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Abstract - We establish Karush-Kuhn-Tucker sufficient optimality con-
ditions for a nondifferentiable minimax fractional optimization problem, in
which numerator and denominator of each term consists of support func-
tion, under the assumptions of (V, ρ, σ)-type I invex functions. Mond-Weir
type weak and strong duality theorems are also obtained under the aforesaid
assumptions.
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1. Introduction

The concept of duality, convexity and invexity in fractional programming has
received special attention of researchers in solving different real life problems
and mathematical models that require the relative comparison of two mag-
nitudes. The popularity of the fractional programming lies in the fact that
although the objective function is nondifferentiable, a simple formulation of
the dual may be given. Later, Mishra et al. [9], Chinchuluun et al. [1] and
Huang et al. [7] have dealt with many useful optimality and duality results
for nondifferentiable fractional programming problems. There are several
chapters devoted to this topic by Mishra and Giorgio [8], Clarke [2] and
Craven [3].

In the recent past, Kuk et al. [6] have introduced the concept of (V, ρ)-
invexity, which is generalization of the V -invexity for vector valued functions
and derived the generalized Karush-Kuhn-Tucker optimality conditions as
well as weak and strong duality for nonsmooth multiobjective fractional
programs. Later, Kim et al. [4] extended their results in presence of support
functions. Very recently, Kim et al. [5] have introduced the assumption
of (V, ρ)-invexity for the following generalized nondifferentiable fractional
programming problem (GFP):

Minimize max
{
fi(x) + s(x|Ci)
gi(x)− s(x|Di)

| i = 1, . . . , p
}
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subject to: hj(x) ≤ 0, j = 1, . . .m,

where f := (f1, . . . , fp) : Rn → Rp, g := (g1, . . . , gp) : Rn → Rp and
h := (h1, . . . , hm) : Rn → Rm are continuously differentiable and for each
i = 1, . . . , p, Ci and Di are compact convex sets of Rn.

In this paper, motivated by Kim et al. (see [5]), we introduce (V, ρ, σ)-
type I invex function to derive the Karush-Kuhn-Tucker sufficient optimality
and Mond-Weir type weak and strong duality theorems for a generalized
nondifferentiable minimax fractional optimization problem (GFP), in which
numerator and denominator of each term consists of support function, and
a constraint set defined by differentiable functions.

2. Preliminaries and definitions

In this paper, we consider the following nondifferentiable multiobjective frac-
tional programming problem

(GFP) Minimize max
{
fi(x) + s(x|Ci)
gi(x)− s(x|Di)

| i = 1, . . . , p
}

subject to: hj(x) ≤ 0, j = 1, . . .m,

where f := (f1, . . . , fp) : Rn → Rp, g := (g1, . . . , gp) : Rn → Rp and
h := (h1, . . . , hm) : Rn → Rm are continuously differentiable. We assume
that gi(x) − s(x|Di) > 0, i = 1, . . . , p. For each i = 1, . . . , p, Ci and Di are
compact convex sets of Rn and define the support functions with respect to
Ci and Di as follows:

s(x|Ci) = max{〈x, yi〉 | yi ∈ Ci}

and
s(x|Di) = max{〈x, yi〉 | yi ∈ Di}.

Further denote I(x) = {j |hj(x) = 0}, for any x ∈ Rn. Let ki(x) = s(x|Ci)
and k̃i(x) = s(x|Di), i = 1, . . . , p. Hence, ki(x) and k̃i(x) are convex func-
tions. Choose ωi ∈ ∂ki(x) and ω̃i ∈ ∂k̃i(x) such that

∂ki(x) = {ωi ∈ Ci | 〈ωi, x〉 = s(x|Ci)}

and
∂k̃i(x) = {ω̃i ∈ Di | 〈ω̃i, x〉 = s(x|Di)} ,

where ∂ki and ∂k̃i are the subdifferential of ki and k̃i respectively. Further,
let

S = {x ∈ Rn |hj(x) ≤ 0, j = 1, . . . ,m} .
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Definition 2.1. A vector valued function f : Rn → Rp is said to be η-invex
at u ∈ Rn if for any x ∈ Rn and for all i = 1, . . . , p, one has

fi(x)− fi(u) ≥ ∇fi(u)η(x, u).

