

r
n−1
α−1 q̃

1
α−1
x0

(r)

, and q̃x0(r) denotes the mean

value of the function Q̃ over |x−x0| = r . Now the assertion of the theorem
follows from (7.2) and Proposition 5.1. 2
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