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Abstract - The aim of this article is to present suitable boundary condi-
tions for a flow described by the one-dimensional Shallow Water Equations
when the flow is supercritical in the sense described in the text below, initial
condition being suitably prescribed. Existence and uniqueness of such solu-
tions are derived on a certain interval of time during which the flow remains
supercritical and the height of the flow never vanishes.
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1. Introduction

In an earlier article [12], two of the authors have addressed the question of
existence and uniqueness of solutions for the inviscid Shallow Water Equa-
tions on an interval in space dimension one. In [12] the flows considered
were subcritical while here they are supercritical; furthermore a bottom to-
pography is added which can lead in the supercritical case to substantial
variations of the height [8]. Another difference with our earlier work is the
choice of the boundary conditions which are different in the subcritical and
supercritical cases. Note that the boundary conditions are based in both
cases on the Uniform Kreiss-Lopatinskii condition (UKL). See [7,9], [1], and
the explanations below.

We have several motivations for studying the initial and boundary value
problem associated with the inviscid Shallow Water Equations. The first
major motivation is related to the problem of Limited Area Models (LAMs)
in geophysical fluid mechanics. Indeed such models are commonly used
in geophysical fluid mechanics, by themselves or associated with (coupled
to) other models, for research or commercial purposes. Such applications
include weather prediction, propagation of pollution, propagation of river
effluents in an estuary, propagation of run-off water in coastal areas, etc.
A major difficulty with LAMs, as emphasized in the tutorial [18], is that
the chosen domain of calculation has no physical meaning and therefore no
physical laws are available to determine appropriate boundary conditions;
besides [13], see also [2] in which numerical simulations show the effect of
boundary conditions.
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The problem of the boundary conditions for LAMs was already known
in the early times of weather prediction, by e.g. J. von Neumann and J.
Charney. The remedy that they proposed and which is still used to some
extent, is to add some viscous layers near the boundary; such approach is
also extensively used in acoustics and electromagnetism, see e.g. [5,6,10,11].
Such approximation were considered as acceptable as long as the errors that
they introduce are comparable to the precision of the model. It is however
believed that such boundary conditions will introduce unacceptable errors
when high resolution models will be used with the expected advances in
computing power.

In the absence of physical laws to derive the boundary conditions which
are suitable for LAMs, we will recourse to other criteria for modeling.
Namely we will want the proposed boundary conditions to produce a mathe-
matically well-posed problem and, on the physical and computational sides,
we will want the boundary conditions to be transparent, that is, the bound-
ary conditions would let the waves move freely through the boundary with-
out producing undesirable reflexions.

Our preoccupation here relates to the mathematical well-posedness. How-
ever the boundary conditions that we propose leading to a (mildly) dissipa-
tive system, we believe that they are also transparent, a conjecture which
is confirmed by the numerical experiments, see [8], [2]. We consider flows
on 0 < x < L, which are supercritical (see the details below), and in which
the height and the velocity in the x direction remains always positive. As
in the general theories developed in [1], the flows that we consider remain
close to a stationary solution and are defined locally in time. Furthermore,
an additional difficulty appears here as in [12]. Indeed, we need to restrict
ourselves to either sub- or supercritical flows, the subcritical case was con-
sidered in [12], the supercritical case is considered in this article, which
of course produces (necessitates) a different type of boundary conditions.
Hence during the construction of the solution we require the system to re-
main supercritical and hyperbolic through the condition (2.8) below.

This article is organized as follows. In section 2 we describe the setting of
the problem and state the main existence and uniqueness results concerning
the linearized and the fully nonlinear equations. In sections 3 and 4 these
theorems are proved through a classical iteration procedure.

2. Setting of the problem

In this article, we consider the following inviscid shallow water system with
Coriolis force and bottom topography:

ut + uux + ghx − fv = −gBx,
vt + uvx + fu = 0,
ht + uhx + hux = 0;

(2.1)
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here x ∈ Ω = (0, L), t ∈ (0, T ), u and v are the two horizontal components
of the velocity, B = B(x) is the bottom function of the topography, h is the
height of the water, g is the gravitational acceleration and f is the Coriolis
parameter. Equations (2.1) involve the two horizontal components of the
velocity, but all quantities only depend on the x variable. The first and
second equations of (2.1) are derived from the conservation of momentum,
and the third one expresses the conservation of mass.

2.1. Stationary solution

As indicated in the introduction we want to study system (2.1) near a sta-
tionary solution (as in [1]), and we start by constructing this stationary
solution (u, v, h) = (us, vs, hs). These functions are independent of time and
satisfy 

uux + ghx − fv = −gBx,
uvx + fu = 0,
(uh)x = 0.

(2.2)

We infer from (2.2) that
uh = κ2,

v = −fx+ κ1,

u2 + 2gh = −f2x2 − 2gB + 2fκ1x+ κ0,

where κ0, κ1, κ2 are constants. We first choose κ1 = 0, κ2 = 1, and then we
have h = u−1, v = −fx and

u2 +
2g
u

= −2gB − f2x2 + κ0. (2.3)

Notice that −2gB − f2x2 is bounded in Ω, so we can choose κ0 sufficiently
large so that one solution of (2.3) is greater than g and bounded from above.
We choose such a solution u and then h = u−1 ≤ g−1 which is also bounded
away from zero, and furthermore u2 − gh ≥ g2 − 1. All these calculations
mean that we can choose our stationary solution us, vs, hs satisfying a strong
form of the supercritical condition u2−gh > 0 and furthermore u > 0, h > 0;
namely we choose us, vs, hs such that

u2
s − ghs ≥ 3c2

0,

us ≥ 3a0,

3h0 ≤ hs ≤ h0,

(2.4)

where c0, a0, h0, h0 are given, positive constants.
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We set u = us + ũ, v = vs + ṽ, h = hs + h̃, and substitute these values
into (2.1); we obtain a new system for ũ, ṽ, h̃, and dropping the tildes, our
new system reads:

ut + (u+ us)(ux + us,x) + g(hx + hs,x)− f(v + vs) = −gBx,
vt + (u+ us)(vx + vs,x) + f(u+ us) = 0,
ht + (u+ us)(hx + hs,x) + (h+ hs)(ux + us,x) = 0.

