Optimality and duality for nondifferentiable minimax fractional optimization problems with generalized invexity

S. K. Mishra and A. K. Singh
Communicated by Vasile Preda

Abstract

We establish Karush-Kuhn-Tucker sufficient optimality conditions for a nondifferentiable minimax fractional optimization problem, in which numerator and denominator of each term consists of support function, under the assumptions of (V, ρ, σ)-type I invex functions. Mond-Weir type weak and strong duality theorems are also obtained under the aforesaid assumptions.

Key words and phrases : sufficient optimality conditions, duality theorems, generalized invexity, minimax fractional programming problems.

Mathematics Subject Classification (2000) : 49N15, 90C46.

1. Introduction

The concept of duality, convexity and invexity in fractional programming has received special attention of researchers in solving different real life problems and mathematical models that require the relative comparison of two magnitudes. The popularity of the fractional programming lies in the fact that although the objective function is nondifferentiable, a simple formulation of the dual may be given. Later, Mishra et al. [9], Chinchuluun et al. [1] and Huang et al. [7] have dealt with many useful optimality and duality results for nondifferentiable fractional programming problems. There are several chapters devoted to this topic by Mishra and Giorgio [8], Clarke [2] and Craven [3].

In the recent past, Kuk et al. [6] have introduced the concept of (V, ρ) invexity, which is generalization of the V-invexity for vector valued functions and derived the generalized Karush-Kuhn-Tucker optimality conditions as well as weak and strong duality for nonsmooth multiobjective fractional programs. Later, Kim et al. [4] extended their results in presence of support functions. Very recently, Kim et al. [5] have introduced the assumption of (V, ρ)-invexity for the following generalized nondifferentiable fractional programming problem (GFP):

$$
\text { Minimize } \max \left\{\left.\frac{f_{i}(x)+s\left(x \mid C_{i}\right)}{g_{i}(x)-s\left(x \mid D_{i}\right)} \right\rvert\, i=1, \ldots, p\right\}
$$

$$
\text { subject to: } \quad h_{j}(x) \leq 0, j=1, \ldots m
$$

where $f:=\left(f_{1}, \ldots, f_{p}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, g:=\left(g_{1}, \ldots, g_{p}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $h:=\left(h_{1}, \ldots, h_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are continuously differentiable and for each $i=1, \ldots, p, C_{i}$ and D_{i} are compact convex sets of \mathbb{R}^{n}.

In this paper, motivated by Kim et al. (see [5]), we introduce (V, ρ, σ)type I invex function to derive the Karush-Kuhn-Tucker sufficient optimality and Mond-Weir type weak and strong duality theorems for a generalized nondifferentiable minimax fractional optimization problem (GFP), in which numerator and denominator of each term consists of support function, and a constraint set defined by differentiable functions.

2. Preliminaries and definitions

In this paper, we consider the following nondifferentiable multiobjective fractional programming problem

$$
\begin{gathered}
\text { (GFP) } \quad \text { Minimize } \max \left\{\left.\frac{f_{i}(x)+s\left(x \mid C_{i}\right)}{g_{i}(x)-s\left(x \mid D_{i}\right)} \right\rvert\, i=1, \ldots, p\right\} \\
\text { subject to: } \quad h_{j}(x) \leq 0, j=1, \ldots m,
\end{gathered}
$$

where $f:=\left(f_{1}, \ldots, f_{p}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}, g:=\left(g_{1}, \ldots, g_{p}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $h:=\left(h_{1}, \ldots, h_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are continuously differentiable. We assume that $g_{i}(x)-s\left(x \mid D_{i}\right)>0, i=1, \ldots, p$. For each $i=1, \ldots, p, C_{i}$ and D_{i} are compact convex sets of \mathbb{R}^{n} and define the support functions with respect to C_{i} and D_{i} as follows:

$$
s\left(x \mid C_{i}\right)=\max \left\{\left\langle x, y_{i}\right\rangle \mid y_{i} \in C_{i}\right\}
$$

and

$$
s\left(x \mid D_{i}\right)=\max \left\{\left\langle x, y_{i}\right\rangle \mid y_{i} \in D_{i}\right\} .
$$