Definition 2.2. A vector valued function f : Rn → Rp is said to be (V, ρ)-
invex at u ∈ Rn with respect to the functions η and θi : Rn × Rn → Rn if
there exist αi : Rn × Rn → R+ \ {0} and ρi ∈ R, i = 1, . . . , p, such that for
any x ∈ Rn and for all i = 1, . . . , p it holds

αi(x, u) [fi(x)− fi(u)] ≥ ∇fi(u)η(x, u) + ρi‖θi(x, u)‖2.

The following Theorem from [5] will be needed in the sequel:

Theorem 2.1. Assume that f and g are vector valued differentiable func-
tions defined on Rn and f(x) + 〈ω, x〉 ≥ 0, g(x)− 〈ω̃, x〉 > 0 for all x ∈ Rn.
If f(·)+〈ω, ·〉 and −g(·)+〈ω̃, ·〉 are (V, ρ)-invex at u ∈ Rn with respect to the
functions η, θi and αi, i = 1, . . . , p, then f(·)+〈ω,·〉

g(·)−〈ω̃,·〉 is (V, ρ)- invex at u ∈ Rn

with respect to the functions η, θ̄i and ᾱi, i = 1, . . . , p, where

ᾱi(x, u) =
gi(x)− 〈ω̃i, x〉
gi(u)− 〈ω̃i, u〉

αi(x, u)

and

θ̄i(x, u) =
(

1
gi(u)− 〈ω̃i, u〉

) 1
2

θi(x, u),

that is, for all i,

ᾱi(x, u)
[
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

− fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

]
≥ ∇

(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
η(x, u) + ρi‖θ̄i(x, u)‖2.

Definition 2.3. Let(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
= φi(x), i = 1, . . . , p,

〈ωi, x〉 = s(x|Ci), 〈ω̃i, x〉 = s(x|Di).

The pair (φi, hj) is called (V, ρi, σj)-type I invex at u ∈ Rn, if there exist
αi : Rn × Rn → R+ \ {0},

ᾱi(x, u) =
gi(x)− 〈ω̃i, x〉
gi(u)− 〈ω̃i, u〉

αi(x, u) > 0,
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θ̄i(x, u) =
(

1
gi(u)− 〈ω̃i, u〉

) 1
2

θi(x, u),

βj : Rn × Rn → R+ \ {0}, ρi ∈ R, i = 1, . . . , p; σj ∈ R, j = 1, . . . ,m, such
that

φi(x)− φi(u) ≥ ᾱi(x, u)∇φi(u)η(x, u) + ρi‖θ̄i(x, u)‖2

and
−hj(u) ≥ βj(x, u)∇hj(u)η(x, u) + σj‖θj(x, u)|2.

3. Optimality conditions

The following Kuhn-Tucker necessary optimality conditions for (GFP) from
[5] will be needed in the sequel:

Theorem 3.1. (Kuhn-Tucker necessary optimality condition) If x0

is a solution of the problem (GFP) and under the assumption that one has
0 6∈ co{∇hj(x0) | j = 1, . . . ,m}, then there exist λi ≥ 0,

i ∈ I(x0) :=
{
i
∣∣ max

j

fj(x0) + s(x0|Cj)
gj(x0)− s(x0|Dj)

=
fi(x0) + s(x0|Ci)
gi(x0)− s(x0|Di)

}
,

∑p
i=1 λi = 1, µj ≥ 0, j = 1, . . . ,m and ωi ∈ Ci, ω̃i ∈ Di, i = 1, . . . , p such

that
p∑

i=1

λi∇
(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
+

m∑
j=1

µj∇hj(x0) = 0,

〈ωi, x0〉 = s(x0|Ci), 〈ω̃i, x0〉 = s(x0|Di),
m∑

j=1

µjhj(x0) = 0.

Theorem 3.2. (Kuhn-Tucker type sufficient condition) Suppose that
there exist a feasible solution x0 for (GFP) and scalars λi > 0, i = 1, . . . , p,∑p

i=1 λi = 1, µj ≥ 0, j = 1, . . . ,m and ωi ∈ Ci, ω̃i ∈ Di, i = 1, . . . , p, such
that

(i)
p∑

i=1

λi∇
(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
+

m∑
j=1

µj∇hj(x0) = 0,

〈ωi, x0〉 = s(x0|Ci), 〈ω̃i, x0〉 = s(x0|Di),
m∑

j=1

µjhj(x0) = 0;

(ii) (φi, hj) is (V, ρi, σj)-type I invex at x0.
Then x0 is an efficient solution for (GFP).