(2.5)

We supplement system (2.5) with the following initial and boundary condi-
tions:

I.C.


u(0, x) = u0(x),
v(0, x) = v0(x),
h(0, x) = h0(x),

B.C.


u(t, 0) = gu(t),
v(t, 0) = gv(t),
h(t, 0) = gh(t).

The precise hypotheses on u0, v0, h0, gu, gv, gh will be given below. Note
that the boundary conditions are imposed at x = 0, unlike in [12] where
some boundary conditions are imposed at x = 0 and some at x = L. This
choice of the boundary conditions will be justified by our analysis below
and the existence and uniqueness theorems (Theorem 2.1, Theorem 2.2).
We choose initial conditions which are close to the stationary solution and
satisfy relations similar to (2.4), that is:

(u0 + us)2 − g(h0 + hs) ≥ 2c2
0,

u0 + us ≥ 2a0,

2h0 ≤ h0 + hs ≤ 2h0.

(2.6)

The disadvantage of this new formulation (2.5) is that the initial condi-
tion is non-zero. To overcome this difficulty, we use (ua, va, ha) an approx-
imate lifting of the initial condition (u0, v0, h0), which is given by Lemma
2.1 below, and we choose δ sufficiently small so that if{

|ua − u0|, |va − v0|, |ha − h0| < δ,

|u|, |v|, |h| < δ,
(2.7)

then: 
(ua + u+ us)2 − g(ha + h+ hs) ≥ c2

0,

ua + u+ us ≥ a0,

h0 ≤ ha + h+ hs ≤ 3h0.

(2.8)

As we will see below, the estimates (2.8) will guarantee that we remain in
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the supercritical case. Let us first denote:

U =

uv
h

 , φ(U, x) =

fv − gBx−fu
0

 , G(t) =

gu(t)
gv(t)
gh(t)

 ,

LUV = Vt +A(U)Vx, A(U) =

u 0 g
0 u 0
h 0 u

 .

Using our short notations, system (2.5) is now equivalent to
LU+Us(U + Us) = φ(U + Us, x),
U |t=0 = U0,

U |x=0 = G(t),

(2.9)

and we have
LUs(Us) = φ(Us, x). (2.10)

In order to justify the choice of the boundary conditions, let us compute
the eigenvalues of matrix A(U):

λ1 = u−
√
gh, λ2 = u, λ3 = u+

√
gh. (2.11)

Since we placed ourselves in the supercritical case, all the three eigenvalues
are positive and so we need to impose three boundary conditions at x = 0
and no boundary condition at x = L. This is the reason for which we
prescribe the values of u, v and h at x = 0.

2.2. Conditions on the data

In order to be able to solve system (2.9) we need some technical conditions.
First we require that U = 0 is a stationary solution of (2.9) with G(0) as
boundary data at x = 0, that is, in view of (2.10), we require:

G(0) = 0. (2.12)

The second condition is that the initial and boundary data should satisfy
some compatibility conditions. Let us rewrite the first equation of (2.9) as

Ut +A(U + Us)Ux = φ(U + Us, x)−A(U + Us)Us,x =: H(U + Us),

which is equivalent to

Ut = H(U + Us)−A(U + Us)Ux. (2.13)
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Now differentiating (2.13) in time, we see by induction that the Vi := ∂itU
satisfy:

V0 = U,

V1 = ∂tU = H(U + Us)−A(U + Us)Ux,

Vi+1 = ∂i+1
t U =

i∑
k=1

∑
j1+···+jk=i

cj1,··· ,jk(dkH(U + Us)) · (Vj1 , · · · , Vjk)

−
i∑
l=1

(
i

l

) l∑
k=1

∑
j1+···+jk=l

cj1,··· ,jk(dkA(U + Us)) · (Vj1 , · · · , Vjk)Vi−l,x

−A(U + Us)Vi,x,
for all i ∈ {1, · · · ,m− 2};

(2.14)

where the coefficients cj1,··· ,jk are derived from the Faà di Bruno’s formula,
see [3, 4]. Then the compatibility conditions that we require read:

∂ptG(t)|t=0 = Vp(t = 0, x = 0), ∀p ∈ {0, · · · ,m− 1}. (2.15)

They express the classical compatibility conditions which are necessary for
the solutions U of (2.9) to be Cm−1 near t = 0; see e.g. [14, 15,17].

2.3. Approximate Solution

Approximate solutions and related estimates are obtained by the following
lemmas (for details see Chapter 11 in [1]):

Lemma 2.1. Given U0 = (u0, v0, h0) ∈ Hm+1/2(0, L), and B ∈ Hm+1(0, L),
there exist T0 > 0 and Ua ∈ Hm+1((0, L) × R), vanishing for |t| ≥ 2T0 and
such that Ua|t=0 = U0,

|Ua − U0| < δ, for any (x, t) ∈ (0, L)× [−T0, T0]. (2.16)

If we let F 0 = −LUa+Us(Ua+Us)+φ(Ua+Us, x), then F 0 ∈ Hm([0, L]×R),
and

∂pt F
0 = 0 at t = 0, for any p ∈ {1, 2, · · · ,m− 1}. (2.17)

This lemma provides a lifting of the initial data U0 by a function Ua which
yields the flatness properties (2.17).

