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1. Introduction

Let D be a domain in C and C = C ∪ {∞}. The Beltrami equation in
D has the form

fz = µ(z) · fz, (1.1)

where µ(z) : D → C is a measurable function with |µ(z)| < 1 a.e., fz =
∂f = (fx + ify) /2, fz = ∂f = (fx − ify) /2, z = x+iy, fx and fy denote the
partial derivatives of the mapping f in x and y, respectively. The function
µ is the complex coefficient and

Kµ(z) =
1 + |µ(z)|
1− |µ(z)|

(1.2)

is the dilatation quotient or simply the dilatation of equation (1.1).
Recall that a mapping f : D → C is called regular at a point z0 ∈ D if

f has a total differential at the point and its Jacobian Jf = |fz|2−|fz|2 6= 0 at
z0 (see, e.g., I.1.6 in [17]). A homeomorphism f of the class W 1, 1

loc is called
regular if Jf (z) > 0 a.e. Finally, the regular solution of the Beltrami
equation (1.1) in the domain D is a regular homeomorphism that satisfies
(1.1) a.e. in D. The notion of the regular solution was first introduced in
the paper [3], see existence theorems in the survey [12].

A function f : D → C is called absolutely continuous on lines,
written f ∈ ACL, if for every closed rectangular R in D whose sides are
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parallel to the coordinate axes, f |R is absolutely continuous on almost every
linear segment in R which is parallel to the sides of R (see, e.g., [1], p. 23).

Let Q(z) : D → I = [1,∞] be an arbitrary function. A sense-preserving
homeomorphism f : D → C of the class ACL is called Q(z)−quasiconfor-
mal (Q(z)−qc) mapping if a.e.

Kµf
(z) :=

1 + |µf (z)|
1− |µf (z)|

≤ Q(z), (1.3)

where µf = fz/fz if fz 6= 0 and µf = 0 if fz = 0. The function µf is called
the complex characteristic and Kµf

the dilatation of the mapping f .
In the following D := {ν ∈ C | |ν| < 1}. Let G be the group of all linear-

fractional mappings of D onto itself. A set M in D is called invariant–
convex if all sets g(M), g ∈ G, are convex, see, e.g., [24], p. 636. In
particular, such sets are convex. We say that a family of compact sets
M(z) ⊆ D, z ∈ C is measurable in the parameter z, if for every closed
set M0 ⊆ C the set E0 = {z ∈ C |M(z) ⊆ M0} is measurable by Lebesgue
(cf., e.g., [28]). In the sequel we will use the following notations

QM (z) :=
1 + qM (z)
1− qM (z)

, qM (z) := max
ν∈M(z)

|ν| . (1.4)

Let M(z), z ∈ C be a family of compact sets in D measurable in the
parameter z. Let us denote by MM the class of all measurable functions
satisfying the condition µ(z) ∈ M(z) a.e., and by H∗M the collection of all
regular homeomorphisms f : C → C with the complex characteristics in
MM and the normalization f(0) = 0, f(1) = 1, f(∞) =∞. In the previous
papers [18] and [25], it was proved a series of criteria for the compactness
of the classes H∗M under the corresponding conditions on the function QM
for invariant-convex M(z), z ∈ C, cf. also [19] and [23]. Note that the last
condition implies convexity of the set of the complex characteristics MM . As
we will see later, the last circumstance essentially simplifies the construction
of variations in the classes H∗M .

One of the significant applications of compactness theorems is the theory
of the variational method. The matter is that, in the compact classes, it
is guaranteed the existence of extremal mappings for every continuous, in
particular, nonlinear functionals. The variational method of the research
of extremal problems for quasiconformal mappings was first applied by
P.P. Belinskii, see [2]. This method had a further development in papers
of V.Ya. Gutlyanskii, S.L. Krushkal’, R. Kühnau, V.I. Ryazanov, M. Schif-
fer, G. Schober and others, see, e.g., [7]– [10], [14], [15], [27], [29], [30].