Further denote $I(x)=\left\{j \mid h_{j}(x)=0\right\}$, for any $x \in \mathbb{R}^{n}$. Let $k_{i}(x)=s\left(x \mid C_{i}\right)$ and $\tilde{k}_{i}(x)=s\left(x \mid D_{i}\right), i=1, \ldots, p$. Hence, $k_{i}(x)$ and $\tilde{k}_{i}(x)$ are convex functions. Choose $\omega_{i} \in \partial k_{i}(x)$ and $\tilde{\omega}_{i} \in \partial \tilde{k}_{i}(x)$ such that

$$
\partial k_{i}(x)=\left\{\omega_{i} \in C_{i} \mid\left\langle\omega_{i}, x\right\rangle=s\left(x \mid C_{i}\right)\right\}
$$

and

$$
\partial \tilde{k}_{i}(x)=\left\{\tilde{\omega}_{i} \in D_{i} \mid\left\langle\tilde{\omega}_{i}, x\right\rangle=s\left(x \mid D_{i}\right)\right\},
$$

where ∂k_{i} and $\partial \tilde{k}_{i}$ are the subdifferential of k_{i} and \tilde{k}_{i} respectively. Further, let

$$
S=\left\{x \in \mathbb{R}^{n} \mid h_{j}(x) \leq 0, j=1, \ldots, m\right\}
$$

Definition 2.1. A vector valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is said to be η-invex at $u \in \mathbb{R}^{n}$ if for any $x \in \mathbb{R}^{n}$ and for all $i=1, \ldots, p$, one has

$$
f_{i}(x)-f_{i}(u) \geq \nabla f_{i}(u) \eta(x, u)
$$

Definition 2.2. A vector valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is said to be (V, ρ) invex at $u \in \mathbb{R}^{n}$ with respect to the functions η and $\theta_{i}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ if there exist $\alpha_{i}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \backslash\{0\}$ and $\rho_{i} \in \mathbb{R}, i=1, \ldots, p$, such that for any $x \in \mathbb{R}^{n}$ and for all $i=1, \ldots, p$ it holds

$$
\alpha_{i}(x, u)\left[f_{i}(x)-f_{i}(u)\right] \geq \nabla f_{i}(u) \eta(x, u)+\rho_{i}\left\|\theta_{i}(x, u)\right\|^{2}
$$

The following Theorem from [5] will be needed in the sequel:

Theorem 2.1. Assume that f and g are vector valued differentiable functions defined on \mathbb{R}^{n} and $f(x)+\langle\omega, x\rangle \geq 0, g(x)-\langle\tilde{\omega}, x\rangle>0$ for all $x \in \mathbb{R}^{n}$. If $f(\cdot)+\langle\omega, \cdot\rangle$ and $-g(\cdot)+\langle\tilde{\omega}, \cdot\rangle$ are (V, ρ)-invex at $u \in \mathbb{R}^{n}$ with respect to the functions η, θ_{i} and $\alpha_{i}, i=1, \ldots, p$, then $\frac{f(\cdot)+\langle\omega, \cdot\rangle}{g(\cdot)-\langle\tilde{\omega}, \cdot\rangle}$ is (V, ρ) - invex at $u \in \mathbb{R}^{n}$ with respect to the functions $\eta, \bar{\theta}_{i}$ and $\bar{\alpha}_{i}, i=1, \ldots, p$, where

$$
\bar{\alpha}_{i}(x, u)=\frac{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle} \alpha_{i}(x, u)
$$

and

$$
\bar{\theta}_{i}(x, u)=\left(\frac{1}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)^{\frac{1}{2}} \theta_{i}(x, u)
$$

that is, for all i,

$$
\begin{aligned}
\bar{\alpha}_{i}(x, u)\left[\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}-\right. & \left.\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right] \\
& \geq \nabla\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right) \eta(x, u)+\rho_{i}\left\|\bar{\theta}_{i}(x, u)\right\|^{2}
\end{aligned}
$$