In what follows we shall denote by IT the time interval (−∞, T ), and
ΩT is Ω× IT . More generally, we introduce the notation

FU = φ(Ua + U + Us, x)− LUa+U+Us(Ua + Us).
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Lemma 2.2. We let T ∈ (0, T0], and U ∈ Hm(ΩT ), where m ≥ 3, and such
that

‖U‖Hm(ΩT ) ≤M ∈ (0,
δ

νm
], U |t≤0 = 0,

where νm denotes the norm of the Sobolev embedding

Hm(R2) ↪→ L∞(R2).

Then we have

∂pt (FU )|t=0 = 0, for any p ∈ {0, · · · ,m− 1},

and

‖FU‖Hm(ΩT ) ≤ C(M).

Remark 2.1. In Lemma 2.2, the Hm(ΩT )-norm of U is less than M ; then
by the Sobolev embedding, the L∞(ΩT ) norm of U is less than δ, and to-
gether with (2.16) in Lemma 2.1, we see that this U will stay in our admis-
sible set, see (2.7) and (2.8).

Remark 2.2. In Lemma 2.2, all time derivatives of FU up to order m− 1
vanish at time t = 0, and then by the Cauchy-Schwarz (Poincaré) inequality,
we obtain

‖∂pt ∂βxFU‖L2(ΩT ) ≤ T‖∂
p+1
t ∂βxF

U‖L2(ΩT ),

for all p ∈ {0, · · · ,m − 1} and all β less than or equal to m − 1 − p. This
shows that

‖FU‖Hm−1(ΩT ) ≤ T‖FU‖Hm(ΩT ),

and similar estimates also hold for U .

We recall that we set U = Us + Ũ and that we dropped the tilde in the
above. Now we let Ũ = Ua+U , so that U = Us+Ua+U . We then substitute
it into system (2.9), drop the bar and use the notation FU ; therefore the
new system becomes:

LUa+U+UsU = φ(Ua + U + Us, x)− LUa+U+Us(Ua + Us) = FU ,

U |t=0 = 0,
U |x=0 = −Ua +G(t) =: G0(t).

(2.18)

Applying ∂pt to the first equation (2.18), we find

∂p+1
t U + ∂pt (A(Ua + U + Us)Ux) = ∂pt F

U ,
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which is equivalent to

∂p+1
t U = ∂pt F

U −
∑

0≤α≤p
∂p−αt (A(Ua + U + Us))∂αt Ux.

By Lemma 2.2, we have

∂pt F
U |t=0 = 0, for any p ∈ {0, · · · ,m− 1},

and we also have U |t=0 = 0, so by induction, we see that

∂pt U |t=0 = 0, for any p ∈ {0, · · · ,m}.

Hence we can extend U by zero for t < 0 in Hm(ΩT ), and we see that the
first equation (2.18) is valid for (x, t) ∈ ΩT , the second equation (2.18) is
valid for t ≤ 0, and the third equation (2.18) is valid for t ≤ T .

Based on these observations, we now introduce our iterative scheme de-
fined as follows:
LUa+Uk+UsU

k+1 = Uk+1
t +A(Ua + Uk + Us)Uk+1

x = FU
k
, (x, t) ∈ ΩT ,

Uk+1|t≤0 = 0,
Uk+1|x=0 = −Ua +G(t) = G0(t), t ≤ T.

(2.19)

We initiate our iteration scheme by setting U0 = 0, and then construct
the Uk by induction. In Section 3 we prove the existence of the Uk and
some uniform bounds on the sequence {Uk} which is given by Theorem 2.1
below. Then in Section 4 we prove the strong convergence of the sequence
{Uk} which finally gives Theorem 2.2 below.

Theorem 2.1 (For the linear system (2.19)) We assume that one has
Uk ∈ Hm(ΩT ), m ≥ 3, Uk|t≤0 = 0, and satisfies

‖Uk‖Hm(ΩT ) ≤M, with M ∈ (0,
δ

νm
]. (2.20)

We also assume that G(·) (see (2.9)) belongs to Hm(IT ), so that the boundary
data G0(·) (see (2.18)) belongs to Hm(IT ) since Ua ∈ Hm+1(ΩT ). We also
assume that the forcing term FU

k
satisfies the properties from Lemma 2.2.

Then the initial boundary value problem (2.19) has a unique solution Uk+1

such that

‖Uk+1‖Hm(ΩT ) ≤M. (2.21)

Furthermore by the Sobolev embedding, we have

‖Uk+1‖L∞(ΩT ) ≤ δ. (2.22)
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Theorem 2.2 (For the nonlinear system (2.5)) Let there be given U0 =
(u0, v0, h0) in Hm+ 1

2 (Ω) satisfying the condition (2.6), B in Hm+1(Ω) and
G(·) = (gu(·), gv(·), gh(·)) in Hm(IT ) such that G(0) = 0 and satisfying the
compatibility conditions (2.15). Then there exists T∗ > 0 depending on the
initial and boundary data and also on the stationary solutions Us such that
the system (2.5) admits a unique solution Ũ = (ũ, ṽ, h̃) satisfying

Ũ ∈ Hm((0, L)× (0, T∗)). (2.23)

3. High norm boundedness of Uk

In this section we will prove Theorem 2.1. We will first derive a priori L2-
estimates for the solution of the linear system (2.19) and then extend the
L2-estimates to Hm-estimates and finally by choosing T small enough, we
will obtain the uniform bound on Uk.