Recall that a mapping f : X → Y between metric spaces X and Y is
called Lipschitz if dist(f(x1), f(x2)) ≤ M · dist(x1, x2) for some M < ∞
and for all x1, x2 ∈ X where dist (x1, x2) denotes a distance in the metric
spaces X and Y (see, e.g., [5], p. 63). The mapping f is called bi-Lipschitz
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if in addition M∗ · dist(x1, x2) ≤ dist(f(x1), f(x2)) for some M∗ > 0 and
for all x1, x2 ∈ X.

2. Preliminaries

Let us give necessary facts from the theory of composition operators in
Sobolev’s spaces. Let D be a domain in the Euclidean space Rn. Recall
that the Sobolev space L1

p(D), p ≥ 1, is the space of locally integrable
functions ϕ : D → R with the first partial generalized derivatives and with
the seminorm

‖ϕ‖L1
p(D) = ‖ 5 ϕ‖Lp(D) =

∫
D

| 5 ϕ|pdm

1/p

<∞, (2.1)

where m is the Lebesgue measure in Rn, 5ϕ is the generalized gradient
of the function ϕ, 5ϕ =

(
∂ϕ
∂x1

, ..., ∂ϕ∂xn

)
, x = (x1, ..., xn), defined by the

conditions∫
D

ϕ · ∂η
∂xi

dm = −
∫
D

∂ϕ

∂xi
· η dm ∀ η ∈ C∞0 (D), i = 1, 2, ..., n. (2.2)

As usual, here C∞0 (D) denotes the space of all infinitely smooth functions
with a compact support in D. Similarly, one says that a vector-function
belongs to the Sobolev class L1

p(D) if every its coordinate function belongs
to L1

p(D). It is known the following fact, see [31] and [32].

Lemma 2.1. Let f be a homeomorphism between domains D and D′ in Rn.
Then the following statements are equivalent:

(i) the composition rule f∗ϕ = ϕ ◦ f generates the bounded operator

f∗ : L1
p(D

′)→ L1
q(D), 1 ≤ q ≤ p <∞ , (2.3)

(ii) the mapping f belongs to the class W 1,1
loc (D) and the function

Kp(x, f) := inf
{
k(x) | |Df |(x) ≤ k(x)|Jf (x)|

1
p

}
(2.4)

belongs to Lr(D), where r is defined from relation 1/r = 1/q − 1/p.

In particular, for n = 2, p = 2 and q = 1, we have from here the following
statement that will be useful for us.

Proposition 2.1. Let f : C → C be a sense-preserving homeomorphism
in the class W 1,1

loc with Kµf
∈ L1

loc. Then g ◦ f ∈ W 1,1
loc for every mapping

g : C→ C in the class W 1,2
loc .
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As it is well-known, every quasiconformal mapping g : C → C belongs
to the class W 1,2

loc , see, e.g., Theorem IV.1.2 in [17]. Thus, we come to the
following conclusion.

Corollary 2.1. For every quasiconformal mapping g : C → C and every
sense-preserving homeomorphism f : C → C of the class W 1,1

loc with Kµf
∈

L1
loc, the composition g ◦ f belongs to the class W 1,1

loc .

The following statement on differentiability of the composition is proved
similarly to Theorem 5.4.6 in [6].

Lemma 2.2. Let f be a homeomorphism between domains D and D′ in Rn,
the composition operator f∗ : L1

p(D
′)→ L1

q(D), 1 ≤ q ≤ p <∞, be bounded
and let f has N−1–property. Then for every function ϕ ∈ L1

p(D
′), a.e.

∂(ϕ ◦ f)
∂xi

(x) =
n∑
k=1

∂ϕ

∂yk
(f(x)) · ∂fk

∂xi
(x), i = 1, ..., n. (2.5)

Combining Lemmas 2.1, 2.2, similarly to IC(1) in [1], we obtain by [22]:

Proposition 2.2. Let f : C→ C be a sense-preserving regular homeomor-
phism with Kµf

∈ L1
loc. Then, for every mapping g : C → C of the class

W 1,2
loc , a.e.

(g ◦ f)z = (gw ◦ f)fz + (gw ◦ f)fz , (g ◦ f)z = (gw ◦ f)fz + (gw ◦ f)fz . (2.6)

Corollary 2.2. In particular, formulas (2.6) hold for quasiconformal map-
pings g : C→ C.