Definition 2.3. Let

$$
\begin{gathered}
\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)=\phi_{i}(x), \quad i=1, \ldots, p \\
\left\langle\omega_{i}, x\right\rangle=s\left(x \mid C_{i}\right), \quad\left\langle\tilde{\omega}_{i}, x\right\rangle=s\left(x \mid D_{i}\right)
\end{gathered}
$$

The pair $\left(\phi_{i}, h_{j}\right)$ is called $\left(V, \rho_{i}, \sigma_{j}\right)$-type I invex at $u \in \mathbb{R}^{n}$, if there exist $\alpha_{i}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \backslash\{0\}$,

$$
\bar{\alpha}_{i}(x, u)=\frac{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle} \alpha_{i}(x, u)>0
$$

$$
\bar{\theta}_{i}(x, u)=\left(\frac{1}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)^{\frac{1}{2}} \theta_{i}(x, u),
$$

$\beta_{j}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+} \backslash\{0\}, \rho_{i} \in \mathbb{R}, i=1, \ldots, p ; \sigma_{j} \in \mathbb{R}, j=1, \ldots, m$, such that

$$
\phi_{i}(x)-\phi_{i}(u) \geq \bar{\alpha}_{i}(x, u) \nabla \phi_{i}(u) \eta(x, u)+\rho_{i}\left\|\bar{\theta}_{i}(x, u)\right\|^{2}
$$

and

$$
-h_{j}(u) \geq \beta_{j}(x, u) \nabla h_{j}(u) \eta(x, u)+\sigma_{j} \|\left.\theta_{j}(x, u)\right|^{2}
$$

3. Optimality conditions

The following Kuhn-Tucker necessary optimality conditions for (GFP) from [5] will be needed in the sequel:

Theorem 3.1. (Kuhn-Tucker necessary optimality condition) If x_{0} is a solution of the problem (GFP) and under the assumption that one has $0 \notin \operatorname{co}\left\{\nabla h_{j}\left(x_{0}\right) \mid j=1, \ldots, m\right\}$, then there exist $\lambda_{i} \geq 0$,

$$
i \in I\left(x_{0}\right):=\left\{i \left\lvert\, \max _{j} \frac{f_{j}\left(x_{0}\right)+s\left(x_{0} \mid C_{j}\right)}{g_{j}\left(x_{0}\right)-s\left(x_{0} \mid D_{j}\right)}=\frac{f_{i}\left(x_{0}\right)+s\left(x_{0} \mid C_{i}\right)}{g_{i}\left(x_{0}\right)-s\left(x_{0} \mid D_{i}\right)}\right.\right\}
$$

$\sum_{\text {that }}^{p} \lambda_{i}=1, \mu_{j} \geq 0, j=1, \ldots, m$ and $\omega_{i} \in C_{i}, \tilde{\omega}_{i} \in D_{i}, i=1, \ldots, p$ such

$$
\begin{gathered}
\sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right)+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}\left(x_{0}\right)=0 \\
\left\langle\omega_{i}, x_{0}\right\rangle=s\left(x_{0} \mid C_{i}\right), \quad\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle=s\left(x_{0} \mid D_{i}\right) \\
\sum_{j=1}^{m} \mu_{j} h_{j}\left(x_{0}\right)=0
\end{gathered}
$$