We want the solutions of (2.19) to stay always in the admissible set, i.e.
we want them to satisfy:

(ua + uk + us)2 − g(ha + hk + hs) ≥ c2
0,

ua + uk + us ≥ a0,

h0 ≤ ha + hk + hs ≤ 3h0,

(3.1)

which will be achieved by controlling the L∞-norm of Uk (See (2.8) and
Remark 2.1).

New notation: we write Û = Ûk = Ua + Uk + Us, then A(Û) = A(Ua +
Uk+Us). Observing that system (2.19) admits a symmetrizer S0 = diag(ha+
hk + hs, 1, g) = diag(ĥ, 1, g), we have

S0A(Û) =

ûĥ 0 gĥ
0 û 0
gĥ 0 gû

 ; (3.2)

we denote the eigenvalues of S0A by λ1, λ2, λ3, which are the roots of the
equation

det(λI3 − S0A) = (λ− û)(λ2 − (ûĥ+ gû)λ+ gĥ(û2 − gĥ)) = 0.

Let us say λ3 is û, and then λ1, λ2 satisfy λ1 + λ2 = ûĥ + gû, λ1λ2 =
gĥ(û2 − gĥ). If Uk satisfies (3.1), then λ3 > 0, and λ1 + λ2 > 0, λ1λ2 > 0,
which implies λ1 > 0, λ2 > 0. Therefore S0A is symmetric positive definite
if Uk stays in the admissible set (that is it satisfies (3.1)).

Now we multiply (2.19) by S0 and take the scalar product with Uk+1.
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Using integration by parts, we first obtain

〈S0U
k+1
t , Uk+1〉L2(Ω) =

1
2
d

dt

∫
Ω
ĥ(uk+1)2 + (vk+1)2 + g(hk+1)2dx

− 1
2

∫
Ω

(ha,t + hkt )(u
k+1)2dx,

〈S0AU
k+1
x , Uk+1〉L2(Ω) =

1
2
〈S0AU

k+1
x , Uk+1〉

∣∣∣∣x=L

x=0

− 1
2
〈(S0A)xUk+1, Uk+1〉L2(Ω).

Finally, we find the following equation:

1
2
d

dt

∫
Ω
ĥ(uk+1)2 + (vk+1)2 + g(hk+1)2dx+

1
2
〈S0AU

k+1
x , Uk+1〉

∣∣
x=L

=
1
2

∫
Ω

(ha,t + hkt )(u
k+1)2dx+

1
2
〈(S0A)xUk+1, Uk+1〉L2(Ω)

+
1
2
〈S0AU

k+1
x , Uk+1〉

∣∣
x=0

+ 〈S0F
Uk , Uk+1〉L2(Ω).

(3.3)

Using that S0A is positive definite, we neglect the boundary term at x = L
in the left-hand side of (3.3). We obtain the following inequality:

1
2
d

dt

∫
Ω
ĥ(uk+1)2 + (vk+1)2 + g(hk+1)2dx

≤ 1
2

∫
Ω
|ha,t + hkt |(uk+1)2dx+

1
2
|〈(S0A)xUk+1, Uk+1〉L2(Ω)|

+
1
2
|〈S0AU

k+1
x , Uk+1〉

∣∣
x=0
|+ |〈S0F

Uk , Uk+1〉L2(Ω)|.

(3.4)

Let us first denote

I0(t) =
∫

Ω
ĥ(uk+1)2 + (vk+1)2 + g(hk+1)2dx, (3.5)

and using (3.1) for ĥ = ha + hk + hs, we easily see that

I0(t) ≥ min(h0, 1, g)‖Uk+1‖2L2(Ω). (3.6)

We now estimate the four terms J1, J2, J3, J4 in the right-hand side of (3.4).
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Using (3.1) again and H2(ΩT ) ⊂ L∞(ΩT ), we find

J1 ≤
1
2
‖ha,t + hkt ‖L∞(ΩT )

∫
Ω

1
ha + hk + hs

(ha + hk + hs)(uk+1)2dx

≤ 1
2h0

‖ha + hk‖H3(ΩT )

∫
Ω
ĥ(uk+1)2dx

≤ C
(
‖ĥ‖H3(ΩT )

)
I0(t),

J2 =
1
2

∫
Ω

(ĥû)x(uk+1)2 + gûx(hk+1)2 + ûx(vk+1)2 + 2gĥxuk+1hk+1dx

≤ 1
2

[
‖(ĥû)x‖L∞(ΩT )

1
h0

∫
Ω
ĥ(uk+1)2dx

+ ‖ûx‖L∞(ΩT )

∫
Ω
g(hk+1)2 + (vk+1)2dx

+ ‖gĥx‖L∞(ΩT )(
1
h0

∫
Ω
ĥ(uk+1)2dx+

1
g

∫
Ω
g(hk+1)2dx)

]
≤ C(‖ĥx‖L∞(ΩT ), ‖ûx‖L∞(ΩT ))I0(t)

≤ C(‖ĥ‖H3(ΩT ), ‖û‖H3(ΩT ))I0(t).