3. The construction of variations

This section is devoted to constructing variations in the classes H∗M with a
method whose idea was first proposed by V.Ya. Gutlyanskii in the paper [8]
for analytic functions with a quasiconformal extension. Later, this approach
was applied in [26] under constraints for QM in measure of the exponential
type, see also [11].

Theorem 3.1. Let M(z), z ∈ C be an arbitrary family of convex sets in D.
Now, let µ ∈ MM be a complex characteristic of a mapping f ∈ H∗M such
that Kµ ∈ L1

loc and ν ∈MM such that the function

κ = (ν − µ)/(1− |µ|2) (3.1)
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belongs to the open unit ball in L∞(C). Then there is a variation fε, ε ∈
[0, 1/2] of the mapping f in the class H∗M with the complex characteristic

µε = µ+ ε(ν − µ) = (1− ε)µ+ εν , ε ∈ [0, 1/2] (3.2)

such that

fε(ζ) = f(ζ)− ε

π

∫
C

(ν(z)− µ(z))ϕ(f(z), f(ζ)) f2
z dmz + o(ε, ζ) (3.3)

where o(ε , ζ)/ε→ 0 locally uniform with respect to ζ ∈ C and

ϕ(w, w′) =
1

w − w′
· w
′

w
· w
′ − 1
w − 1

. (3.4)

Proof. Denote by B the (Borel) set of all points z ∈ C, where f has a total
differential and Jf (z) 6= 0. Then by definition of the class H∗M and by the
Gehring–Lehto–Menchoff theorem |C \B| = 0 (see [21], cf. Theorem III.3.1
in [17]). Moreover, by Lemma 3.2.2 in [5] the set B can be splitted into a
countable collection of sets Bl, where f is bi-Lipschitz. By the Kirszbraun-
McShane theorem, see, e.g., Theorem 2.10.43 in [5], see also [13] and [20],
the restrictions f |Bl

admit extensions to Lipschitz mappings of C. Thus, f
has (N)–property on the set B and we may replace variables in integrals,
see, e.g., Theorem 3.2.5 in [5]. Let

κε =
εκ

1− εκµ
= εκ

∞∑
n=0

(εκ µ)n , ε ∈ [0, 1] . (3.5)

Since ‖κ‖∞ = k < 1, we have

‖κε‖∞ ≤
εk

1− εk
≤ k

2− k
= q < 1 , for ε ∈ [0, 1/2] . (3.6)

Now, let

γε(w) :=

{ (
κε · fz

fz

)
◦ f−1(w) , w ∈ f(B) ,

0, w ∈ f(C \B) .
(3.7)

Re-defining, in the case of necessity, κ in a set of measure zero, without loss
of generality, we may assume that |κ(z)| ≤ k and |κε(z)| ≤ q for all z ∈ C
and, thus, |γε(z)| ≤ q also for all z ∈ C. Moreover, since |C \B| = 0,

γε ◦ f = κε ·
fz

fz
a.e. (3.8)

Consider the family of Q–quasiconformal (Q = (1 + q)/(1− q)) map-
pings gε : C → C, ε ∈ [0, 1/2] with the complex characteristics γε, ε ∈
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[0, 1/2] and the normalization gε(0) = 0, gε(1) = 1 and gε(∞) = ∞, see
the existence theorem for quasiconformal mappings, e.g., Theorem V.B.3 in
the book [1]. By the theorem on differentiability of Q–qc mappings in a
parameter (see Theorem V.C.5 in [1])

gε(w′) = w′ − ε

π

∫
f(B)

γ(w)ϕ(w, w′) dmw + o(ε, w′), (3.9)

where o(ε, w′)/ε→ 0 as ε→ 0 locally uniform with respect to w′ ∈ C and

γ(w) =

{ (
κ · fz

fz

)
◦ f−1(w) , w ∈ f(B) ,

0, w ∈ f(C \B) .
(3.10)

Next, consider the family of mappings fε = gε ◦ f , ε ∈ [0, 1/2]. Let us
show that fε ∈ H∗M . First, by Corollary 2.1, fε ∈W 1, 1

loc . Then note that the
regular homeomorphism f has N−1–property by the Ponomarev theorem,
see [22]. Hence, similarly to IC(6) in [1], since Jf (z) 6= 0 a.e. and fz 6= 0
a.e., we obtain that a.e.