Nondifferentiable minimax fractional optimization 99

Proof. Hypothesis (i) implies that

0 =
p∑

i=1

λi∇
(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
+

m∑
j=1

µj∇hj(x0). (3.1)

Since (φi, hj) is (V, ρi, σj)-type I invex at x0, we have, for all x ∈ S,

fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

− fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

≥ ᾱi(x, x0)∇
(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
η(x, x0) + ρi‖θ̄i(x, x0)‖2

and
0 = −hj(x0) ≥ βj(x, x0)∇hj(x0)η(x, x0) + σj‖θj(x, x0)‖2.

By using ᾱi(x, x0) > 0, i = 1, . . . , p and βj(x, x0) > 0, j = 1, . . . ,m we get

1
ᾱi(x, x0)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
− 1
ᾱi(x, x0)

(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
(3.2)

≥ ∇
(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
η(x, x0) +

ρi‖θ̄i(x, x0)‖2

ᾱi(x, x0)

and

0 ≥ ∇hj(x0)η(x, x0) +
σj‖θj(x, x0)‖2

βj(x, x0)
. (3.3)

Adding (3.2) and (3.3), we get

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
−

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)

≥

 p∑
i=1

λi∇
(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
+

m∑
j=1

µj∇hj(x0)

 η(x, x0)

+
p∑

i=1

λi
ρi‖θ̄i(x, x0)‖2

ᾱi(x, x0)
+

m∑
j=1

µj

σj‖θj(x, x0)‖2

βj(x, x0)
.

Using (3.1), we have

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
−

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)

≥
p∑

i=1

λi
ρi‖θ̄i(x, x0)‖2

ᾱi(x, x0)
+

m∑
j=1

µj

σj‖θj(x, x0)‖2

βj(x, x0)
.



100 S. K. Mishra and A. K. Singh

As
p∑

i=1

λi
ρi‖θ̄i(x, x0)‖2

ᾱi(x, x0)
≥ 0 and

m∑
j=1

µj

σj‖θj(x, x0)‖2

βj(x, x0)
≥ 0, we get

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
−

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
≥ 0.

We thus have
p∑

i=1

λi

ᾱi(x, x0)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
≥

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
. (3.4)

Suppose that x0 is not an efficient solution for (GFP), then there exist a
feasible solution x for (GFP) and an index r such that φi(x) ≤ φi(x0) for
any i 6= r and φr(x) < φr(x0), where

φi(x) =
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

for any i.

Since λi > 0 and ᾱi(x, x0) > 0, i = 1, . . . , p, we have

p∑
i=1

λi

ᾱi(x, x0)
φi(x) <

p∑
i=1

λi

ᾱi(x, x0)
φi(x0).

It follows that one has
p∑

i=1

λi

ᾱi(x, x0)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
<

p∑
i=1

λi

ᾱi(x, x0)

(
fi(x0) + 〈ωi, x0〉
gi(x0)− 〈ω̃i, x0〉

)
,

which contradicts the inequalities (3.4) and hence x0 is an efficient solution
for (GFP). 2

4. Mond-Weir type duality

We now consider the following Mond-Weir type dual for (GFP).

(DGFP) Maximize max
{
fi(u) + s(u|Ci)
gi(u)− s(u|Di)

| i = 1, . . . , p
}

subject to:
p∑

i=1

λi∇
(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
+

m∑
j=1

µj∇hj(u) = 0, (4.1)

ωi ∈ Ci, 〈ωi, u〉 = s(u|Ci), ω̃i ∈ Di, 〈ω̃i, u〉 = s(u|Di), i = 1, . . . ,m,

λi > 0, i = 1, . . . , p,
p∑

i=1

λi = 1, µj ≥ 0, j = 1, . . . ,m,
m∑

j=1

µjhj(u) = 0.
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Theorem 4.1. (Weak duality) Let x be a feasible solution for (GFP) and
let (u, λ, µ, ω, ω̃) be feasible for (DGFP) such that (φi, hj) is (V, ρi, σj)-type
I invex at u. Then the following cannot hold(

fi(x) + s(x|Ci)
gi(x)− s(x|Di)

)
<

(
fi(u) + s(u|Ci)
gi(u)− s(u|Di)

)
. (4.2)

Proof. Suppose that (4.2) holds, that is(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
<

(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
.