Using (3.2) and the boundary data at x = 0, we find

J3 ≤
1
2
‖ĥû‖L∞(IT )|g0

u(t)|2 +
1
2
‖gû‖L∞(IT )|g0

h(t)|2 +
1
2
‖û‖L∞(IT )|g0

v(t)|2

+ ‖gĥ‖L∞(IT )|g0
u(t)||g0

h(t)|

≤ C(‖ĥ‖L∞(ΩT ), ‖û‖L∞(ΩT ))|G0(t)|2

≤ C(‖ĥ‖H3(ΩT ), ‖û‖H3)|G0(t)|2.

By Cauchy-Schwarz inequality and using that S0 = diag(ĥ, 1, g), we find

J4 = |〈S0F
Uk , Uk+1〉L2(Ω)| ≤

1
4
‖S0F

Uk‖2L2(Ω) + ‖Uk+1‖2L2(Ω)

≤ 1
4

max(‖ĥ‖2L∞(ΩT ), 1, g
2)‖FUk‖2L2(Ω) + max(

1
h0

, 1,
1
g

)I0(t)

≤ C(‖ĥ‖H3(ΩT ))‖FU
k‖2L2(Ω) + max(

1
h0

, 1,
1
g

)I0(t).

Gathering all the above estimates, inequality (3.4) becomes

d

dt
I0(t) ≤ C1(û, ĥ)I0(t) + C2(ĥ)‖FUk(t)‖2L2(Ω) + C3(û, ĥ)|G0(t)|2, (3.7)

where the Ci(û, ĥ)(i = 1, 2, 3) only depend on ‖û‖H3(ΩT ), ‖ĥ‖H3(ΩT ), and in
an increasing way. Observe that Ci(û, ĥ) ≤ Ci(‖û‖Hm(ΩT ), ‖ĥ‖Hm(ΩT )) ≤
Ci(M), with m ≥ 3 by assumption.
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By Gronwall’s lemma, noticing that I0(0) = 0, which comes from the
initial condition, we obtain

I0(t) ≤
∫ t

0
eC1(M)(t−τ)(C2(M)‖FUk(τ)‖2L2(Ω) + C3(M)|G0(τ)|2)dτ. (3.8)

Let us set

r1 = C1(M); r2 =
max(C2(M), C3(M))

min(h0, 1, g)
.

Therefore r1, r2 only depend on M , which is a bound on the Hm(ΩT )-norm
of Uk (m ≥ 3), and they are independent of k, so that r1, r2 will be the same
at every iteration.

Using (3.6), inequality (3.8) becomes

‖Uk+1(t)‖2L2(Ω) ≤ r2

∫ t

0
er1(t−τ)(‖FUk(τ)‖2L2(Ω) + |G0(τ)|2)dτ ; (3.9)

integrating over [0, T ] and using Fubini theorem, we find

‖Uk+1‖2L2(ΩT ) ≤
er1T − 1

r1
r2(‖FUk‖2L2(ΩT ) + ‖G0‖2L2(IT )). (3.10)

Writing ε(T ) = (er1T − 1)r2/r1, we see that limT→0 ε(T ) = 0, and (3.10)
gives

‖Uk+1‖2L2(ΩT ) ≤ ε(T )(‖FUk‖2L2(ΩT ) + ‖G0‖2L2(IT )). (3.11)

3.1. Tangential Derivatives

We now want to estimate the tangential derivatives of Uk; in our case,
the tangential derivatives are the derivatives with respect to time. We set
Uk+1
α = ∂αt U

k+1 with 0 ≤ α ≤ m, and deduce from equation (2.19) that
Uk+1
α satisfies the following equations:

(Uk+1
α )t +A(Û)(Uk+1

α )x = ∂αt F
Uk − [∂αt , A(Û)]Uk+1

x =: F̃α,
Uk+1
α |t≤0 = 0,

Uk+1
α |x=0 = ∂αt G

0(t),

(3.12)

where [·, ·] denotes the commutator (i.e. [P,Q] = PQ−QP ).
Observing that equation (3.12) has the same form as (2.19), therefore

proceeding exactly as for (3.11), we find:

‖Uk+1
α ‖2L2(ΩT ) ≤ ε(T )(‖F̃α‖2L2(ΩT ) + ‖∂αt G0‖2L2(IT )). (3.13)

In order to estimate F̃α, we need the following classical lemmas (see e.g.
Chapter 13 in [16]):
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Lemma 3.1. Assume that U is a regular open set of Rd, where d is the
dimension of the space.

(i) Consider u and v which both belong to L∞(U)∩Hs(U) with s > 0, then
their product also belongs to Hs(U) and there exists C > 0 depending
only on s and U such that

‖uv‖Hs(U) ≤ C(‖u‖L∞(U)‖v‖Hs(U) + ‖v‖L∞(U)‖u‖Hs(U)).

If s > d/2, then the L∞ assumption automatically follows from the
Sobolev embeddings, and we have the following estimate:

‖uv‖Hs(U) ≤ C‖u‖Hs(U)‖v‖Hs(U).

(ii) If m is an integer greater than d/2 + 1 and α is a d-tuple of length
|α| ∈ [1,m], there exists C > 0 depending only on s and U such that for
all a in Hm(U) and all u ∈ H |α|−1(U), we have the following estimate:

‖[∂α, a]u‖L2(U) ≤ C‖a‖Hm(U)‖u‖Hα−1(U).

(iii) For all s and t with s + t > 0, if u ∈ Hs(U) and v ∈ Ht(U), then
the product uv belongs to Hr(U) for all r ≤ min(s, t) such that r <
s + t − d/2. Furthermore, there exists C (depending only on r, s, t, d
and U) such that

‖uv‖Hr(U) ≤ C‖u‖Hs(U)‖v‖Ht(U).