µgε
◦ f =

fz

fz
·
µfε
− µf

1− µf · µfε

. (3.11)

Here we have applied the rule of differentiability of composition (2.6), see
Corollary 2.2. Solving (3.11) with respect to µfε

, we conclude that a.e.

µfε
=
µgε
◦ f + fz

fz
· µf

fz

fz
+ µf · µgε

◦ f
=

µ+ fz

fz
· γε ◦ f

1 + µ · fz

fz
· γε ◦ f

. (3.12)

Putting in (3.12) the expressions from (3.5) and (3.8), we have that a.e.

µfε
=

µ+ κε
1 + µκε

=
µ+ εκ

1−εκµ
1 + µ · εκ

1−εκµ
= µ+ εκ

(
1− |µ|2

)
. (3.13)

By (3.13) and (3.1) we obtain that µfε
= µε where µε is given by (3.2).

Thus, µfε
∈MM , ε ∈ [0, 1/2] in view of convexity of MM .

Note that the homeomorphism fε is regular for ε ∈ [0, 1/2]. Indeed, let
us assume that fε is not regular for some ε ∈ [0, 1/2]. Since |µfε

| < 1 a.e.,
that means that (fε)z = 0 = (fε)z on a set E ⊆ C of a positive measure
where fε is differentiable and f is regular. Then similarly to IC(2) in [1], we
obtain that everywhere on E

(gε)w ◦ f =
1
Jf

[
(fε)zfz − (fε)z fz

]
= 0 , (3.14)

see Proposition 2.2. However, the set E := f(E) has measure zero because
gε is a quasiconformal mapping. Thus, we come to the contradiction with
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the N−1–property of the mapping f , see [22]. Consequently, fε ∈ H∗M ,
ε ∈ [0, 1/2].

Finally, changing variables in (3.9), we come to the relation (3.3), because
|C \B| = 0. 2

4. Variational maximum principle

One says that a functional Ω : H∗M → R is Gâteaux differentiable if

Ω(fε) = Ω(f) + εRe

∫
C

g dκ + o(ε) (4.1)

for every variation fε = f + εg + o(ε) in the class H∗M where κ = κf is a
finite complex Radon measure with a compact support and o(ε)/ε → 0 as
ε→ 0 locally uniform in C (see [30], pp. 138–139). In other words, there is
a continuous linear functional L(g; f) in the first variable such that

Ω(fε) = Ω(f) + εReL(g; f) + o(ε) . (4.2)

In the following we assume that the function ϕ(w, f(ζ)) is locally inte-
grable for every f ∈ H∗M with respect to the product of measures dmw ⊗
dκ(ζ) where ϕ is the kernel from (3.4), m is the Lebesgue measure in C and
that

A(w) =
1
π

∫
C

ϕ(w, f(ζ)) dκ(ζ) 6= 0 for a.e. w ∈ C . (4.3)

Then we say that Ω is Gâteaux differentiable without degeneration on
the class H∗M .

Theorem 4.1. Let M(z), z ∈ C, be a family of compact convex sets in
D which is measurable in the parameter z such that QM ∈ L1

loc and let
Ω : H∗M → R be a functional Gâteaux differentiable without degeneration.
If max Ω in the class H∗M is attained for a mapping f , then its complex
characteristic satisfies the inclusion

µ(z) ∈ ∂M(z) for a.e. z ∈ C . (4.4)

Proof. Since µ ∈ MM , without loss of generality we may assume that
µ(z) ∈M(z) for all z ∈ C. Let us assume that the set

E = {z ∈ C |µ(z) 6∈ ∂M(z)}

has a positive Lebesgue measure. Let

Em = {z ∈ C |QM (z) ≤ m}, m = 1, 2, . . . ,
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K(z0, r) = {z ∈ C | |z − z0| ≤ r}, z0 ∈ C, r > 0 ,

χ, χm, χz0,r the characteristic functions of the sets E, Em, K(z0, r), respec-
tively. Now, let αn, n = 1, 2, . . . , be an enumeration of all rational numbers
in [0, 2π) and ρn(z), n = 1, 2, . . . , be distances from µ(z) till the points of
intersections of rays µ(z) + teiαn , t > 0, with ∂M(z).