Theorem 3.2. (Kuhn-Tucker type sufficient condition) Suppose that there exist a feasible solution x_{0} for (GFP) and scalars $\lambda_{i}>0, i=1, \ldots, p$, $\sum_{i=1}^{p} \lambda_{i}=1, \mu_{j} \geq 0, j=1, \ldots, m$ and $\omega_{i} \in C_{i}, \tilde{\omega}_{i} \in D_{i}, i=1, \ldots, p$, such that

$$
\begin{gather*}
\sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right)+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}\left(x_{0}\right)=0, \tag{i}\\
\left\langle\omega_{i}, x_{0}\right\rangle=s\left(x_{0} \mid C_{i}\right), \quad\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle=s\left(x_{0} \mid D_{i}\right), \\
\sum_{j=1}^{m} \mu_{j} h_{j}\left(x_{0}\right)=0
\end{gather*}
$$

(ii) $\left(\phi_{i}, h_{j}\right)$ is $\left(V, \rho_{i}, \sigma_{j}\right)$-type I invex at x_{0}.

Then x_{0} is an efficient solution for (GFP).

Proof. Hypothesis (i) implies that

$$
\begin{equation*}
0=\sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right)+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}\left(x_{0}\right) . \tag{3.1}
\end{equation*}
$$

Since $\left(\phi_{i}, h_{j}\right)$ is $\left(V, \rho_{i}, \sigma_{j}\right)$-type I invex at x_{0}, we have, for all $x \in S$,

$$
\begin{aligned}
& \frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}-\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle} \\
& \quad \geq \bar{\alpha}_{i}\left(x, x_{0}\right) \nabla\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) \eta\left(x, x_{0}\right)+\rho_{i}\left\|\bar{\theta}_{i}\left(x, x_{0}\right)\right\|^{2}
\end{aligned}
$$

and

$$
0=-h_{j}\left(x_{0}\right) \geq \beta_{j}\left(x, x_{0}\right) \nabla h_{j}\left(x_{0}\right) \eta\left(x, x_{0}\right)+\sigma_{j}\left\|\theta_{j}\left(x, x_{0}\right)\right\|^{2} .
$$

By using $\bar{\alpha}_{i}\left(x, x_{0}\right)>0, i=1, \ldots, p$ and $\beta_{j}\left(x, x_{0}\right)>0, j=1, \ldots, m$ we get

$$
\begin{array}{r}
\frac{1}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)-\frac{1}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) \tag{3.2}\\
\quad \geq \nabla\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) \eta\left(x, x_{0}\right)+\frac{\rho_{i}| | \bar{\theta}_{i}\left(x, x_{0}\right) \|^{2}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}
\end{array}
$$

and

$$
\begin{equation*}
0 \geq \nabla h_{j}\left(x_{0}\right) \eta\left(x, x_{0}\right)+\frac{\sigma_{j}\left\|\theta_{j}\left(x, x_{0}\right)\right\|^{2}}{\beta_{j}\left(x, x_{0}\right)} \tag{3.3}
\end{equation*}
$$

Adding (3.2) and (3.3), we get

$$
\begin{aligned}
& \sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)-\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) \\
& \geq\left[\sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right)+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}\left(x_{0}\right)\right] \eta\left(x, x_{0}\right) \\
& +\sum_{i=1}^{p} \lambda_{i} \frac{\rho_{i}\left\|\bar{\theta}_{i}\left(x, x_{0}\right)\right\|^{2}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}+\sum_{j=1}^{m} \mu_{j} \frac{\sigma_{j}\left\|\theta_{j}\left(x, x_{0}\right)\right\|^{2}}{\beta_{j}\left(x, x_{0}\right)} .
\end{aligned}
$$