Now we are able to estimate F̃α; we first claim that A−1(Û) ∈ Hm(ΩT ).
We know that

A−1(Û) =
1

û2 − gĥ

 û 0 −g
0 1

û 0
−ĥ 0 û

 .

In our case, we have m ≥ 3, d = 2, thus Hm(ΩT ) ⊂ L∞(ΩT ). Notice also
that û2−gĥ ≥ c2

0 and û > a0, and notice that our domain is bounded, so that
(û2 − gĥ)−1 and û−1 both belong to Hm(ΩT ), and then by Lemma 3.1 (i),
we find that A−1(Û) ∈ Hm(ΩT ), and ‖A−1(Û)‖Hm(ΩT ) ≤ C(‖Û‖Hm(ΩT )) ≤
C(M).

Now we rewrite system (2.19) as Uk+1
x = A−1(Û)(FU

k −Uk+1
t ) and with

the first equation (3.12), we find

F̃α = ∂αt F
Uk − [∂αt , A(Û)][A−1(Û)FU

k
] + [∂αt , A(Û)][A−1(Û)Uk+1

t ]. (3.14)

We estimate
∑

0≤α≤m‖F̃α‖2L2(ΩT ); the three terms J1, J2, J3 in the right-hand
side of (3.14) give:

J1 =
∑

0≤α≤m
‖∂αt FU

k‖2L2(ΩT ) ≤ ‖F
Uk‖2Hm(ΩT )

≤(With Lemma 2.2) ≤ C(M).
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Noticing that Ua, Us are fixed, by assumption (2.20) in Theorem 2.1, the
Hm(ΩT )-norm of Û = Ua + Uk + Us is bounded by an increasing function
depending only on M , and the same also holds for the L∞(ΩT ) and Hm(ΩT )-
norms of A(Û) and A−1(Û). Therefore we find

J2 =
∑

0≤α≤m
‖[∂αt , A(Û)][A−1(Û)FU

k
]‖L2(ΩT )

≤ (Using Lemma 3.1 (ii))

≤
∑

0≤α≤m
‖A(Û)‖2Hm(ΩT )‖A

−1(Û)FU
k‖2Hα−1(ΩT )

≤ C(M)‖A−1(Û)FU
k‖2Hm−1(ΩT )

≤ (Using Lemma 3.1 (i) where m ≥ 3, d = 2, s = m− 1 >
d

2
)

≤ C(M)‖A−1(Û)‖2Hm−1(ΩT )‖F
Uk‖2Hm−1(ΩT )

≤ C(M)‖FUk‖2Hm(ΩT ) ≤ (With Lemma 2.2) ≤ C(M).

The estimate for J3 is exactly the same as for J2:

J3 =
∑

0≤α≤m
‖[∂αt , A(Û)][A−1(Û)Uk+1

t ]‖L2(ΩT )

≤
∑

0≤α≤m
‖A(Û)‖2Hm(ΩT )‖A

−1(Û)Uk+1
t ‖2Hα−1(ΩT )

≤ C(M)‖A−1(Û)Uk+1
t ‖2Hm−1(ΩT )

≤ C(M)‖A−1(Û)‖2Hm−1(ΩT )‖U
k+1
t ‖2Hm−1(ΩT )

≤ C(M)‖Uk+1‖2Hm(ΩT ).

In conclusion, we have∑
0≤α≤m

‖F̃α‖2Hm(ΩT ) ≤ C(M)(1 + ‖Uk+1‖2Hm(ΩT )). (3.15)

Now summing the inequalities (3.13) for α = 0, · · · ,m and using (3.15) for
F̃α, we obtain

‖Uk+1‖2L2(Ω,Hm(IT )) ≤ ε(T )
(
C(M)(1 + ‖Uk+1‖2Hm(ΩT )) + ‖G0‖2Hm(IT )

)
.

(3.16)

3.2. Normal Derivatives

We also need to estimate the derivatives containing x, thus we need to
consider all the derivatives of length ≤ m. We first consider ∂x∂αt with
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0 ≤ α ≤ m− 1. From system (2.19), we deduce that:

∂x∂
α
t U

k+1 = ∂αt [A−1(Û)(FU
k − Uk+1

t )] = A−1(Û)∂αt F
Uk

+ [∂αt , A
−1(Û)]FU

k −A−1(Û)∂α+1
t Uk+1 − [∂αt , A

−1(Û)]Uk+1
t .

(3.17)

We take the L2-norm on both sides of equation (3.17), then sum for
α = 0, · · · ,m − 1, and we estimate the four terms coming from the right-
hand side of (3.17):

J1 =
∑

0≤α≤m−1

‖A−1(Û)∂αt F
Uk‖2L2(ΩT )

≤ ‖A−1(Û)‖2L∞(ΩT )‖F
Uk‖2L2(Ω,Hm−1(IT ))

≤ C(‖Û‖Hm(ΩT ))‖FU
k‖2Hm−1(ΩT )

≤ (By Remark 2.2) ≤ C(M)T 2‖FUk‖2Hm(ΩT )

≤ (With Lemma 2.2) ≤ C(M)T 2,

J3 =
∑

0≤α≤m−1

‖A−1(Û)∂α+1
t Uk+1‖2L2(ΩT )

≤
∑

0≤α≤m−1

‖A−1(Û)‖2L∞(ΩT )‖∂
α+1
t Uk+1‖2L2(ΩT )