Let us show that the functions ρn(z), n = 1, 2, . . . , are measurable in
the parameter z. Indeed, let Λn(z) = {ν ∈ C | ν = µ(z)+ teiαn , 0 ≤ t ≤ 2}
be the segment of the ray passing from the point µ(z) in the direction eiαn

of the length 2. The measurability of the families of the sets Λn(z) in z
follows, e.g., from Proposition 3.1 in [25] and general properties of elemen-
tary operations with measurable functions (see, e.g., [28]). Consequently,
the families Mn(z) = M(z) ∩ Λn(z) and {ηn(z)} = ∂D ∩ Λn(z) where
∂D = {η ∈ C | |η| = 1} is the unit circle are also measurable (see Lemma 3.3
in [25]). Thus, the functions ηn(z), n = 1, 2, . . . , are measurable, e.g., by
the criterion 6) in Proposition 6 in [24]. By Proposition 3.1 in [25] the dis-
tance functions rn(z) = min

ν∈Mn(z)
|ν − ηn(z)| are also measurable. It remains

to note after this that ρn(z) = |µ(z)− ηn(z)| − rn(z).
Next, consider the functions µn(z) = µ(z) + ρn(z)eiαn . By construction

they belong to the class MM . Since the sets M(z) are convex, the functions

νn(z) := µ(z) + λ(z)(µn(z)− µ(z)) = (1− λ(z))µ(z) + λ(z)µn(z)

also belong to the class MM for an arbitrary measurable function λ(z) :
C→ [0, 1]. In particular, the class MM contains the functions

νm,nz0,r(z) := µ(z) + λm(z)χz0,r(z)(µn(z)− µ(z)),

where

λm(z) =
1− |µ(z)|2

2
χ(z)χm(z) .

Note that
|µn(z)− µ(z)| = ρn(z) ≤ 2qM (z)

and

κm,nz0,r (z) :=
νm,nz0,r(z)− µ(z)

1− |µ(z)|2
=
µn(z)− µ(z)

2
χ(z)χm(z)χz0,r(z)

belong to the closed ball of the radius qm := (m−1)/(m+ 1) < 1 in L∞(C).
Since f is extremal, applying the variation of Theorem 3.1 with ν = νm,nz0,r ,

we obtain that

Re

∫
C

 ∫
|z−z0|≤r

ϕm,n(z, ζ) dmz

 dκ(ζ) ≥ 0, (4.5)
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where
ϕm,n(z, ζ) = λm(z)(µn(z)− µ(z))f2

zϕ(f(z), f(ζ)) .

Consider the functions

ψm,nz0,r(w, ζ) =

{ (
κm,nz0,r ·

fz

fz

)
◦ f−1(w) ϕ(w, f(ζ)) , w ∈ f(B) ,

0, w ∈ f(C \B) ,

where B denotes the (Borel) set of all points in C where the mapping f has
a total differential and Jf (z) 6= 0. They are integrable with respect to the
product of the measures dmw ⊗ dκ(ζ). Note that

Jf−1(w) =
[
Jf
(
f−1(w)

)]−1 =
[
(1− |µ|2)f2

z

]−1 (
f−1(w)

)
at every point w ∈ f(B), cf. IC(3) in [1]. Moreover, since the regular
homeomorphism f has N−1–property, after the replacement of variables (see
Lemmas III.2.1 and III.3.2 in [17]) we obtain that the functions ϕm,n(z, ζ)
are also integrable with respect to the measure product dmz⊗dκ(ζ) and by
the Lebesgue–Fubini theorem (see, e.g., Theorem V.8.1 in [4]) and (4.5) we
conclude that ∫

|z−z0|≤r

Re∫
C

ϕmn(z, ζ) dκ(ζ)

 dmz ≥ 0 .