Using λi > 0, i = 1, . . . , p,
∑p

i=1 λi = 1, µj ≥ 0, j = 1, . . . ,m, we get

p∑
i=1

λi

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
<

p∑
i=1

λi

(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
,

that is
p∑

i=1

λi

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
−

p∑
i=1

λi

(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
< 0 (4.3)

and

−
m∑

j=1

µjhj(u) = 0. (4.4)

By (V, ρ, σ)-type I invexity, we have

p∑
i=1

λi∇
(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
η(x, u) +

p∑
i=1

λi
ρi‖θ̄i(x, u)‖2

ᾱi(x, u)

≤
p∑

i=1

λi

ᾱi(x, u)

(
fi(x) + 〈ωi, x〉
gi(x)− 〈ω̃i, x〉

)
−

p∑
i=1

λi

ᾱi(x, u)

(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
< 0

and
m∑

j=1

µj∇hj(u)η(x, u) +
m∑

j=1

µj

σj‖θj(x, u)‖2

βj(x, u)
≤ −

m∑
j=1

µj

βj(x, u)
∇hj(u) = 0.

That is,

p∑
i=1

λi∇
(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
η(x, u) +

p∑
i=1

λi
ρi‖θ̄i(x, u)‖2

ᾱi(x, u)
< 0

and
m∑

j=1

µj∇hj(u)η(x, u) +
m∑

j=1

µj

σj‖θj(x, u)‖2

βj(x, u)
≤ 0.
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By adding the above inequalities, we get p∑
i=1

λi∇
(
fi(u) + 〈ωi, u〉
gi(u)− 〈ω̃i, u〉

)
+

m∑
j=1

µj∇hj(u)

 η(x, u) < 0,

which contradicts the dual constraints (4.1). Hence (4.2) cannot hold. 2

Theorem 4.2. (Strong duality) Let x̄ be a weakly efficient solution for
(GFP). Then there exist λ̄ ∈ Rp, µ̄ ∈ Rm and ω̄ ∈ C such that (x̄, λ̄, µ̄, ω̄, ω̃)
is feasible for (DGFP). Moreover, if the weak duality holds, then (x̄, λ̄, µ̄, ω̄, ω̃)
is a weakly efficient solution for (DGFP).

Proof. Take x̄ a weakly efficient solution for (GFP) and suppose that
0 6∈ co{∇hj(x̄) | j = 1, . . . ,m}. Then there exist λ̄ ∈ Rp, µ̄ ∈ Rm and
ω̄i ∈ Ci, ω̃ ∈ Di, i = 1, . . . , p such that

p∑
i=1

λ̄i∇
(
fi(x̄) + 〈ω̄i, x̄〉
gi(x̄)− 〈ω̃i, x̄〉

)
+

m∑
j=1

µ̄j∇hj(x̄) = 0,

〈ω̄i, x̄〉 = s(x̄|Ci), 〈ω̃i, x̄〉 = s(x̄|Di),
m∑

j=1

µ̄jhj(x̄) = 0,

λ̄i > 0, i = 1, . . . , p,
p∑

i=1

λ̄i = 1.

Thus, (x̄, λ̄, µ̄, ω̄, ω̃) is a feasible solution for (DGFP). On the other hand,
by weak duality (Theorem 4.1),

max
{
fi(x̄) + s(x̄|Ci)
gi(x̄)− s(x̄|Di)

| i = 1, . . . , p
}
≥ max

{
fi(u) + s(u|Ci)
gi(u)− s(u|Di)

| i = 1, . . . , p
}
,

for any feasible solution (x, λ, µ, ω, ω̃) of (DGFP). Hence (x̄, λ̄, µ̄, ω̄, ω̃) is a
weakly efficient solution for (DGFP).

2
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