≤ C(‖Û‖Hm(ΩT ))‖Uk+1‖2L2(Ω,Hm(IT )) ≤ C(M)‖Uk+1‖2L2(Ω,Hm(IT )),

J2 =
∑

0≤α≤m−1

‖[∂αt , A−1(Û)]FU
k‖2L2(ΩT )

≤ (By Lemma 3.1 (ii)) ≤
∑

0≤α≤m−1

‖A−1(Û)‖2Hm(ΩT )‖F
Uk‖2Hα−1(ΩT )

≤ C(‖Û‖Hm(ΩT ))‖FU
k‖2Hm−2(ΩT ) ≤ C(M)‖FUk‖2Hm−1(ΩT )

≤ (By Remark 2.2) ≤ C(M)T 2‖FUk‖2Hm(ΩT )

≤ (With Lemma 2.2) ≤ C(M)T 2,

J4 =
∑

0≤α≤m−1

‖[∂αt , A−1(Û)]Uk+1
t ‖2L2(ΩT )

≤ (By Lemma 3.1 (ii)) ≤
∑

0≤α≤m−1

‖A−1(Û)‖2Hm(ΩT )‖U
k+1
t ‖2Hα−1(ΩT )

≤ C(‖Û‖Hm)‖Uk+1
t ‖2Hm−2(ΩT ) ≤ C(M)‖Uk+1‖2Hm−1(ΩT )

≤ (By Remark 2.2) ≤ C(M)T 2‖Uk+1‖2Hm(ΩT ).
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Using ‖∂xUk+1‖2L2(Ω,Hm−1(IT )) =
∑

0≤α≤m−1‖∂x∂αt Uk+1‖2L2(ΩT ), and us-
ing the above estimates, we arrive at

‖∂xUk+1‖2L2(Ω,Hm−1(IT )) ≤ C(M)
(
T 2(1 + ‖Uk+1‖2Hm(ΩT ))

+ ‖Uk+1‖2L2(Ω,Hm(IT ))

)
.

(3.18)

Using (3.16) to substitute the term ‖Uk+1‖2L2(Ω,Hm(IT )) in (3.18), we finally
find

‖∂xUk+1‖2L2(Ω,Hm−1(IT )) ≤ ε(T )C(M)
(
1 + ‖Uk+1‖2Hm(ΩT ) + ‖G0‖2Hm(IT )

)
,

(3.19)
where ε(T ) is slightly different from the previous one, but enjoys the same
properties − it only depends on M and T , it is independent of k, and
limT→0 ε(T ) = 0.

We also need to estimate the terms of the form ∂jx∂
m−j
t Uk+1 for all j;

we will proceed by induction. Let us first assume that we have proven the
estimate:

‖∂jxUk+1‖2L2(Ω,Hm−j(IT )) ≤ ε(T )C(M)(1 + ‖Uk+1‖2Hm(ΩT ) + ‖G0‖2Hm(IT )).
(3.20)

We want to prove a similar estimate for ∂j+1
x ∂αt U

k+1 with 0 ≤ α ≤ m−j−1.
We apply ∂jx∂αt to system (2.19), and denote β = (j, α), ∂β = ∂jx∂αt , |β| ≤
m− 1; we find

∂j+1
x ∂αt U

k+1 = ∂β[A−1(Û)(FU
k − Uk+1

t )] = A−1(Û)∂βFU
k

+ [∂β, A−1(Û)]FU
k −A−1(Û)∂β∂tUk+1 − [∂β, A−1(Û)]Uk+1

t .
(3.21)

We take the L2-norm of each term in equation (3.21), then sum for
α = 0, · · · ,m− j−1, and we use the same arguments as we did for equation
(3.17), to estimate the four terms coming from the right-hand side of (3.21):

J1 =
∑

0≤α≤m−j−1

‖A−1(Û)∂βFU
k‖2L2(ΩT )

≤ ‖A−1(Û)‖2L∞(ΩT )‖F
Uk‖2Hm−1(ΩT )

≤ C(‖Û‖Hm(ΩT ))T
2‖FUk‖2Hm(ΩT ) ≤ C(M)T 2,

J3 =
∑

0≤α≤m−j−1

‖A−1(Û)∂β∂tUk+1‖2L2(ΩT )

≤
∑

0≤α≤m−j−1

‖A−1(Û)‖2L∞(ΩT )‖∂
α+1
t ∂jxU

k+1‖L2(ΩT )

≤ C(M)‖∂jxUk+1‖L2(Ω,Hm−j(IT )),
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J2 =
∑

0≤α≤m−j−1

‖[∂β, A−1(Û)]FU
k‖2L2(ΩT )

≤
∑

0≤α≤m−j−1

‖A−1(Û)‖2Hm(ΩT )‖F
Uk‖2

H|β|−1(ΩT )

≤ C(M)‖FUk‖2Hm−2(ΩT ) ≤ C(M)‖FUk‖2Hm−1(ΩT )

≤ C(M)T 2‖FUk‖2Hm(ΩT ) ≤ C(M)T 2,

J4 =
∑

0≤α≤m−j−1

‖[∂β, A−1(Û)]Uk+1
t ‖2L2(ΩT )

≤
∑

0≤α≤m−j−1

‖A−1(Û)‖2Hm(ΩT )‖U
k+1
t ‖2

H|β|−1(ΩT )

≤ C(M)‖Uk+1
t ‖2Hm−2(ΩT ) ≤ C(M)‖Uk+1‖2Hm−1(ΩT )

≤ C(M)T 2‖Uk+1‖2Hm(ΩT ).