By the Lebesgue theorem on the differentiability of the indefinite integral
(see, e.g., Theorem IV(5.4) in [28]) we have the inequalities

λm(z)Re(µn(z)− µ(z))B(z) ≥ 0 for a.e. z ∈ C, m, n = 1, 2, . . . ,

where B(z) = A(f(z))f2
z and A(w) is given by (4.3). Hence

ρn(z)ReB(z)eiαn ≥ 0, n = 1, 2, . . . , for a.e. z ∈ E ∩ Em .

Since Em, m = 1, 2, . . . , form an exhaustion of the plane C in measure, the
last holds for a.e. z ∈ C. On the other hand ρn(z) > 0, n = 1, 2, . . . , on E
and, thus, this is equivalent to the inequalities

ReB(z)eiαn ≥ 0 , n = 1, 2, . . . , for a.e. z ∈ E .

By arbitrariness of αn, n = 1, 2, . . . , we have from here that

ReB(z)eiα ≥ 0 ∀ α ∈ [0, 2π) for a.e. z ∈ E .

In particular, for α = 0 and α = π we obtain that ±ReB(z) ≥ 0, a.e.
ReB(z) = 0, and for α = π/2 and α = 3π/2: ± ImB(z) ≥ 0, i.e. ImB(z) =
0. Thus, B(z) = 0 for a.e. z ∈ E. However, the latter is impossible be-
cause A(w) 6= 0 a.e., f has N−1–property and fz 6= 0 a.e. The obtained
contradiction shows that mesE = 0, i.e. µ(z) ∈ ∂M(z) a.e. 2
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5. Other necessary conditions for extremum

To formulate the necessary conditions of the extremum we need one more
notion. Namely, let µ ∈MM . Then ωµ(z) denotes the cone of the admis-
sible directions (see, e.g., [16]) for the set M(z) at the point µ(z), i.e.,
the set of all ω ∈ C, ω 6= 0, such that µ(z) + εω ∈ M(z) for all ε ∈ [0, ε0]
and some ε0 > 0. Note that for strictly convex sets M(z), being invariant–
convex sets, the cone of admissible directions ωµ(z) is an open cone for every
z. Almost word for word repeating the proof of Theorem 4.1, we obtain:

Theorem 5.1. Under the hypothesis of Theorem 4.1, the extremal f in the
problem on max Ω in the class H∗M satisfies the inequalities

ReωB(z) ≥ 0 (5.1)

for a.e. z ∈ C for all ω in the cone of admissible directions ωµ(z) where
B(z) = A(f(z))f2

z and A(w) is given by (4.3).

Corollary 5.1. If in addition, the boundary is regular for a.e. z ∈ C,
i.e., ∂M(z) has a tangent at every point, then (5.1) is transformed to the
inequality

n(z)B(z) ≥ 0 a.e. (5.2)

where n(z) is the unit vector of the inner normal to ∂M(z) at the point µ(z).

In particular, if M(z) is a family of disks

M(z) = {κ ∈ C | |κ − c(z)| ≤ k(z)} ⊆ D (5.3)

where the functions c(z) and k(z) are measurable, then by the maximum
principle, Theorem 4.1, n(z) = (c(z) − µ(z))/k(z) and the relation (5.2) is
equivalent to the equality

c(z)− µ(z)
k(z)

=
B(z)
|B(z)|

a.e. ,

i.e.,

µ(z) = c(z)− k(z)
B(z)
|B(z)|

.

Thus, we have:

Corollary 5.2. Let M(z), z ∈ C, be the family of the disks (5.3),

Q(z) :=
1 + k(z) + |c(z)|
1− k(z)− |c(z)|

∈ L1
loc , (5.4)
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and let us suppose that the functional Ω : H∗M → R is Gâteaux differentiable
without degeneration. Then the extremal of the problem on max Ω in the
class H∗M satisfies the equality

fz = c(z)fz − k(z)
A(f(z))
|A(f(z))|

fz . (5.5)

In particular, if c(z) = 0 we obtain the equality

fz = −k(z)
A(f(z))
|A(f(z))|

fz (5.6)

with
K(z) :=

1 + k(z)
1− k(z)

∈ L1
loc . (5.7)
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