Using (3.1), we have

$$
\begin{gathered}
\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)-\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) \\
\quad \geq \sum_{i=1}^{p} \lambda_{i} \frac{\rho_{i}\left\|\bar{\theta}_{i}\left(x, x_{0}\right)\right\|^{2}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}+\sum_{j=1}^{m} \mu_{j} \frac{\sigma_{j}\left\|\theta_{j}\left(x, x_{0}\right)\right\|^{2}}{\beta_{j}\left(x, x_{0}\right)} .
\end{gathered}
$$

$$
\begin{aligned}
& \text { As } \sum_{i=1}^{p} \lambda_{i} \frac{\rho_{i}\left\|\bar{\theta}_{i}\left(x, x_{0}\right)\right\|^{2}}{\bar{\alpha}_{i}\left(x, x_{0}\right)} \geq 0 \text { and } \sum_{j=1}^{m} \mu_{j} \frac{\sigma_{j}\left\|\theta_{j}\left(x, x_{0}\right)\right\|^{2}}{\beta_{j}\left(x, x_{0}\right)} \geq 0, \text { we get } \\
& \sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)-\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) \geq 0 .
\end{aligned}
$$

We thus have

$$
\begin{equation*}
\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right) \geq \sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right) . \tag{3.4}
\end{equation*}
$$

Suppose that x_{0} is not an efficient solution for (GFP), then there exist a feasible solution x for (GFP) and an index r such that $\phi_{i}(x) \leq \phi_{i}\left(x_{0}\right)$ for any $i \neq r$ and $\phi_{r}(x)<\phi_{r}\left(x_{0}\right)$, where

$$
\phi_{i}(x)=\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle} \text { for any } i .
$$

Since $\lambda_{i}>0$ and $\bar{\alpha}_{i}\left(x, x_{0}\right)>0, i=1, \ldots, p$, we have

$$
\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)} \phi_{i}(x)<\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)} \phi_{i}\left(x_{0}\right) .
$$

It follows that one has

$$
\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)<\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}\left(x, x_{0}\right)}\left(\frac{f_{i}\left(x_{0}\right)+\left\langle\omega_{i}, x_{0}\right\rangle}{g_{i}\left(x_{0}\right)-\left\langle\tilde{\omega}_{i}, x_{0}\right\rangle}\right),
$$

which contradicts the inequalities (3.4) and hence x_{0} is an efficient solution for (GFP).

4. Mond-Weir type duality

We now consider the following Mond-Weir type dual for (GFP).

$$
\begin{gather*}
\text { (DGFP) Maximize } \max \left\{\left.\frac{f_{i}(u)+s\left(u \mid C_{i}\right)}{g_{i}(u)-s\left(u \mid D_{i}\right)} \right\rvert\, i=1, \ldots, p\right\} \\
\text { subject to: } \quad \sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}(u)=0, \tag{4.1}\\
\omega_{i} \in C_{i},\left\langle\omega_{i}, u\right\rangle=s\left(u \mid C_{i}\right), \tilde{\omega}_{i} \in D_{i},\left\langle\tilde{\omega}_{i}, u\right\rangle=s\left(u \mid D_{i}\right), i=1, \ldots, m, \\
\lambda_{i}>0, i=1, \ldots, p, \sum_{i=1}^{p} \lambda_{i}=1, \quad \mu_{j} \geq 0, j=1, \ldots, m, \sum_{j=1}^{m} \mu_{j} h_{j}(u)=0 .
\end{gather*}
$$

Theorem 4.1. (Weak duality) Let x be a feasible solution for (GFP) and let $(u, \lambda, \mu, \omega, \tilde{\omega})$ be feasible for (DGFP) such that $\left(\phi_{i}, h_{j}\right)$ is $\left(V, \rho_{i}, \sigma_{j}\right)$-type I invex at u. Then the following cannot hold

$$
\begin{equation*}
\left(\frac{f_{i}(x)+s\left(x \mid C_{i}\right)}{g_{i}(x)-s\left(x \mid D_{i}\right)}\right)<\left(\frac{f_{i}(u)+s\left(u \mid C_{i}\right)}{g_{i}(u)-s\left(u \mid D_{i}\right)}\right) \tag{4.2}
\end{equation*}
$$

Proof. Suppose that (4.2) holds, that is

$$
\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)<\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)
$$