Using the above estimates, we find

‖∂j+1
x Uk+1‖2L2(Ω,Hm−j−1(IT )) ≤ C(M)(T 2(1 + ‖Uk+1‖2Hm(ΩT ))

+ ‖∂jxUk+1‖L2(Ω,Hm−j(IT ))).

By the induction assumption (3.20) on the term ‖∂jxUk+1‖L2(Ω,Hm−j(IT )), we
obtain

‖∂j+1
x Uk+1‖2L2(Ω,Hm−j−1(IT )) ≤ ε(T )C(M)(1+‖Uk+1‖2Hm(ΩT ) +‖G0‖2Hm(IT )).

Thus we proved that inequality (3.20) is true for all j. Now summing these
inequalities (3.20) for j = 0, · · · ,m, we find

‖Uk+1‖2Hm(ΩT ) ≤ ε(T )C(M)(1 + ‖Uk+1‖2Hm(ΩT ) + ‖G0‖2Hm(IT )). (3.22)

Using that limT→0 ε(T ) = 0, we can choose T small enough to absorb the
term ‖Uk+1‖2Hm(ΩT ) on the right-hand side of (3.22) and obtain

‖Uk+1‖Hm(ΩT ) ≤M,

which proves Theorem 2.1.

Remark 3.1. Let us point out that the choice of T depends only on M
and on the constants c0, a0, h0, h0, independent of k, because ε(T ) itself only
depends on M and T , and it is independent of k. Therefore our iteration
scheme can be conducted for all k, and we can construct the sequence {Uk}.
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4. Convergence of Uk

In this section, we are going to prove Theorem 2.2. Taking into account that
{Uk}k is uniformly bounded in Hm(ΩT ), we already know that there exists
a subsequence of {Uk} converging weakly in Hm(ΩT ). The next point is to
prove that the sequence {Uk} is Cauchy in L2(ΩT ). We write

W k+1 = Uk+1 − Uk. (4.1)

Let us make explicit the equation satisfied by W k+1. By (2.19) we have:

Uk+1
t +A(Ua + Uk + Us)Uk+1

x = FU
k
,

Ukt +A(Ua + Uk−1 + Us)Ukx = FU
k−1

,

and subtracting these two equations, we arrive at

W k+1
t +A(Ua + Uk + Us)W k+1

x

= FU
k − FUk−1 − (A(Ua + Uk + Us)−A(Ua + Uk−1 + Us))Ukx

=: F̂W
k
.

(4.2)

By direct computation, we also have:

I.C. W k+1|t≤0 = 0, B.C. W k+1|x=0 = 0.

Let us find the explicit form of F̂W
k
. We have

FU
k − FUk−1

= φ(Uk, x)− φ(Uk−1, x)− (LUa+Uk+Us(Ua + Us)
− LUa+Uk−1+Us(Ua + Us))

= φ(Uk, x)− φ(Uk−1, x)− (A(Ua + Uk + Us)

−A(Ua + Uk−1 + Us))(Ua + Us)x.

Hence

F̂W
k

= φ(Uk, x)− φ(Uk−1, x)− (A(Ua + Uk + Us)

−A(Ua + Uk−1 + Us))(Ua + Uk + Us)x.

The terms in F̂W
k

can be written as follows:

φ(Uk, x)− φ(Uk−1, x) =
(
f(vk − vk−1),−f(uk − uk−1), 0

)t ;

A(Ua + Uk + Us)−A(Ua + Uk−1 + Us)

=

uk − uk−1 0 0
0 uk − uk−1 0

hk − hk−1 0 uk − uk−1

 ,

(
A(Ua + Uk + Us)−A(Ua + Uk−1 + Us)

)
(Ua + Uk + Us)x

= (uk − uk−1)(Ua + Uk + Us)x + (hk − hk−1)
(
0, 0, (ua + uk + us)x

)t ;
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where ( , , )t denotes the transpose of a matrix.
Using these calculations, it follows that

‖F̂Wk‖2L2(ΩT ) ≤ f
2‖W k‖2L2(ΩT ) + ‖(Ua + Uk + Us)x‖2L∞(ΩT )‖W

k‖2L2(ΩT )

≤ (f2 + C4(M))‖W k‖2L2(ΩT ).

Observing that equation (4.2) also has the same form as (2.19), we therefore
proceed exactly as for (3.11). Noticing that the boundary data of W k+1

vanishes, we find

‖W k+1‖2L2(ΩT ) ≤ ε(T )‖F̂Wk‖2L2(ΩT )

≤ ε(T )(f2 + C4(M))‖W k‖2L2(ΩT ).
(4.3)

Upon reducing T again, we can assume that

ε(T )(f2 + C4(M)) ≤ 1
4
. (4.4)

Hence, we have

‖W k+1‖L2(ΩT ) ≤
1
2
‖W k‖L2(ΩT ) ≤ · · · ≤ (

1
2

)k‖W 1‖L2(ΩT ).

Therefore {Uk} is a Cauchy sequence in L2(ΩT ), and let us call U its limit in
L2(ΩT ). We also have proven that {Uk} is uniformly bounded in Hm(ΩT )
(m ≥ 3), so by L2−Hm interpolation, the sequence {Uk} converges strongly
to U in Hm−1(ΩT ). Now passing to the limit in (2.19), we obtain that U is
a solution of (2.18). Writing Ũ = Ua + U , then Ũ is the solution which we
seek in Theorem 2.2. The uniqueness directly follows from (4.3).
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