Using $\lambda_{i}>0, i=1, \ldots, p, \sum_{i=1}^{p} \lambda_{i}=1, \mu_{j} \geq 0, j=1, \ldots, m$, we get

$$
\sum_{i=1}^{p} \lambda_{i}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)<\sum_{i=1}^{p} \lambda_{i}\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)
$$

that is

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{i}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)-\sum_{i=1}^{p} \lambda_{i}\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)<0 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
-\sum_{j=1}^{m} \mu_{j} h_{j}(u)=0 \tag{4.4}
\end{equation*}
$$

By (V, ρ, σ)-type I invexity, we have

$$
\begin{aligned}
& \sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right) \eta(x, u)+\sum_{i=1}^{p} \lambda_{i} \frac{\rho_{i}\left\|\bar{\theta}_{i}(x, u)\right\|^{2}}{\bar{\alpha}_{i}(x, u)} \\
& \leq \sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}(x, u)}\left(\frac{f_{i}(x)+\left\langle\omega_{i}, x\right\rangle}{g_{i}(x)-\left\langle\tilde{\omega}_{i}, x\right\rangle}\right)-\sum_{i=1}^{p} \frac{\lambda_{i}}{\bar{\alpha}_{i}(x, u)}\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)<0
\end{aligned}
$$

and

$$
\sum_{j=1}^{m} \mu_{j} \nabla h_{j}(u) \eta(x, u)+\sum_{j=1}^{m} \mu_{j} \frac{\sigma_{j}\left\|\theta_{j}(x, u)\right\|^{2}}{\beta_{j}(x, u)} \leq-\sum_{j=1}^{m} \frac{\mu_{j}}{\beta_{j}(x, u)} \nabla h_{j}(u)=0
$$

That is,

$$
\sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right) \eta(x, u)+\sum_{i=1}^{p} \lambda_{i} \frac{\rho_{i}\left\|\bar{\theta}_{i}(x, u)\right\|^{2}}{\bar{\alpha}_{i}(x, u)}<0
$$

and

$$
\sum_{j=1}^{m} \mu_{j} \nabla h_{j}(u) \eta(x, u)+\sum_{j=1}^{m} \mu_{j} \frac{\sigma_{j}\left\|\theta_{j}(x, u)\right\|^{2}}{\beta_{j}(x, u)} \leq 0
$$

By adding the above inequalities, we get

$$
\left[\sum_{i=1}^{p} \lambda_{i} \nabla\left(\frac{f_{i}(u)+\left\langle\omega_{i}, u\right\rangle}{g_{i}(u)-\left\langle\tilde{\omega}_{i}, u\right\rangle}\right)+\sum_{j=1}^{m} \mu_{j} \nabla h_{j}(u)\right] \eta(x, u)<0,
$$

which contradicts the dual constraints (4.1). Hence (4.2) cannot hold.
Theorem 4.2. (Strong duality) Let \bar{x} be a weakly efficient solution for (GFP). Then there exist $\bar{\lambda} \in \mathbb{R}^{p}, \bar{\mu} \in \mathbb{R}^{m}$ and $\bar{\omega} \in C$ such that $(\bar{x}, \bar{\lambda}, \bar{\mu}, \bar{\omega}, \overline{\tilde{\omega}})$ is feasible for (DGFP). Moreover, if the weak duality holds, then $(\bar{x}, \bar{\lambda}, \bar{\mu}, \bar{\omega}, \overline{\widetilde{\omega}})$ is a weakly efficient solution for (DGFP).

Proof. Take \bar{x} a weakly efficient solution for (GFP) and suppose that $0 \notin \operatorname{co}\left\{\nabla h_{j}(\bar{x}) \mid j=1, \ldots, m\right\}$. Then there exist $\bar{\lambda} \in \mathbb{R}^{p}, \bar{\mu} \in \mathbb{R}^{m}$ and $\bar{\omega}_{i} \in C_{i}, \overline{\tilde{\omega}} \in D_{i}, i=1, \ldots, p$ such that

$$
\begin{gathered}
\sum_{i=1}^{p} \bar{\lambda}_{i} \nabla\left(\frac{f_{i}(\bar{x})+\left\langle\bar{\omega}_{i}, \bar{x}\right\rangle}{g_{i}(\bar{x})-\left\langle\bar{\omega}_{i}, \bar{x}\right\rangle}\right)+\sum_{j=1}^{m} \bar{\mu}_{j} \nabla h_{j}(\bar{x})=0 \\
\left\langle\bar{\omega}_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid C_{i}\right),\left\langle\bar{\omega}_{i}, \bar{x}\right\rangle=s\left(\bar{x} \mid D_{i}\right) \\
\sum_{j=1}^{m} \bar{\mu}_{j} h_{j}(\bar{x})=0 \\
\bar{\lambda}_{i}>0, i=1, \ldots, p, \sum_{i=1}^{p} \bar{\lambda}_{i}=1
\end{gathered}
$$

Thus, $(\bar{x}, \bar{\lambda}, \bar{\mu}, \bar{\omega}, \bar{\omega})$ is a feasible solution for (DGFP). On the other hand, by weak duality (Theorem 4.1),

$$
\max \left\{\left.\frac{f_{i}(\bar{x})+s\left(\bar{x} \mid C_{i}\right)}{g_{i}(\bar{x})-s\left(\bar{x} \mid D_{i}\right)} \right\rvert\, i=1, \ldots, p\right\} \geq \max \left\{\left.\frac{f_{i}(u)+s\left(u \mid C_{i}\right)}{g_{i}(u)-s\left(u \mid D_{i}\right)} \right\rvert\, i=1, \ldots, p\right\}
$$

for any feasible solution $(x, \lambda, \mu, \omega, \tilde{\omega})$ of (DGFP). Hence $(\bar{x}, \bar{\lambda}, \bar{\mu}, \bar{\omega}, \overline{\tilde{\omega}})$ is a weakly efficient solution for (DGFP).

References

[1] A. Chinchuluun, D. Yuan and P. M. Pardalos, Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity, Ann. Oper. Res., 154 (2007), 133-147.
[2] F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley \& Sons, 1983.
[3] B. D. Craven, Fractional Programming A Survey, Opsearch, 25 (1988), 165-175.
[4] M.H. Kim and G.S. Kim, On optimality and duality of generalized nondifferentiable fractional optimization problems, Commun. Korean Math. Soc., 25 (2010), 139-147.
[5] M.H. Kim and G.S. Kim, Optimality and duality for generalized nondifferentiable fractional optimization with generalized invexity, J. Appl. Math. Inform., 28 (2010), 1535-1544.
[6] H. Kuk, G. M. Lee and T. Tanino, Optimality and duality for nonsmooth multiobjective fractional programming with generalized invexity, J. Math. Anal. Appl., 262 (2001), 365-375.
[7] T.Y. Huang, H.C. Lai and S. Schaible, Optimization theory for set functions in nondifferentiable fractional programming with mixed type duality, Taiwanese J. Math., 12 (2008), 2031-2044.
[8] S.K. Mishra and G. Giorgi, Invexity and Optimization, Springer-Verlag, Berlin Heidelberg, 2008.
[9] S.K. Mishra and J.S. Rautela, On nondifferentiable minimax fractional programming under generalized type I invexity, J. Appl. Math. Comput., 31 (2009), 317-334.
S. K. Mishra and A. K. Singh

Department of Mathematics, Faculty of Science
Banaras Hindu University, Varanasi, India
E-mail: bhu.skmishra@gmail.com, abhishekkit@gmail.com
A. K. Singh

Department of Applied Sciences
Kashi Institute of Technology, Varanasi, India

